
Grant Agreement N° FP7-318484

Copyright © 2015 by the MODAClouds consortium – All rights reserved.

The research leading to these results has received funding from the European Community's Seventh
Framework Programme [FP7/2007-2013] under grant agreement n° 318484 (MODAClouds).

Title: MODACLOUDS Integration Report – Final version

Authors: Marcos Almeida (Softeam), Antonin Abherve (Softeam), Weikun Wang
(Imperial), Pooyan Jamshidi (Imperial), Nicolas Ferry (SINTEF),
Gabriel Iuhasz (IeAT), Daniel Pop (IeAT), Michele Ciavotta (Polimi),
Marco Miglierina (Polimi), Marco Scavuzzo (Polimi), Giovanni Paolo
Gibilisco (Polimi), Jacek Dominiak (CA), Román Sosa González (ATOS)

Editor: Román Sosa González (ATOS)

Reviewers: Marcos Almeida (Softeam), Craig Sheridan (Flexiant)

Identifier: Deliverable # D3.4.2

Nature: Report

Version: 1.2

Date: 28/09/2015

Status: Final

Diss. level: Public

Executive Summary

This deliverable presents the activities performed for the integration of the different MODAClouds
software components and describes the procedures followed to obtain integrated platforms for the
Design Time environment and the Runtime environment.

Ref. Ares(2015)5639362 - 07/12/2015

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 2

Members of the MODAClouds consortium:

Politecnico di Milano
Italy

Stiftelsen Sintef
Norway

Institutul E-Austria Timisoara
Romania

Imperial College of Science, Technology and Medicine
United Kingdom

SOFTEAM
France

Siemens srl
Romania

BOC Information Systems GMBH
Austria

Flexiant Limited
United Kingdom

ATOS Spain S.A.
Spain

CA Technologies Development Spain S.A.
Spain

Published MODAClouds documents
These documents are all available from the project website located at http://www.modaclouds.eu/

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 3

Contents
1! INTRODUCTION*..*5!

1.1! CONTEXT!AND!OBJECTIVES!..!5!

1.2! STRUCTURE!OF!THE!DOCUMENT!...!5!
2! INTERNAL*INTEGRATION*TASKS*..*7!

2.1! VENUES!4CLOUDS!–!CREATOR!4CLOUDS!...!8!

2.2! SLA!TOOL!–!CREATOR!4CLOUDS!...!9!

2.3! SPACEDEV!4CLOUDS!–!FUNCTIONAL!MODELLING!TOOL!...!9!

2.4! FEEDBACK!LOOP!–!CREATOR!4CLOUDS!..!9!

2.5! AUTOASCALING!REASONER!–!CREATOR!4CLOUDS!..!9!

2.6! CREATOR!4CLOUDS!–!CLOUDML!..!10!

2.7! CREATOR!4CLOUDS!–!MODELS@RUNTIME!..!10!

2.8! BATCH!ENGINE!–!FEEDBACK!LOOP!..!11!

2.9! FEEDBACK!LOOP!–!TOWER!4CLOUDS!HISTORY!DB!..!11!

2.10! TOWER!4CLOUDS!HISTORY!DB!–!TOWER!4CLOUDS!MANAGER!..!11!

2.11! SLA!TOOL!–!MODELS@RUNTIME!..!11!

2.12! SLA!TOOL!–!RUNTIME!GUI!...!12!

2.13! SLA!TOOL!–!TOWER!4CLOUDS!...!13!

2.14! RUNTIME!GUI!–!MODELS@RUNTIME!...!14!

2.15! TOWER!4CLOUDS!–!MODELS@RUNTIME!...!15!

2.16! MODELS@RUNTIME!–!AUTOASCALING!REASONER!...!16!

2.17! MODELS@RUNTIME!–!DATA!MIGRATION!...!16!

2.18! MODELS@RUNTIME!–!LOAD!BALANCER!CONTROLLER!...!16!

2.19! LOAD!BALANCER!CONTROLLER!–!ARTIFACT!REPOSITORY!..!17!

2.20! LOAD!BALANCER!REASONER!–!LOAD!BALANCER!CONTROLLER!..!17!

2.21! LOAD!BALANCER!REASONER!–!OBJECT!STORE!..!17!

2.22! MODELS@RUNTIME!–!LOAD!BALANCER!REASONER!...!17!
3! EXTERNAL*INTEGRATION*TASKS*..*19!

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 4

3.1! VENUES!4CLOUDS!..!19!

3.2! CLOUDML!..!20!
4! INTEGRATION*TESTS*...*23!
5! DESIGN*TIME*INTEGRATED*PLATFORM*..*34!
6! RUNTIME*INTEGRATED*PLATFORM*...*35!
7! CONCLUSION*...*36!
8! REFERENCES*...*37!
APPENDICES*..*38!

A.1.!MODACLOUDS!RPM!PACKAGES!...!39!

A.2!BUILDING!THE!PACKAGE.JSON!DESCRIPTOR!...!46!

A.3!THE!WRAPPER!SCRIPT!..!55!

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 5

1! Introduction

1.1! Context and objectives
This document complements the work done in the deliverable D3.5.3 “MODAClouds integrated
solution – Final version” [8], also released at M36. It reports on the progress made in the project
integration activities since M24 and is a continuation of the work described in D3.4.1 “MODAClouds
integration report – Initial version” [1].

The MODAClouds project has implemented several software components to address the objectives of
WP2 to WP5. These components need to communicate between them in a Service Oriented
Architecture fashion, so they must agree on interfaces and define a set of tests that ensure the right
integration between the components. This integration process is called internal integration in the
document. On the other hand, the integration and tests are also needed in the case of components that
use services outside of MODAClouds (e.g. cloud service providers). In the document, we refer to this
as external integration.

Moreover, there is a need to obtain a distribution of the platform that is easy to install and run. The
consortium has worked toward this objective in the last year with the result of two distributions: the
Design Time integrated platform and the Runtime integrated platform.

The deliverable continues the new naming scheme of MODAClouds components. The repackaged
service offerings of the integrated solution are detailed in D3.5.3 “MODAClouds integrated solution –
Final version” [8], and can be summarised as:

•! Creator 4Clouds consisting of Functional Modelling Tool, SpaceDev 4Clouds, LINE,
CloudML 4Clouds, Resource Repository.

•! Venues 4Clouds consisting of Decision Support System.

•! Energizer 4Clouds is divided into three sub assets:

o! Tower4Clouds consisting of Monitoring Manager, DDA, Data Collector Factory,
QoS Models, Metrics Observer, Metrics Explorer, Knowledge Base, Data Collectors,
Mathlab/Weka SDA.

o! SpaceOps 4Clouds consisting of Self-Adaptation Reasoner, Self-Adaptation Stress
Tester, Load-Balancer Reasoner, Cloud-Bursting.

o! ADDapters 4Clouds consisting of Data Migration and Synchronization, Load-
Balancer Controller, Object Store, Artifact Repository, Batch Engine, mOS Image
Builder, mOS Package Builder.

1.2! Structure of the document
This document is structured as follows:

•! Section 2 describes the internal integration challenges faced since M24 and how the
consortium addressed them, while the Section 3 describes the external integration challenges
addressed in the same period.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 6

•! Section 4 enumerates the integration tests that have been implemented in order to check the
successful integration of the different components.

•! Section 5 describes the work carried out in the development of an integrated platform for the
Design Time environment.

•! Section 6 describes the procedure to obtain RPM packages of the runtime components in order
to have an easy to install and update Runtime Integrated Platform.

•! Section 7 explains the conclusions of the document.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 7

2! Internal integration tasks

The Section 2 reports on the integration issues tacked by the consortium since M24, and are detailed in
the following sub-sections. Here we mainly refer to the internal integration issues due to the
communication and exchanging of information between the MODAClouds components.

In order to manage and maintain a list of issues, the consortium agreed the use of the issue tracker
present in the MODAClouds Redmine portal1.

The main objectives of the use of the issue tracker were to report any bugs found by the case study
owners in the functionalities offered by the MODAClouds components, and to help in the process of
obtaining an integrated platform - described in sections 5 and 6.

At the time of writing this deliverable, the following statistics can be extracted from the current issues:

•! Number of issues: 23

•! Type of issue:

o! Packaging: 6

o! Installation: 3

o! Bug/New feature in component: 3

o! Interaction between components: 1

o! Wrong component integration with the platform: 10

•! Open issues (unsolved or in feedback status): 6

•! Unsolved issues: 3 (do not provide any major problem).

The Figure 1 shows an excerpt of the filed issues.

1 https://dev.modaclouds.eu/redmine/projects/modaclouds

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 8

Figure 1: MODAClouds issue tracker

The upcoming subsections report about what we consider the most critical internal integration tasks
that were faced so far and how they were solved.

2.1! Venues 4Clouds – Creator 4Clouds
Context: Creator 4Clouds tool allows the user to specify the model of the application on the design
and run time. The Venues 4Clouds UI tool is looking for suitable services during the design time,
hence the need of sharing the selected components of the architecture.

What was done: Implemented the export mechanism for Creator 4Clouds which allows storing the
architecture model in the XML file. Implemented appropriate read model on the Venues 4Clouds tool
with validation of the architectural description taken from the SpaceDev 4Clouds model definitions.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 9

2.2! SLA Tool – Creator 4Clouds
Context: The Mediator subcomponent of the SLA Tool is updated to support the Application Provider
– Cloud Provider layer. This issue required minor changes in SLA Mediator interface: the
Functionality2tiers file is not needed any more and a new parameter containing SpaceDev 4Clouds rules
has been introduced.

What was done: Changes implemented, empty rule set sent as SpaceDev 4Clouds rules.

Context: Creator 4Clouds is updated to support SLA Mediator 1.0. The SLA Mediator needed more
SpaceDev Clouds files as input: the allocation model, the system model, the resource environment, the
resource container extension and the functionalities2tiers file.

What was done: Creator 4Clouds now produces these files as output.

2.3! SpaceDev 4Clouds – Functional Modelling Tool
Context: Export of funcionalities2tiers became necessary for SpaceDev 4Clouds.

What was done: Export added

Context: The integration between the Functional Modelling Tool and SpaceDev 4Clouds occurs
through a process of file generation and exchange. The Functional Modelling Tool converts its own
internal model in extended PCM format, which is the SpaceDev 4Clouds input format. The latter
generates output file that are aspirated within the Functional Modelling Tool.

What was done: The generation of the input files has been validated.

2.4! Feedback Loop – Creator 4Clouds
Context: The configuration file of Feedback Loop component was not supported by Creator 4Clouds

What was done: Format and contents of configuration file defined and implemented.

Context: Communication protocol and lifecycle of both components was not defined

What was done: Protocol and lifecycle defined. We will use the Object store, made available by
MODAClouds runtime, as communication channel of configuration and data files; and of updates
coming from runtime.

2.5! Auto-scaling Reasoner – Creator 4Clouds
Context: The integration between Creator 4Clouds and the Auto-scaling Reasoner is implemented by
means of generating and delivering to the runtime platform a set of input files containing monitoring
rules and information about the predicted application behavior. Such pieces of information are
generated by Space Dev 4Clouds and conveyed by Creator 4Clouds.

What was done: Recently, the Functional Modelling Tool has been modified in order to export a new
file that Space Dev 4Clouds needs to generate the input files required by the Auto-scaling Reasoner.
Moreover, the Functional Modelling Tool now retrieves the outcomes of SpaceDev 4Clouds and
handles the communication with the runtime platform.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 10

2.6! Creator 4Clouds – CloudML
Context: The Creator 4Clouds tool provides the functional, operational and data modelling
environments as well as some modules enabling the analysis of non-functional characteristics of a
multi-cloud system. Among other things, it provides specific services for modelling the deployment of
an application in a cloud-computing environment. Since the previous integration report, the CloudML
library has evolved to finalize its integration with the runtime platform.

What was done: The version 2.0 of CloudML library, which supports integration with the runtime
platform, has been integrated to Creator 4Clouds. The deployment of the cloud architecture is now
performed at runtime, the CloudML library ensuring the transmission of the deployment model
between Creator 4Clouds and Models@Runtime.

The Creator 4Clouds generator tools that produce deployment files from models also evolved to
support Puppet based deployment process.

Figure 2: Creator 4Clouds

2.7! Creator 4Clouds – Models@Runtime
Context: In order to integrate the MODAClouds runtime and design-time platforms, the deployment
specified using CloudML and generated by Creator 4Clouds have to be enacted by the
Models@Runtime engine. The various runtime components can thus in turn interact with the
Models@Runtime engine in order to monitor and adapt the deployment and provisioning of an
application.

What was done: In order to ease the integration between these two components, the CloudML facade
has been extended to seamlessly interact either with CloudML locally or with a remote
Models@Runtime engine. As a result, when using CloudML as a library, one can either tune a
deployment model or trigger high level commands (e.g., deploy, scale out) programmatically using
directly the library or a remote Models@Runtime engine through the exact same interface.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 11

In order to perform a deployment, the Models@Runtime engine requires user specific information
such as cloud provider credentials or SSH key to access the provisioned VMs, which are typically
stored locally. The facade has been extended so that these data are seamlessly provided to the remote
Models@Runtime engine.

In order to retrieve feedback about the status of an ongoing provisioning and deployment process
performed by a remote Models@Runtime engine, the facade registers to the notification mechanism
offered by the Models@Runtime engine.

2.8! Batch Engine – Feedback Loop
Context: The Feedback Loop may analyse a large amount of data which could be time consuming,
therefore requires the ability for parallel executions.

What was done: The Batch Engine exposes Rest API for the Feedback Loop to submit jobs to Condor
cluster. The Feedback Loop is now able to execute jobs on the condor cluster with the API and
executes locally if the Rest call fails.

2.9! Feedback Loop – Tower 4Clouds History DB
Context: The Feedback Loop requires monitoring data saved at runtime to execute the analysis. The
Tower 4Clouds History DB stores all the runtime data. Therefore, the Feedback Loop needs to access
the data from the History DB and save them into its own local DB.

What was done: The Feedback Loop now connects the Tower 4Clouds History DB with the REST
API exposed by the History DB. The Feedback Loop will periodically call the API and obtain data
relevant for its analysis.

2.10!Tower 4Clouds History DB – Tower 4Clouds Manager
Context: Monitoring data and model history is required to be stored for off-line analysis.

What was done: Tower 4Clouds RDF History DB component was implemented as a metric observer
and can be attached to observable metrics using either the Tower 4Clouds Manager API or the Tower
4Clouds Manager Webapp. The specified metrics will be stored in an Apache Fuseki RDF datastore
together with the history of the Model, whose deltas are recorded by the Manager whenever an update
occurs.

2.11! SLA Tool – Models@Runtime
Context: The Models@Runtime engine is responsible for triggering the enforcement of an SLA
agreement. In order to perform such operation, the Models@Runtime engine has to be aware of the
endpoint of the SLA Tool and of the id of the agreement to be enforced.

What was done: Both the endpoint and the agreement id are included as part of the CloudML
deployment model and, this way, are provided to the Models@Runtime engine. In particular, they are
modelled using the concept of properties attached to the deployment model. Once the deployment
completed, the engine exploits these information to perform the appropriate REST call to enforce the
SLA agreement.

"properties" : [{

 "eClass" : "net.cloudml.core:Property",

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 12

 "name" : "sla_url",

 "value" : <URL>

 },{

 "eClass" : "net.cloudml.core:Property",

 "name" : "agreement_id",

 "value" : <UUID>

 }

],

Listing 1: SLA related properties in a deployment model

2.12! SLA Tool – Runtime GUI
Context: The Runtime GUI is responsible for displaying information about SLA violations. This
information can be obtained from the SLA manager. However, in order to retrieve details about the
violations of a specific component of the cloud application, the Runtime GUI has to be aware of the
agreement id attached to this component.

What was done: Agreement ids are attached to component instances within a CloudML deployment
model and are thus provided to the Runtime GUI. Because the various components that compose the
system can have different agreements, an agreement id can be attached to each of them and are thus
modeled in CloudML as properties (see Listing 2).

"properties" : [{

 "eClass" : "net.cloudml.core:Property",

 "name" : "agreement_id",

 "value" : "agreement-b"

}]

Listing 2: Example of SLA properties in a deployment model

On the basis of the component and agreement ids, the Runtime GUI is able to perform the appropriate
asynchronous REST calls to retrieve from the SLA Tool:

•! The number of SLA violations

•! The number of SLA violations that occurred within the day

•! The violations details

Within the graphical user interface, these calls can be triggered by the user by clicking on the
component of interest and then on the load buttons as depicted in Figure 3.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 13

Figure 3: Integration Runtime GUI and SLA Tool

2.13! SLA Tool – Tower 4Clouds
Context: The Tower 4Clouds API for subscribing an observer has slightly changed. Tower 4Clouds
now offers several data formats to send the data to the observers, and thus the subscription request is a
JSON structure with several options, rather than the plain URL used previously.

What was done: The code in the SLA Tool that handled the subscription to the Tower 4Clouds
Manager changed to support the change in the API. The only needed modification was to send a JSON
body specifying the endpoint of the SLA Tool as the callbackUrl field and the required data format, as
shown in Listing 3:

{

 "format": "RDF/JSON",

 "callbackUrl": "http://ENDPOINT_IP:ENDPOINT_PORT/metrics/agreement-id"

}

Listing 3: SLA subscription to Tower4Clouds

Context: The data sent in RDF/JSON format from the Tower 4Clouds manager to observers has
slightly changed, and the namespaces prefixing each field have been renamed from
http://www.modaclouds.eu/rdfs/1.0/monitoringdata to http://www.modaclouds.eu/model, like shown
in Listing 4.

{

 "_:-1c2601ea:14e24ce91fd:-7c83" : {

 "http://www.modaclouds.eu/model#timestamp" : [{

 …

 }

] ,

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 14

 "http://www.modaclouds.eu/model#value" : [{

 …

 }

] ,

 …

}

Listing 4: Tower 4Clouds output metric

What was done: The observer has been modified to interpret the data in the current namespace.

2.14!Runtime GUI – Models@Runtime
Context: The Runtime GUI is responsible for: (i) providing feedback about the status of the
deployment, (ii) providing feedback about the status of the running system, (iii) providing access to
high level operation commands such as deploy, scale, burst. All the status information can be obtained
from the Models@Runtime engine. Similarly, the high level commands are enacted by the
Models@Runtime engine.

What was done: The Models@Runtime engine exposes a WebSocket interface which provides a
remote access to the high level commands offered by the Models@Runtime engine. In addition, a
notification mechanism has been created and provides external client with the ability to register for
notifications. A notification is send every time the status of a component in the deployment model
changes. The Runtime GUI, once connected to a Models@Runtime engine, registers all notifications.
As a result, it can provide users with details on the status of the deployment and of the running system.
In addition, it implements a WebSocket client to trigger deployment actions as depicted in Figure 4.

Figure 4: High level commands accessible from the Runtime GUI

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 15

Details about the WebSocket interface are available in: https://github.com/SINTEF-
9012/cloudml/tree/master/ui/websocket

2.15!Tower 4Clouds – Models@Runtime
Context: The Models@Runtime engine is responsible for keeping the Tower 4Clouds platform
informed about the status of the deployment. In particular, the Models@Runtime has to provide
information about the component to be monitored (e.g., type, id, host).

What was done: On one hand, data collectors are responsible for providing the Tower 4Clouds
Manager with details about the cloud resources and software components to be monitored. On the
other hand, the Models@Runtime engine is responsible for providing these data to the data collectors
as well as the endpoint of the monitoring manager. The data collectors are deployed using the
Models@Runtime engine and thus included in the deployment models. The details about the
deployment are given to the data collectors using environment variables. The Models@Runtime
engine has thus been extended with the ability to export environment variable. This operation is
performed every time a VM is provisioned and before the software components are installed. The
environment variables to be exported are specified in the deployment models as properties (see Listing
5).

"properties" : [{

 "eClass" : "net.cloudml.core:Property",

 "name" : "env:MODACLOUDS_TOWER4CLOUDS_VM_ID",

 "value" : "${this.host.id}"

}, {

 "eClass" : "net.cloudml.core:Property",

 "name" : "env:MODACLOUDS_TOWER4CLOUDS_VM_TYPE",

 "value" : "${this.host.type.name}"

}, {

 "eClass" : "net.cloudml.core:Property",

 "name" : "env:MODACLOUDS_TOWER4CLOUDS_CLOUD_PROVIDER_ID",

 "value" : "${this.provider.id}"

}, {

 "eClass" : "net.cloudml.core:Property",

 "name" : "env:MODACLOUDS_TOWER4CLOUDS_CLOUD_PROVIDER_TYPE",

 "value" : "IaaS"

}],

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 16

Listing 5: Exporting environment variables to configure data collectors

2.16!Models@Runtime – Auto-scaling Reasoner
Context: The Auto-scaling Reasoner exploits the Models@Runtime engine in order to enact
adaptation actions (i.e., scaling, bursting).

What was done: The Models@Runtime engine exposes a set of high level commands that can be
exploited to adapt the deployment of a cloud-based application. In particular, the engine offers the
following commands:

•! Start/stop one to n components in parallel. These commands can be used to improve the
performances of the scaling operation since it avoids provisioning new cloud resources.

•! Scale an instance of VM n times in parallel.

•! Burst a VM to a new cloud provider.

These commands can be triggered remotely by exploiting the Websocket interface exposed by the
Models@Runtime engine.

2.17!Models@Runtime – Data migration
Context: The Models@Runtime engine is responsible for triggering the data migration.

What was done: Data Migration tool exposes a set of REST APIs that allows an external application
to start the data migration task from a source database to one or more target databases. Once the
deployment completed, the Models@Runtime engine exploits this interface to initiate the migration
(offline or online).

2.18!Models@Runtime – Load Balancer Controller
Context: The MODAClouds Load Balancer is one of the runtime components that are used and thus
considered as part of the running cloud application. As a result it has to be managed by the
Models@Runtime engine, which is responsible for the provisioning, deployment and adaptation of
multi-cloud applications.

What was done: The Load Balancer has been integrated with the Models@Runtime engine. Within a
deployment model, the Load Balancer is modelled as a component. This way, the necessary
information is provided to the Models@Runtime engine. The latter can in turn exploit the API
exposed by the Load Balancer during the deployment to:

•! configure the Load Balancer with the necessary information (i.e., gateway, protocol),

•! start the Load Balancer,

•! and manage the pool of resources behind the Load Balancer on the basis of the relationships,
defined within the deployment model, between Models@Runtime components and the Load
Balancer.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 17

In addition, this pool is dynamically managed by the Models@Runtime engine when performing
scaling and bursting operations.

2.19!Load Balancer Controller – Artifact Repository
Context: The MODAClouds Load Balancer Controller and Artifact Repository are both supporting
services part of the runtime components. In particular the Artifact Repository is used to store artifacts
produced or required by any component from the runtime.

What was done: The integration between the Load Balancer Controller and Artifact Repository is
important, as it stores the current state of the Load Balancer inside the Artifact Repository. It is also
possible to store several state versions. The exposed functionality is as follows:

•! LB REST API supports the querying of the current stored states inside the Artifact Repository

•! From the LB REST API it is possible to create new LB state versions

•! It is also possible to delete old unwanted states

The LB States take the form of an SQLite database, which is exported as is into the Artifact
Repository. This database contains current configured endpoints, gateways, generated configuration
and stored security keys.

2.20!Load Balancer Reasoner – Load Balancer Controller
Context: The Load Balancer Reasoner needs to access the Load Balancer Controller so that the
reasoner can check if the backend VMs are running and change the weights of the VMs of the
weighted round robin policy.

What was done: The Load Balancer Reasoner is able to interact with the Load Balancer Controller by
the Load Balancer Controller REST API to start the Load Balancer and change the various
configurations of it.

2.21!Load Balancer Reasoner – Object Store
Context: The Load Balancer Reasoner needs some preset configuration to start. However, during
development the configuration should be passed to the Load Balancer Reasoner.

What was done: The configurations are now stored in the Object Store, exposed by environment
variables for the Load Balancer Reasoner to access it with HTTP requests.

2.22!Models@Runtime – Load Balancer Reasoner
Context: Models@Runtime engine must be able to configure Load Balancers running on different
cloud providers during the deployment process on the basis of their relationships with other CloudML
components.

What was done: The Load Balancer Reasoner has been integrated with the Models@Runtime engine.
Within a deployment model, the layered Load Balancer is modelled as a dependency between
components. This way, the necessary information is provided to the Models@Runtime engine. The
Models@Runtime engine uses the API exposed by the Load Balancer Controller during the
deployment to:

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 18

•! configure the Load Balancer with the necessary information (i.e., gateway, protocol),

•! add the appropriate IPs of the backend machines created by the engine to the configuration file
of the local Load Balancer,

•! add the appropriate IPs of the local Load Balancers to the configuration file of the Global
Load Balancer,

•! start the Global Load Balancer and Local Load Balancers,

•! manage the pool of resources behind the local Load Balancers on the basis of the
relationships, defined within the deployment model, between CloudML components and the
Load Balancer.

In addition, this pool is dynamically managed by the Models@Runtime engine when performing
scaling and bursting operations.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 19

3! External integration tasks

This section reports on the external integration issues faced by the consortium since M24. These
external integration issues are due to the communication and exchanging of information between
MODAClouds components and services outside of MODAClouds, used by the former ones.

3.1! Venues 4Clouds
Context: Venues 4Clouds needs to read the data from the multiple data sources available as open data
in order to enrich the Venues 4Clouds dataset.

What was done: One of the biggest advantages of the Venues 4Clouds is the possibility of data
collection, organization and aggregation from multiple source destinations. These destinations can be
online data catalogues, API’s and plain text files.

For this sore reason, two modules have been designed and implemented. Modular approach to the
problem allowed us to split the responsibility and ensure that the data collected should be as close to
the source as possible.

Module “dss-data-import” is a module which can read multiple data sources and map the data
extracted to the SDOUT. Module is a compiled cross-platform binary which can read online sources,
like API’s, HTTP based XML files, including HTML; as well as local sources with XML, JSON and
Excel structure. Dss-data-import module uses user defined map, described in the deliverable D2.3.2 to
map extracted data to the descriptor used within the DSS platform, hence making it readable for the
Venues 4Clouds. It has been used successfully to extract the data from sources like:

•! http://crunchbase.com (HTTP REST API)

•! http://cloudharmony.com (HTTP REST API)

•! http://wikipedia.com (HTTP HTML parse)

•! Cloud Security Alliance cloud providers submitted excel files

“dss-data-import” module produces human readable JSON output which can be either fed to as a
STDIN to the other modules or redirected to a file in order to produce the input for further processing.

Second module designed to fulfil the needs of the data extraction is “dss-data-save”. The responsibility
of this module is to form or enrich existing graph of data with the information provided. Deliverable
D2.3.2 describes the inputs and outputs of the module as well as details of the implementation.

Context: There is a requisite to integrate a mechanism to collect the data directly from the providers
giving them access to add and modify existing data.

What was done: An online survey like mechanism directly bounded to the graph enriching
mechanism was designed and implemented. It allows hosting multiple surveys at once, sharing the
responsibilities of data collection as well as later modification of the provided provider data.
Implementation designed sorely to ease the data collection from small European providers which do
not provide detailed information needed, or are excluded from other catalogues due to the size, to be
included in the Venues 4Clouds cloud services selection.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 20

Context: Integrate mechanisms to collect crowdsourced data to the platform in order to enrich,
validate and extend the collected cloud services provided data set.

What was done: An independent platform was designed and implemented which allows the federated
ways of extending the existing dataset. Platform is designed to allow the users to search, review and
correct the DSS dataset in a collective manner, meaning that the changes need to be validated and
reviewed multiple times by other users in order to validate themselves.

3.2! CloudML
Context: CloudML library needs to manage deployments in IaaS cloud offerings.

What was done: In order to refine deployment models with provider-specific and runtime information
(e.g., type of VM, IP address) as well as to provision VM and deploy applications on them, CloudML
interacts with the cloud provider APIs. Within the CloudML deployment engine, these interactions are
under the responsibility of a set of connectors. Currently, for the IaaS level management, the
provisioning and deployment engine relies on the jclouds library[2], which provides an abstraction
over more than 20 IaaS provider APIs, and an ad-hoc connector to interact with the Flexiant Cloud
Orchestrator API[3]. So far, the CloudML IaaS connectors have been tested against the following
providers:

•! Flexiant

•! AWS EC2

•! CloudSigma

•! Openstack

An IaaSConnector Interface has been created and allows the deployment engine to seamlessly exploit
the library and other ad-hoc connectors.

Compared to D3.4.1 the set of operations under the responsibility of these connectors have been
extended with operations for the creation and management of images and:

•! Create snapshot of a VM

•! Create an image of a VM

•! Transform a Snapshot into an image

•! List existing images

The updated implementation of the connectors is always available at the following address:

https://github.com/SINTEF-
9012/cloudml/tree/master/connectors/src/main/java/org/cloudml/connectors

Context: CloudML library needs to manage deployments in PaaS cloud offerings.

What was done: For the PaaS level management, the provisioning and deployment engine relies on
the unified PaaS layer library initiated during the Cloud4SOA project as well as on ad-hoc connectors.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 21

They provide the ability to access and manage multiple cloud offerings (public and private). So far, the
CloudML PaaS connectors have been tested against the following PaaS offerings:

•! AWS RDS

•! AWS SQS

•! AWS Beanstalk

•! Cloud Foundry

•! Pivotal

•! Cloudbees2

Compared to M24, in order to support public and private CloudFoundry PaaS services, an ad-hoc
connector that relies on the CloudFoundry Java Client library[4] has been created. In addition, the
PaaSConnector Interface that allows the deployment engine to seamlessly exploit the Unified PaaS
library and the other ad-hoc PaaS connectors has evolved. As a result, the PaaS connectors are now
responsible for the following operations:

•! create application

•! delete application

•! create application's environment

•! delete application's environment

•! upload application

•! start application

•! stop application

•! create service (e.g., message queues, databases)

•! stop service

•! bind a service to an application

•! export environment variables

As depicted in Figure 5, the PaaS connectors, including the Unified PaaS library, are integrated within
CloudML and exploited by the deployment engine in order to interact with the cloud provider APIs
and then to trigger typical management actions on a specific cloud.

2 As explained in D4.3.1[1], CloudBees decided to change the target of its service (and business) toward being an enterprise
100% Jenkins company. This change means that CloudBees shuttered down the RUN@cloud (which includes application

and database hosting) services. CloudML offered support for these services before this change happened.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 22

Figure 5 : CloudML architecture

The updated implementation of the connectors is always available at the following address:

https://github.com/SINTEF-
9012/cloudml/tree/master/connectors/src/main/java/org/cloudml/connectors

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 23

4! Integration tests

The following tables describe the integration tests that have been designed for validating the
integration between MODAClouds components. Each table contains the tests for a pair of
components, and each is described with a brief description of the test, the result of the test, and any
additional comment. Most of the components had to be modified in order to pass the tests. This
explains why all the tests had succeeded as result.

Models@Runtime – SLA Tool

Description Result Comments

Agreement IDs compatibility

The aims of this test is to check that the ID
specified within the CloudML deployment
model by the Functional modelling
environment match the ID specified in the
SLA manager

Succeeded N/a

Agreement enforcement when deploying

The objective of this test is to check that
the SLA manager URL is properly
provided to the Models@Runtime engine
together with the agreement ID and that, in
turn, the Models@Runtime engine is able
to enforce the agreement once the
deployment completed.

Succeeded N/a

Enforcing agreement only when a proper
ID is specified.

The objective is to check that the absence
of an agreement ID or the improper
specification of an ID does not prevent the
deployment of the cloud application.

Succeeded N/a

Models@Runtime - Runtime GUI

Description Result Comments

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 24

Trigger a deployment from the runtime
GUI

The objective of this test is to check that a
deployment process can be triggered from
the Runtime GUI. This includes:
connecting to the Models@Runtime
engine, pushing a model to the engine,
starting a deployment, and receiving
notifications describing the status of the
deployment.

Succeeded All credentials, SSH files and
scripts to be uploaded with
UploadCommands have to be
placed on the machine
running the
Models@Runtime engine.

Trigger a bursting from the Runtime GUI

The objective of this test is to trigger the
bursting of a VM from the Runtime GUI.

Succeeded N/a

Trigger a scaling from the Runtime GUI

The objective of this test is to trigger an
horizontal scaling of a VM from the
Runtime GUI

Succeeded For now, using the Runtime
GUI, it is only possible to
scale VMs one by one.

Load model into GUI from
models@runtime

The objective of this test is to check that it
is possible to display into the Runtime GUI
the status of an ongoing or achieved
deployment.

Succeeded N/a

Models@Runtime - Load Balancer Controller

Description Result Comments

Start load balancer

The objective of this test is to validate that
when modelling the MODAClouds Load
Balancer as a CloudML external
component, the Models@Runtime engine
is able to start it.

Succeeded N/a

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 25

Configure load balancer

The objective of this test is to validate that
when modelling the MODAClouds Load
Balancer as a CloudML external
component, the Models@Runtime engine
is able to configure it during the
deployment process on the basis of its
relationships with other CloudML
components.

Succeeded N/a

Models@Runtime – Tower 4Clouds

Description Result Comments

Test the proper export of the environment
variables pointing to Tower 4Clouds

In order to communicate with the
monitoring manager, the data collectors
have to be aware of its IP address and port.
These data are provided by exporting
environment variables. This test checks
that the Models@Runtime engine properly
export these variables

Succeeded N/a

Test the proper export of environment
variables describing the components to be
monitored.

Information related to the components to
be monitored has to be provided to the
Tower 4Clouds Manager by the data
collector. This information is fed into the
data collector by the Models@Runtime
engine, which export relevant environment
variables. This test validate that these
environment variables are properly
exported

Succeeded N/a

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 26

Test component with environment
variables are monitored.

Information related to the components to
be monitored has to be provided to the
Tower 4Clouds Manager by the data
collector. This information is fed into the
data collector by the Models@Runtime
engine, which export relevant environment
variables.

This test validate that the environment
variable are properly retrieved and
exploited by the data collectors.

Succeeded N/a

Added components are dynamically
monitored

When deploying new components or
adapting the deployment of an application,
the monitoring manager has to be aware of
the new deployment. This test validate that
in such case data collectors are properly
deployed and that the necessary
environment variables are exported.

Succeeded N/a

Models@Runtime – Creator 4Clouds

Description Result Comments

Multi-cloud deployment

The objective of this test is to validate that
Creator 4Clouds can seamlessly trigger
multi-cloud deployments using either the
Models@Runtime engine or an CloudML
as a library.

Succeeded N/a

Runtime GUI – SLA Tool

Description Result Comments

Display SLA violations

The objective of this test is to validate that
the Runtime GUI can retrieve and display
SLA violations for a specific ID

Succeeded N/a

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 27

Display number of violations

The objective of this test is to validate that
the Runtime GUI can display the number
of violations for a specific cloud service

Succeeded N/a

Space Dev 4Clouds – Creator 4Clouds

Description Result Comments

Analysis of an application modelled in
Creator 4Clouds with IaaS resources, using
Space Dev 4Clouds.

This tests validates that an application
modelled in Creator 4Clouds by specifying
IaaS resources in the deployment diagram
can be successfully exported by Creator
4Clouds, imported in SpaceDev 4Clouds and
analysed to assess QoS

Succeeded Manual tests performed in
the Constellation and BOC
case studies

Analysis of an application modelled in
Creator 4Clouds with PaaS resources,
using SpaceDev 4Clouds.

This tests validates that an application
modelled in Creator 4Clouds by specifying
PaaS resources in the deployment diagram
can be successfully exported by Creator
4Clouds, imported in Space Dev 4Clouds
and analysed to assess QoS

Succeeded N/a

Analysis of an application modelled in
Creator 4Clouds with mixed IaaS and PaaS
resources, using Space Dev 4Clouds.

This tests validates that an application
modelled in Creator 4Clouds by specifying
both IaaS and PaaS resources in the same
deployment diagram can be successfully
exported by Creator 4Clouds, imported in
Space Dev 4Clouds and analysed to assess
QoS

Succeeded Manual Test performed on
the BOC case study (still
while the case study was
under development)

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 28

Optimization of an application modelled in
Creator 4Clouds with IaaS resources, using
Space Dev 4Clouds.

This tests validates that Space Dev 4Clouds

is capable of deriving deployment
decisions from applications that specify
IaaS resources in their deployment diagram

Succeeded Manual Tests performed in
the Constellation and BOC
case studies

Optimization of an application modelled in
Creator 4Clouds with PaaS resources,
using Space Dev 4Clouds.

This tests validates that Space Dev 4Clouds

is capable of deriving deployment
decisions from applications that specify
PaaS resources in their deployment
diagram

Succeeded N/a

Optimization Result feedback in Creator
4Clouds.

This test validates that Creator 4Clouds is
capable of ingesting the deployment
configuration derived by an optimization
from Space Dev 4Clouds and update the
model show to the user

Succeeded N/a

Space 4Clouds Dev – Line

Description Result Comments

LQN model solution from Space Dev
4Clouds.

This test validates that Space Dev 4Clouds is
able to communicate with LINE to provide
the LQN model for the analysis and
retrieve the results

Succeeded Manual test, validated by
extensive usage of LINE

Assessment of Space Dev 4Clouds solutions
using LINE.

This test validates the ability of LINE and
Space Dev 4Clouds to evaluate a solution
composed by 24 LQN model in parallel.

Succeeded Manual test, validated by
extensive usage of LINE

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 29

Optimization of Space Dev 4Clouds

solutions using LINE.

This test validates that LINE is capable of
sustaining the high number of model
evaluation necessary for the optimization
performed by Space Dev 4Clouds

Succeeded Manual test, validated by
extensive usage of LINE

Importing Results from LINE to Space Dev
4Clouds.

This tests validates that the QoS results
produced by LINE are successfully
imported in Space Dev 4Clouds

Succeeded Manual test

Auto-detection of existing LINE servers.

This test validate that Space Dev 4Clouds is
capable of detecting existing instances of a
LINE server and connecting to them.

Succeeded Manual test, validated by
extensive usage of LINE

Automatic launch of LINE server.

This test validates the ability of Space Dev
4Clouds to launch a standalone LINE
server and connect to it.

Succeeded Manual test

Tower 4Clouds – CloudML

Description Result Comments

Connection between data collectors and
manager.

This test validates that data collectors can
connect to the manager after being
deployed using CloudML

Succeeded N/a

Model creation and register by data
collectors.

This test validates that data collectors can
successfully create and register the model
according to the environment variables
specified in CloudML

Succeeded N/a

Data Migration and Synchronization – Models@Runtime

Description Result Comments

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 30

Execute CRUD operations compatible with
Data Migration.

This test validates that the CPIM library is
able to execute CRUD operations which
are compatible with Data Migration and
Synchronization which allow Data
Migration and Synchronization to perform
correct data migration and synchronization

Succeeded N/a

SLA Mediator – Creator 4Clouds

Description Result Comments

Test SLA generation when application is
modelled to be deployed on IaaS.

The cloudElement element in the
ResourceContainerExtension file has a
structure depending of the type of provider,
which has been modified several times in
the life of the project. This test checks both
components are in sync regarding the
definition of the cloudElement.

Succeeded Mediator makes a sanity
check to ensure the
agreement is at least
generated in case of a
mismatch.

Test SLA generation when application is
modelled to be deployed on PaaS.

The cloudElement element in the
ResourceContainerExtension file has a
structure depending of the type of provider,
which has been modified several times in
the life of the project. This test checks both
components are in sync regarding the
definition of the cloudElement.

Succeeded Mediator makes a sanity
check to ensure the
agreement is at least
generated in case of a
mismatch.

Test successful binding with Monitoring
Rules.

This test checks that the guarantee terms
are correctly generated using the names of
the output metric of the monitoring rules.

Succeeded N/a

Test successful generation of Quality of
Business (QoB) rules.

This test checks that the QoB rules match
the penalty schema and that they are
bounded to the right rule.

Succeeded N/a

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 31

Creator 4Clouds - Tower 4Clouds

Description Result Comments

Test deployment of monitoring rules in
Tower 4Clouds and successfully register
rules in Tower 4Clouds webapp.

Succeeded N/a

Creator 4Clouds – Feedback Loop

Description Result Comments

Test if deployment of Feedback Loop
configuration files created the right files on
the Object store.

Check for configuration file, usage model
and resource model.

Succeeded N/a

Import files generated by filling the gap
and check CCIM model is updated
accordingly.

Verify data imported from configuration
file, usage model and resource model.

Succeeded N/a

Creator 4Clouds – CloudML

Description Result Comments

Generate scripts for IaaS and PaaS models
and check (manually) if scripts correspond
to the model.

Succeeded N/a

Deploy IaaS and PaaS models and check if
instances are correctly created according to
the model.

Succeeded N/a

Creator 4Clouds - QoS Models

Description Result Comments

Create a QoS constraint with any values for
all attributes, connect it to a model element
then generate a monitoring rule from it.
Data from the constraint should be carried

Succeeded N/a

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 32

to the generated rule.

Auto-scaling Reasoner - Models@Runtime

Description Result Comments

Send scaling commands to
Models@Runtime.

This test validates that Auto-scaling
Reasoner is able to communicate with
Models@Runtime scaling up and down the
number of active VMs

Succeeded Manual test, validated by
extensive usage of
Models@Runtime. Several
bugs have been solved during
this process

Send cloud bursting command

This test aims at validating the Auto-
scaling Reasoner ability to perform cloud
bursting

Succeeded Manual test. In this test a
synthetic limit has been set in
Models@Runtime to work
with Amazon and emulate
the case of full private cloud.

Auto-scaling Reasoner - Tower4Clouds

Description Result Comments

Cloud bursting rules

This test aims at validating the integration
of the Auto-scaling Reasoner with the
monitoring platform. In particular we refer
here to the cloud bursting mechanism that
relies on monitoring rules installed in the
monitoring platform

Succeeded Manual test, validated by
extensive usage of
Tower4Clouds

Stress tests

We performed a stress test on the
monitoring platform to verify its capacity
to handle data arrival rates required by the
SAR

Succeeded Manual test, validated by
extensive usage of
Tower4Clouds

Auto-scaling Reasoner – SDA

Description Result Comments

Interface Auto-scaling Reasoner -
Statistical Data Analyzer (SDA)

Succeeded Manual test, validated by
extensive usage of

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 33

This test aims at validating the integration
of the Auto-scaling Reasoner with several
SDAs. In particular, we realized and tested
an communication interface between SDAs
and Auto-scaling Reasoner

Tower4Clouds

Stress test

We performed a stress test on the
monitoring platform to verify its capacity
to handle data arrival rates required by the
SAR

Succeeded Manual test, validated by
extensive usage of
Tower4Clouds

Venues 4Clouds – Creator 4Clouds

Description Result Comments

Allow to import the Cloud Resource
Descriptor design time model into Venues
4Clouds and extract the information about
the services needed in order to fulfil the
required deployment.

Succeeded N/a

Enrich the Cloud Resource Descriptor
model with the user selected deployment
strategy in order to allow specification of a
service and provider needed.

Succeeded N/a

Export the modified Cloud Resource
Descriptor model into the format which
Creator 4Clouds can read.

Succeeded N/a

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 34

5!Design Time integrated platform

The MODAClouds design time environment is described in detail in D4.3.3 “MODACloudML IDE -
Final version” [9], and is composed of the following components:

•! Functional Modelling Tool

•! SpaceDev 4Clouds

•! LINE

•! CloudML

•! Resource Repository

The most important component of the Design Time environment is the Functional Modelling Tool.
Considering it is implemented as a module for the Modelio modelling tool, it is therefore an actual
program to be installed and used in a client host, and not to be used as an external service.

The initial approach for obtaining a Design Time platform was to prepare a VM with all the
aforementioned components already installed. This decision was taken by the fact that there are strong
dependencies between SpaceDev 4Clouds and Palladio that makes it difficult the creation of installation
scripts that automates the task of installing the components on any machine. This VM will be hosted
on multicloudsdevops.com. One then can use VNC or any other remote desktop applications to use
MODACloudsML IDE.

Further, the instructions for installing a MODAClouds IDE – without SpaceDev 4Clouds - are described
in detail in [10].

At the time of writing, the consortium is working towards having Docker images as another way of
obtaining a Design Time platform, with the intention of facilitating a potential update of the platform.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 35

6!Runtime integrated platform

The MODAClouds runtime environment, used to integrate and deploy all MODAClouds services, is
described in detail in D6.5.2 “Run-time environment – Initial release” [5] and D6.5.3 “Run-time
environment – Final release” [6] deliverables. The underlying platform for integration of
MODAClouds services is based on mOSAIC platform, which has been updated for MODAClouds
context as described in D6.5.1 “Run-time environment – proof of concept” [7]. Thus, the mOS
platform provides a distributed execution environment and resource discovery services for the
MODAClouds runtime components. mOS 2.x, based on OpenSUSE 13.x operating system, is
designed to run on any compatible Cloud infrastructure. Hence, the components need to be packed as
RPM packages, which is the format supported by OpenSUSE. The process of obtaining RPM
packages is described in Appendix A.1.

This procedure allows the deployment of a MODAClouds Runtime Platform not only on mOSAIC,
but on any OpenSuse13.1 host. The installation and usage instructions of the integrated platform can
be found in D3.5.3 “MODAClouds integrated solution – Final version” [8].

As a summary of the integration process, each MODAClouds component developer needs to provide
the following artefacts:

•! a distribution bundle, namely distribution.tar.gz archive that contains the files needed to run
the component

•! a descriptor in JSON format, namely package.json, used build the RPM i.e. packing the
distribution and the wrapper script

•! a wrapper script, namely service-run.bash, that runs the service.

Each component is installed in /opt/modaclouds-services-<component-name> with the wrapper script
in modaclouds-services-<component-name>/bin sub-folder.

The rest of the details for the integration of the Runtime Platform can be found in the appendices.
Appendix A.1 describes the workflow and assets involved in the process of obtaining the RPM
package for a MODAClouds component. Appendix A.2 details the service configuration, covering
package.json descriptor. Guidelines and example of how to build a wrapper script are provided in
Appendix A.3.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 36

7!Conclusion

This document describes the work done in the context of the Task 3.3 “MODACLOUDS coordination
for the integration”, from M24 to M36. It is part of last series of documents to be delivered in the
context of WP3, along with D3.5.3 “MODAClouds integrated solution – Final version” [8] and D3.7.2
“MODACLOUDS evaluation report – Final version” [11].

It reported on the progress made by the consortium in the project integration activities, explaining the
different integration issues encountered by the MODAClouds components, how they were addressed,
and the battery of integration tests that have been developed to ensure the right integration of the
MODAClouds components with other MODAClouds components or external services .

It also describes the work performed to facilitate the creation of instances of the Design Time and
Runtime platforms.

The result of this integration work will be visible in the official MODAClouds sites.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 37

8!References

[1]: MODAClouds deliverable D3.4.1: MODAClouds Integration Report – Initial version

[2]: JClouds: http://www.jclouds.org

[3]: Flexiant Cloud Orchestrator API: http://docs.flexiant.com

[4]: CloudFoundry Java Client: https://github.com/cloudfoundry/cf-java-client

[5]: MODAClouds deliverable D6.5.2: Run-time environment – Initial release

[6]: MODAClouds deliverable D6.5.3: Run-time environment – Final release

[7]: MODAClouds deliverable D6.5.1: Run-time environment – Proof of concept

[8]: MODAClouds deliverable D3.5.3: MODAClouds integrated solution – Final version

[9]: MODAClouds deliverable D4.3.3: MODACloudML IDE - Final version

[10]: Creator 4Clouds User Guide: http://forge.modelio.org/projects/creator-4clouds/wiki/Wiki

[11]: MODAClouds deliverable D3.7.2: MODACLOUDS evaluation report – Final version

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 38

Appendices

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 39

Appendix A !
A.1. MODAClouds RPM packages
Workflow for packing MODAClouds components

Building a fully deployable RPM package for a MODAClouds software component needs two actors
(the DEVELOPER of the component and the PACKAGER), and a number of steps. The PACKAGER
role is played by one of IeAT staff members. The detailed workflow for packing MODAClouds
components is depicted in Table 1 MODAClouds Packing Workflow.

Table 1 MODAClouds Packing Workflow

Task Actor RPM status

1 Development of the tool DEVELOPER Pending release

2 Build the distribution bundle (distribution.tar.gz) DEVELOPER Pending release

3 Create the wrapper script needed to run the service (service-
run.bash)

DEVELOPER Pending release

4 Upload the distribution bundle and wrapper script to
MODAClouds FTP server3 under /public folder and notify
the PACKAGER

DEVELOPER Pending release ->

Pending packing

5 Packing, creation of RPM and uploading the RPM on mOS
repository

PACKAGER Pending packing ->
Pending validation

6 Test the RPM package DEVELOPER If OK then
status=Available,
else Notify the
PACKAGER

The structure of MODAClouds FTP server /public section is illustrated in Figure 6 MODAClouds FTP
server structure. Under /distributions sub-folder each component has its own home folder, where the
artefacts (distribution.tar.gz and service-run.bash files) are organized per version. The figure illustrates
the distribution archive and the wrapper script for Load Balancer Reasoner 2.0.3 component.

3 ftp.modaclouds.eu

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 40

Figure 6 MODAClouds FTP server structure

The `package.json` files are stored on the MODAClouds mOS platform packages repository at:

https://github.com/modaclouds/modaclouds-mos-platform-packages

In order to follow-up the packing process of all MODAClouds components a spreadsheet has been
introduced where components are grouped by MODAClouds Exploitable artefacts (Tower 4Clouds,
ADDapters 4Clouds, SpaceOps 4Clouds, Filling the Gap and Other tools). Table 2 MODAClouds
packages illustrates an excerpt of this table for ADDapters 4Clouds and SpaceOps 4Clouds artefacts.

The column “RPM status” holds the status of each component:

•! available means that the RPM exists and it was tested by the developer to be fully functional;

•! pending validation means that a (new) RPM exists (just packaged), and the developer has to
test if the package works in the integration environment;

•! pending packaging means that a new distribution archive exists (on MODAClouds FTP)
(together with updated wrapper scripts), and the packager has to generate the RPM;

•! pending release: the developer is working on a new version to soon be released.

The distribution column points to the MODAClouds FTP server location of the distribution archive
and wrapper script of each component.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 41

Table 2 MODAClouds packages

! identifier! type! RPM!
status!

RPM!name! RPM!
version!

RPM!dependencies! packaged!
version!

released!
version!

distribution!(tar.gz,!jar,!etc.)!

ADDapters)4Clouds)

 ! load?
balancer?
controller!

service! available! modaclouds?services?load?
balancer?controller!

0.7.0.15! python!
haproxy!

0.2.8! 0.2.8! http://ftp.modaclouds.eu/public/dis
tributions/lb?controller/0.2.8/!
!

! artifact?
repository!

service! pending!
release!

mosaic?artifact?repository! [missing]! python! [missing]! [missing]! [missing]!

! object?
store!

service! available! mosaic?object?store! 0.7.0.15! [N/A]! [N/A]! [N/A]! [N/A]!

SpaceOps)4Clouds)

 ! models?at?
runtime!

service! pending!
validation!

modaclouds?services?
models?at?runtime!

0.7.0.15! mosaic?rt?jre?7! 0.2.0! 0.2.0! http://ftp.modaclouds.eu/public/dis
tributions/mrt/0.2.0/!

! load?
balancer?
reasoner!

service! pending!
validation!

modaclouds?services?load?
balancer?reasoner!

0.7.0.15! mosaic?rt?jre?7!
modaclouds?rt?
matlab?mcr?r2013a!

2.0! 2.0! http://ftp.modaclouds.eu/public/dis
tributions/lb?reasoner/2.0/!

! mdload! tool! pending!
validation!

modaclouds?tools?mdload! 0.7.0.15! mosaic?rt?jre?7!
modaclouds?rt?
matlab?mcr?r2013a!

0.1.0! 0.1.0! http://ftp.modaclouds.eu/public/dis
tributions/mdload/0.1.0/!
!

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 42

Building the distribution.tar.gz archive

For Java applications, one can use Maven to create the needed distribution.tar.gz, which
should hold both the JAR with dependencies and other required files. Following the steps below will
create an archive ending in tar.gz that contains a single top folder named distribution, and
inside it a file service.jar:

1.! Copy the maven-assembly-plugin configuration snippet presented below in your POM
file

2.! Copy the distribution-tar-gz.xml file from

https://github.com/cipriancraciun/modaclouds-mos-platform-
packages/blob/development/packages/_modaclouds-services-
template/application/src/assembly/distribution-tar-gz.xml

to your local src/assembly folder.

3.! In order to include additional files into the distribution archive simply place them into the
src/distribution folder.

<plugin>

 <artifactId>maven-assembly-plugin</artifactId>

 <executions>

 <execution>

 <id>jar-with-dependencies</id>

 <phase>package</phase>

 <goals>

 <goal>single</goal>

 </goals>

 <configuration>

 <attach>true</attach>

 <archive>

 <manifest>

 <!-- NOTE: Replace with the proper main class! -->

 <mainClass>RunService</mainClass>

 </manifest>

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 43

 </archive>

 <descriptorRefs>

 <descriptorRef>jar-with-dependencies</descriptorRef>

 </descriptorRefs>

 </configuration>

 </execution>

 <execution>

 <id>distribution-tar-gz</id>

 <phase>package</phase>

 <goals>

 <goal>attached</goal>

 </goals>

 <configuration>

 <attach>true</attach>

 <appendAssemblyId>false</appendAssemblyId>

 <descriptor>src/assembly/distribution-tar-gz.xml</descriptor>

 </configuration>

 </execution>

 </executions>

</plugin>

Listing 6: Maven Assembly plugin configuration

For other languages, one can easily create a similar archive with other methods.

Building the RPM package

To create the RPM, one only needs to execute the following command:

env mpb_debugging_enabled=true \

python2.7 /.../mos-package-builder.py /.../modaclouds-service-x-
package/packaging /tmp/modaclouds-service-x.rpm

The mos-package-builder.py script is found in the repository
https://github.com/cipriancraciun/mosaic-mos-package-builder, inside the sources sub-folder.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 44

The present package descriptor (see section 0 for details) makes the following assumptions:

•! the contents of the distribution.tar.gz will be extracted inside the
/opt/modaclouds-service-x/lib/distribution folder, which will also be expanded
into the service-run.bash script as
@{definitions:environment:SERVICE_X_DISTRIBUTION};

•! the service-run.bash script will be included inside /opt/modaclouds-service-
x/lib/scripts as run.bash;

•! the service-run.bash script will also be symlinked as /opt/modaclouds-service-
x/bin/modaclouds-service-x--run-service; the superfluos modaclouds-
service-x--run-service is needed to easily allow all bin folders to be put in ${PATH}
without having colisions, and allowing shell auto-completion;

•! the run-time platform will always call /.../bin/modaclouds-service-x--run-
service;

Regarding the dependencies, inside the requires field one should not list those services to which the
current one needs to connect to or use, but only those packages which provide actual run-time support
for the service such as the Java JRE, or library, etc.

Packages versioning

The RPM repository synchronization script has been modified to save only the latest version (and
release) of each package. Once build, the latest versions of the RPM packages are available under:

http://mos.repositories.mosaic-apps.eu/v2/packages/modaclouds/rpm

http://mos.repositories.mosaic-apps.eu/v2/packages/mosaic/rpm

http://mos.repositories.mosaic-apps.eu/v2/packages/mos/rpm

http://mos.repositories.mosaic-apps.eu/v2/packages/external/rpm

The older versions of the packages have been "archived" under

http://mos-m1.repositories.mosaic-apps.eu/v2/packages/archive/rpm/modaclouds

http://mos-m1.repositories.mosaic-apps.eu/v2/packages/archive/rpm/mosaic

http://mos-m1.repositories.mosaic-apps.eu/v2/packages/archive/rpm/mos

http://mos-m1.repositories.mosaic-apps.eu/v2/packages/archive/rpm/external

Both latest and archived mOS repositories can be accessed either as OpenSUSE RPM repositories (via
Zypper) or loaded in Internet browsers to get a nice HTML view of what is contained.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 45

Mirrors

Moreover IEAT currently maintains three mirrors which can be accessed by replacing
`http://mos.repositories...` with `http://mos-m1.repositories...` / `http://mos-m2.repositories...` /
`http://mos-m3.repositories...` These are hosted as follow:

•! `mos-m1` hosted at our university which is pointed to by `mos.repositories...`, which is thus
the default one;

•! `mos-m2` hosted at DigitalOcean as a backup

•! `mos-m3` hosted on S3 Ireland as a backup

Remark: Never use these mirrors explicitly unless there is an issue with the main one (i.e. just
`mos`)!!!

Installing MODAClouds packages

There are three "meta-packages" that when installed also install all the packages in that category:

•! modaclouds-platform-core, depends on the next two meta-packages and installs everything
needed to run the services on-top of the mOSAIC run-time;

•! modaclouds-platform-services, depends on all MODAClouds related services, providing
everything needed to run them manually (or integrated in another deployment system), thus
without ties to the mOSAIC run-time;

•! modaclouds-platform-tools, currently depends only on `modaclouds-tools-mdload`.

Thus one can now just issue the following and have everything installed:

 zypper install modaclouds-platform-services

To install a single RPM, one only needs to execute the following:

 zypper install /tmp/service-x.rpm

To run a MODAClouds installed service, see testing the wrapper script sub-section in section 0.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 46

A.2 Building the package.json descriptor
The package.json is a file used by the mOS package builder, which provides all the details needed
to generate mOS compliant RPM packages. For more details check the examples available at

https://github.com/mosaic-cloud/mosaic-mos-package-builder/tree/development/examples

Table 3 package.json example

{

// This part is constant. It identifies the JSON structure.

"_schema":"tag:ieat.ro,2014:mosaic:v2:mos-package-
builder:descriptors:composite-package",

“_schema/version" : 1,

// These are the the main package information tags.

// See: https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/
0.1/html/RPM_Guide/ch-specfile-syntax.html

// The values are accessible as @{package:<name>}, etc.

"package" : {

 "name" : "@{definitions:package:name}",

 "version" : "@{definitions:package:version}",

 "release" : "@{definitions:package:release}",

 "architecture" : "i686",

 "root" : "/opt/@{package:identifier}"

},

// These are the package dependency tags. (See the link as above.)

"dependencies" : {

 "provides" : ["@{definitions:package:name}"],

 "requires" : ["mosaic-rt-erlang-r15b-32bit", "glibc-32bit"]

},

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 47

// These are the other (less important) package information tags.

"miscellaneous" : {

 "license" : "apache-2.0",

 "url" : "http://mosaic.ieat.ro/",

 "summary" : "mOSAIC components: RabbitMQ"

},

// This section describes how the contents of the package is to be created.

"overlays" : [

 { // This overlay states that some folders should be created.

 "generator" : "folders",

 // This `target` states that the folders to be created should be
prefixed with the specified value.

 "target" : "@{package:root}",

 // This in effect states that `@{package:root}` should be created.

 "folders" : ["/"]

 },

 { // This overlay states that the contents of the resource file should
be unarchived.

 “generator" : "unarchiver",

 // This states that the contents should be placed under the specified
path.

 "target" : "@{package:root}",

 // This states the name of the rource to be used. (See the next
section.)

 "resource" : "mosaic-components-rabbitmq.cpio.gz",

 // This states that the archive is to be extracted with `cpio` after
`gunzip` has been run.

 "format" : "cpio+gzip"

 }

],

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 48

// This section describes resource files that are needed to create the
package.

"resources" : {

 "mosaic-components-rabbitmq.cpio.gz" : {

 // This states how the resource file is to be obtained, i.e. fetching
it from an URL.

 "generator" : "fetcher",

 // The URL of the resource (see below the URL base)!

 "uri" : "@{definitions:resources:url:base}/mosaic-components-
rabbitmq--@{definitions:resources:url:suffix}.cpio.gz",

 // This value is inferred automatically. It should not be usually
specified!

 "cache" : "mosaic-components-rabbitmq--
@{definitions:resources:url:suffix}.cpio.gz"

 }

},

// These are "variables" that allow some customization.

// The values are accessible as @{definitions:<name>}, etc.

"definitions" : {

 "package:name" : "mosaic-components-rabbitmq",

 "package:version" : "0.7.0_dev",

 "package:release" : "@{execution:timestamp}",

 "resources:url:base" :
"http://data.volution.ro/ciprian/public/mosaic/packages",

 “resources:url:suffix" : "@{definitions:package:version}"

}

}

Table 3 lists a package.json example, showing the main sections of the package descriptor:

•! package general information, such as name and release

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 49

•! external dependencies

•! miscellaneous details, such as license and url

•! overlays, which describes the overlays of the RPM, i.e. how actually the package is created

•! resources needed to create the package

•! definitions of variables, which allow service customization.

Communication between different services of MODAClouds platform is performed through
environment variables. Each environment variable has an "owner" service, i.e.the service that
specifies the name of the variable, what values should be taken and how it should be used. For
example, the variables managed by the service `modaclouds-services-<something>` are named

`MODACLOUDS_<SOMETHING>_...`

To cope with the complexity of service configuration on MODAClouds platform, we introduced a
unique sheet (Configuration) where all services HAVE TO declare the environment variables they
export or use. This sheet provides the complete view of how the entire system is configured and
deployed. This is used to provide the required information to configure the system under different
conditions:

•! when started on the same VM manually without any special configuration (the values are the
default ones in the packaging descriptor)

•! when started manually on multiple VM's with some configuration provided (the first column
stating the environment variable name)

•! when started automatically by the platform (the first column, Resolved by RT and Default
columns are used).

Table 4 Configuration sheet example presents an extract from this table, more specifically for Load
Balancer Reasoner component. One can see the definition of the environment variables “owned” by
this component.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 50

Table 4 Configuration sheet example

load%
balancer%
reasoner,

Configuration variable (for
the wrapper),

Conveyed to the code (by the
wrapper)

Configuration variable (for
the package JSON) Type

Resolved
by RT

Default (provided by the package
JSON)

MOSAIC_OBJECT_STORE_ENDPOIN
T_IP

environment:MOSAIC_OBJECT_ST
ORE_ENDPOINT_IP

environment:OBJECT_STORE_EN
DPOINT_IP

TCP%connect, resolved, 0.0.0.0

MOSAIC_OBJECT_STORE_ENDPOIN
T_PORT

environment:MOSAIC_OBJECT_ST
ORE_ENDPOINT_PORT

environment:OBJECT_STORE_EN
DPOINT_PORT

TCP%connect, resolved, 20622

MODACLOUDS_LB_REASONER_CONF
IG_PATH

environment:MOSAIC_OBJECT_ST
ORE_LB_REASONER_PATH

environment:LB_REASONER_PAT
H

URI%path, (package), /modaclouds/lb/configuration_LB.xml

MODACLOUDS_LB_REASONER_MCR_
HOME

argument:$1 environment:MCR_HOME FS%path%RO, (package), /opt/modaclouds-rt-matlab-mcr-
r2013a/v81

MODACLOUDS_LB_REASONER_JAVA
_HOME (to-be-deleted)

??? environment:JAVA_HOME FS%path%RO, (package), /opt/mosaic-rt-jre-7

MODACLOUDS_LB_REASONER_PATH environment:PATH environment:PATH $PATH, (package), @{definitions:environment:JAVA_HOME}
/bin:/usr/bin:/bin

MODACLOUDS_LB_REASONER_TMPD
IR

environment:TMPDIR environment:TMPDIR FS%path%TMP, (script), /tmp/modaclouds/@{package:identifier
}

MODACLOUDS_LB_REASONER_DIST
RIBUTION

argument:$0/run_main.sh environment:LB_REASONER_DIS
TRIBUTION

FS%path%RO, (package), @{package:root}/lib/distribution

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 51

The Configuration sheet contains one environment variable per row and for each variable the
following information is provided:

•! The first column holds the service name.

•! The second column `Configuration variable (for the wrapper)` is how the environment
variable used by the wrapper script is named. Use `(no)` value if such a variable cannot be
actually set by the user (e.g. PATH, or JAVA_HOME, which although are provided by the
package, or perhaps computed by the script, cannot be directly overridden by the user.)

•! The third column ‘Configuration variable (for the package JSON)’ lists how the variable
should be defined in the `package.json` inside the "definitions" map. (This name prefixed
with `@{definitions:...}` will be expanded by the packager in the `service-run.bash` script and
other files.)

•! The fourth column `Conveyed to the code (by the wrapper)` is how the wrapper script
communicates that value to the actual code; most of the time it just re-exports the same
environment variable, but in some cases this value is either transmitted to as an argument or
expanded in a configuration file template; for example:

o! `environment:NAME`, it re-exports the value as the environment variable `NAME`;

o! `argument:$N`, it uses the value as the N-th positional argument; (the flags don't count
as positional arguments;)

o! `argument:--arg=$X`, it uses the value after the `--arg` flag; (i.e. not counting as a
positional argument;)

o! `???`, it is not conveyed to the code; (i.e. this is a bug, please fix;)

o! `clone:/etc`, it copies that folder to a temporary place, most likely to expand some
values; (the `/etc` is just a symbol, it doesn't actually copy in `/etc`, but in a temporary
folder that we designate logically as `/etc`;)

o! ‘(expand)` it is used in some files (mentioned in an `expand:/...` item), thus not used
directly by the wrapper script

o! `(no)` if it is not actually passed directly to the code, but perhaps it is expanded into
other variables and those are passed; (this is the example of SLA-core which takes
two variables (for the endpoint) and one for the database name and constructs a JDBC
URI; another example is `JAVA_HOME` and the like which are used by the script,
but not exported further to the code;)

o! `(...)`, it uses some other technique;

•! The fifth column `Type` means the purpose of the configuration item:

o! `TCP-listen`, it designates the IP and port (in separate variables) where the service
should bind and listen for connections;

o! `TCP-listen-public` which denotes that this should be the Internet-facing endpoint that
the service will use to register to other services on the Internet.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 52

o! `TCP-connect`, it designates the IP and port (in separate variables) where the service
could contact other services it depends on;

o! `FS-path-RO`, it designates a path, most likely from the package, used to store either
some static configuration files, or configuration file templates;

o! `FS-path-RW`, it designates a path, where the service can store data for long-term
storage (i.e. databases);

o! `FS-path-TMP`, it designates a path, which should only be used to store volatile or
cached data; (i.e. it is regularly cleaned)

o! `URI-path`, `(value)`, etc. represent various tokens;

o! ‘$PATH’ a `PATH`-like concatenation of other paths used for searching files.

•! The sixth column, `Resolved by RT` describes how the value is derived when the service is
started by the platform:

o! `provided`, usually for `TCP-listen`, means the run-time will set a unique value that is
specific only for this instance; (on restart this value would change;)

o! `resolved`, usually for `TCP-connect`, means that the run-time will resolve the
dependent service and provide its endpoint or other data;

o! `(package)` is a hard-coded value provided by the package and not computed by the
script; (although it can be overridden when started manually via environment
variables;) (basically all instances get the same hard-coded value;)

o! `(script)`, is a value computed by the script (perhaps based on some hard-coded
value), but each instance of the service will get a different value; (like in the case of
`TMPDIR`;) (also when started manually some of these could be overridden by an
environment variable;); examples for `FS-path-RW` and `FS-path-TMP`

•! The last column, `Default`, is the hard-coded value (usually in `package.json`) that will be
used by the wrapper script, and conveyed to the application, in case the service is started
manually;

Although some values can be overridden by the user via environment variables when the service is
started by hand, when started by the platform this is not possible, thus it is either taken from the
package default, or computed by the script.

The only configuration arguments that can be automatically resolved by the mOS platform are the
endpoints to listen to or to connect to. Therefore, for an automatic deployment on the platform, the
default values at packaging time will be used; if these are ‘dynamic’ they should be provided in the
object store (or other such store).

Running the scripts before packaging is not possible unless the @definitions (e.g
_FG_DISTRIBUTION='@{definitions:environment:FG_DISTRIBUTION}') are fixed
beforehand. This can be easily achieved by exporting all the environment variables, and the wrapper
scripts should ignore the `@{...}` ones. To do this one can use the `Integration environment` sheet and
run the following command to obtain the proper environment variables values (then one just pastes
that contents into the shell before running).

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 53

curl -s -f --
'https://docs.google.com/spreadsheets/d/1_faCBHf45xpHLbO5XuAg-
7i0QMnMQ16ImpguPoc/pub?gid=370961097&single=true&output=tsv'

\

| tr '\r' '\n' \

| tr -s '\n' \

| cut -s -f 2,3,5 \

| grep -v -F -e '@' -e '!' \

| sed -r -e 's/^([^\t]+)\t([^\t]+)\t([^\t]*)$/\1\t\3\n\2\t\3/g' \

| sort -u \

| sed -r -e 's/^([^\t]+)\t([^\t]*)$/export \1='\''\2'\''/g'

A coloring protocol has been also introduced to ensure consistency between what is described in the
spreadsheet and the code / scripts themselves:

•! green – has been verified and everything is ok (either in the scripts for the `Configuration
variable (for the wrapper)` and `Conveyed to the code (by the wrapper)`, or in the packaging
descriptor for the `Configuration variable (for the package JSON)` and `Default`)

•! orange - those variables that should be changed because they mismatch from the service
owner and the service user,

•! yellow - those that should be updated to match the naming policy.

•! red – there is an issue with this variable, e.g. must be changed as they conflict, it was recently
introduced and not checked etc.

A special attention need to be paid regarding the configuration of endpoints for each service. Two
separate endpoints could be configured for each MODAClouds service:

•! SERVICE_X_ENDPOINT_IP and SERVICE_X_ENDPOINT_PORT -- used to bind and
advertise to the other services part of the same cluster;

•! SERVICE_X_ENDPOINT_IP_PUBLIC, SERVICE_X_ENDPOINT_PORT_PUBLIC -- used
to advertise to clients connecting outside the cluster.

During the deployment of services in mOS platform, the cluster IP addresses `0.0.0.0` will be replaced
with the actual cluster IP of the VM the service is running on. Hence, the usage of `0.0.0.0`as IP
address in configuration scripts is a default value that allows both binding-on and connecting-to when
all the components run on the same VM. For testing purposes, if it’s done on the same VM the usage
of `0.0.0.0` for IP's is acceptable as a workaround. If testing on multiple VM's, always export the
correct cluster IP of the VM's in each of the `*_ENDPOINT_IP`.

All services connecting to other services part of the same cluster or cloud should always use the
cluster IP, via `*_ENDPOINT_IP`; It is not recommended to use the PUBLIC endpoint to connect to
services part of the same cluster or cloud (see below).

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 54

The PUBLIC endpoints IPs are not available at VM level, thus binding on that IP would yield an error.
They are managed by the hosting infrastructure that maps that public IP to the cluster one, usually in
the routing layer via DNAT. Thus, a service must always bind to the cluster IP! Trying to bind to a
public endpoint might even fail to work due to the fact that the packet would need to travel up the
network path until it reaches the router that knows about the public IP to cluster IP mapping. Thus,
even if a service needs the PUBLIC endpoint (e.g. to send it to other services interested in accessing it
over Internet) it must also require the cluster endpoint and use it to bind to.

PUBLIC endpoints are required only by those services that need to register themselves to other
services running outside the cluster/cloud (i.e. over the Internet). Only the services that listen on that
endpoint should require to know the public endpoint (IP and port). The usage of public endpoints need
to be carefully mitigated since it usually increases latency, hence impacting the performance, and
incurs additional costs since the data (network packages) need to travel over cluster boundaries.

Below are some rules that need to be followed for a successful service endpoint configuration in
MODAClouds distributed environment:

•! If service X exports a variable (thus is the "owner"), say
MODACLOUDS_SERVICE_X_ENDPOINT_IP then only the `modaclouds-services-X`
service will use it to listen (bind) on it, and all the other services needing to connect to service
X will use this name also

•! If one service listens on an endpoint and this is configured with the variable
`MODACLOUDS_SERVICE_X_ENDPOINT_IP`, then all the other services needing to
connect to it should also use the same variable (not a different one).

•! All services (that require listening on sockets) should allow the specification of both
`…ENDPOINT_IP` and `…ENDPOINT_PORT, even though the same service might require
multiple endpoints, which presumably share the same IP but different ports; moreover each
socket should be bound to its proper IP and port (which might have different IP's). Same rule
applies to the public endpoints as well.

In the end of this section, we provide a brief checklist to be verified for your service configuration:

1.! Check that the service wrapper use the default values specified in config tab. This should be
easy: start the script without parameters, and check that the values of the parameters shown at
the end of the script are as they should be.

2.! Check that the service communicates with the other components. `netstat -tnp` would help, or
`lsof`.

3.! Check (if possible) if the service actually got the correct values, e.g. logging to `stderr` all the
configuration details.

4.! Make sure that the service is listening on the correct ports (via `netstat -tnlp`).

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 55

A.3 The wrapper script

The wrapper script is executed when a service is started using the following command:

/opt/modaclouds-service-X/bin/modaclouds-service-X--run-service

The script is saved in the file service-run.bash

How to create the wrapper script (service-run.bash)

The service-run.bash file provided at

https://github.com/modaclouds/modaclouds-mos-platform-
packages/blob/development/packages/_modaclouds-services-template/packaging/service-run.bash

is based on the other existing services run scripts and:

•! it allows one to hard-code some variables during the packaging (see section 5.2) by simply
using @{definitions:...};

•! it allows one to override at run-time some variables by using the matching MODACOUDS_...
environment variables;

•! it takes care of creating a temporary workspace for each instance of the service, enabling thus
to run multiple instances of the same service without interfering.

To customize it, you only need to touch three sections:

•! _variables_defaults, which is an array of variables used within the script (usually to configure
the service), whose values are either hard-coded or expanded at packaging time; the values
such as @{definitions:...} are defined inside the package.json file; these are specified in the
Configuration sheet’s last column

•! _variables_overrides, which usually holds the same variables as the previous section, but it
tries to use the overriding MODACLOUDS_... environment variables, and if not present
falling back to the hard-coded values;

•! _environment, which is an array of environment variables to be exported to the service.

In a nutshell, if a service needs a variable, it has to do the following:

•! add its value to the package.json definitions, by using the identifier
environment:SERVICE_X_SOMETHING;

•! add a line for it in the _variables_default array, by using the identifier
_SERVICE_X_SOMETHING;

•! add a line for it in the _variables_overrides array, by using the internal identifier
_SERVICE_X_SOMETHING, and the overriding environment variable
MODACLOUDS_SERVICE_X_SOMETHING;

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # D3.4.2

 Public Final version 1.2, Dated 28/09/2015 56

•! add a line for it in the _environment array, by using the identifier
MODACLOUDS_SERVICE_X_SOMETHING;

Note that no other environment variables, except the ones explicitly added to the _environment
array are exported further to the service, thus enabling a more robust and deterministic execution, not
tainted by the testing environment.

How to test the wrapper script

In order to test the script, and because the default values for the various configuration variables are not
yet expanded, one has to manually export all the proper values like below:

It is assumed that the contents of the distribution.tar.gz is already available at the path
/tmp/modaclouds-service-x-distribution.

In order to test the wrapper script (i.e. service-run.bash) before packing, we propose the
following workflow:

1.! Start with a fresh VM with OpenSUSE 13.x image (or mOS 2.x)

2.! Run ‘zypper install modaclouds-services’ command to install all MODAClouds services from
MODAClouds repository

3.! Export required environment variables for your service using the following command:

env \

 MODACLOUDS_SERVICE_X_PATH="${PATH}" \

 MODACLOUDS_SERVICE_X_TMPDIR="/tmp/modaclouds-service-x" \

 MODACLOUDS_SERVICE_X_JAVA_HOME=/opt/java \

 MODACLOUDS_SERVICE_X_DISTRIBUTION=/tmp/modaclouds-service-x-
distribution \

 MODACLOUDS_SERVICE_X_ENDPOINT_IP=127.0.0.1 \

 MODACLOUDS_SERVICE_X_ENDPOINT_PORT=8081 \

 MODACLOUDS_SERVICE_Y_ENDPOINT_IP=127.0.0.1 \

 MODACLOUDS_SERVICE_Y_ENDPOINT_PORT=8082 \

 ./service-run.bash

It is assumed that the contents of the distribution.tar.gz is already available at the path
/tmp/modaclouds-service-x-distribution.

MODAClouds
MOdel-Driven Approach for design and execution of applications on multiple Clouds Deliverable # 3.4.2

Public Final Version 1.2, Dated 28/09/2015 57

Note that the full instructions to obtain a ready to use integrated platform from a fresh OpenSUSE
image are detailed in MODAClouds installation section.

Good practices for writing the wrapper script

•! Never use `sudo` inside the wrapper script, instead use the proper user.

•! Redirecting the stdout is not enough; you should also redirect also the stderr, e.g. command...
>/tmp/some.log 2>&1

