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DISCLAIMER 

This document contains description of the VOICES project work and findings. 

The authors of this document have taken any and all available measures in order for its 
content to be accurate, consistent and lawful. However, neither the project consortium as a 
whole nor the individual partners that implicitly or explicitly participated in the creation and 
publication of this document hold any responsibility for actions that might occur as a result of 
using its content. 

This publication has been produced with the assistance of the European Union. The content of 
this publication is the sole responsibility of the VOICES consortium and can in no way be 
taken to reflect the views of the European Union. 

The European Union is established in accordance with 
the Treaty on European Union (Maastricht). There are 
currently 27 Member States of the Union. It is based on 
the European Communities and the member states 
cooperation in the fields of Common Foreign and 
Security Policy and Justice and Home Affairs. The five 
main institutions of the European Union are the 
European Parliament, the Council of Ministers, the 
European Commission, the Court of Justice and the 
Court of Auditors. (http://europa.eu.int/) 
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SUMMARY 

This report contains information on the two speech technologies that play a key role in 
VOICES, namely Text-to-Speech (TTS) synthesis and Automatic Speech Recognition (ASR). 
For both of these technologies, we provide a brief overview of the building blocks employed in 
state-of-the-art systems, and then describe the most popular algorithms that are used in each 
of these modules.  

For TTS synthesis, the major building blocks perform linguistic and acoustic processing, 
respectively. The most important algorithms for linguistic processing, related to text 
normalisation and pronunciation modelling, are fairly well established. Acoustic-processing 
algorithms, on the other hand, are more diverse, with alternatives based on parametric 
models, articulatory models, formant models and Hidden Markov Models all being realistic 
alternatives in different environments. 

ASR systems can be viewed as the combination of language models, acoustic models and 
pronunciation dictionaries. Again, a core of widely-used algorithms has been developed for 
each of these functions, built around the concepts of n-gram language models and Hidden 
Markov Models as acoustic models. 

Practical guidelines on the development of instances of TTS and ASR systems are provided, 
along with suggestions on tools that may be used for such development. The challenges of 
speech-technology development for under-resourced languages are given particular attention, 
and we demonstrate that current methods still require a substantial level of expertise for 
successful technology development in any language for which speech technology does not 
currently exist. 
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INTRODUCTION 

Although systematic research into speech technology has been actively pursued for at least 50 
years, and commercial products based on speech technology have been available for almost 
the same length of time, the development of general-purpose speech technology systems 
continues to be a challenge. In particular, current state-of-the-art approaches tend to work 
well only within a narrow set of constraints, and significant expertise is required to create a 
system for a particular task domain or target language [Huang et al., 2001]. The last of these 
variables is particularly challenging: since high-quality speech technology requires several 
specialized resources in the language for which it is designed (details are provided below), 
such systems have only been developed for a small subset of the approximately 7,000 
languages that are spoken on earth. 

The current review is intended to contribute to the development of speech technology 
systems in a larger set of languages, with a specific focus on Text-to-Speech (TTS) synthesis 
and Automatic Speech Recognition (ASR). To this end, we will provide a high-level overview 
of the approaches employed in current speech technology systems, discuss some of the tools 
that can be used to develop such systems in new languages (i.e. languages for which speech 
technology systems do not currently exist), and investigate some of the most pressing 
concerns in that must be addressed to make such development more widespread.  

The difficulty involved in developing speech technology in a new language depends on a 
number of factors, related to how “atypical” the language is, on the one hand and the extent 
of resources available, on the other. In practice, a language can be considered “typical” if its 
phonetics, phonology, morphology, writing system, etc. are fairly similar to one or more of the 
languages for which extensive speech technology resources are available. As to the availability 
of resources, Barnard et al. [2010] defines a three-level scale for under-resourced languages, 
ranging from mildly under-resourced languages such as Swahili or Vietnamese, through 
languages with significantly constrained resources but a well-established writing system, to 
languages which do not have a writing system that is widely used (or none at all). For 
practical reasons, we will limit our attention to languages which are not highly atypical, and 
have at least a reasonably strong literary tradition (and thus writing system) in the remainder 
of this report. We therefore assume that text editors, spelling rules and similar basic linguistic 
resources are available in our target languages. 

Our discussion is aimed at two groups of readers. Technical managers, scientists or engineers 
with a passing interest in speech technology and others without specialist knowledge of 
speech science will hopefully get a useful overview of the issues that are involved in the 
development of TTS and ASR systems. For students, developers and researchers with a more 
detailed knowledge of speech or related signals, we hope to provide guidelines that will assist 
in the practical development of usable systems based on speech technology. (The sections on 
ASR and TTS below are intended to be reasonably self-contained, so that readers who are 
interested in one technology but not the other should be able to read the relevant section in 
isolation. As a consequence, there is some overlap between the two sections.) 
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STATE OF THE ART IN TTS SYNTHESIS 

Text-to-Speech (TTS) synthesis refers to the technology that converts an input text into a 
speech signal. The ability of the technology to perform this conversion successfully depends 
on two crucial tasks. The first one is to extract information from the text and to represent it in 
an enriched symbolic form. This includes a sequence of phonemes corresponding to the input 
text. It also includes linguistic information that is conveyed by the prosody of speech, such as 
variations in melody, rhythm and intensity. All these elements play a role in the correct 
understanding of the text when it is rendered in a spoken form. The second task links the 
enriched symbolic representation to an acoustic signal of speech. Its goal is to produce 
intelligible speech which is perceived as if it had been produced by a human speaker.  

Traditionally a TTS synthesis system is divided into two main processing blocks:  

• A linguistic processing block, which aims to establish a symbolic sequence enriched 
with some linguistic and prosodic information from the input text; 

• An acoustic processing block, which generates a speech signal from this symbolic 
representation. 

In the following subsections, details are given of the linguistic processing modules and 
different approaches used to generate a speech signal are presented. 

Linguistic processing 

Text normalisation 

Text normalisation is essentially a text-to-text transformation. 

Text is represented as a sequence of encoded characters. TTS systems generally accept text 
encoded in Unicode, since it is designed to cover many languages. There are many cases in 
Unicode where two sequences of characters are canonically equivalent: the sequences 
represent essentially the same text, but with different actual sequences [Davis and Whistler 
2010]. The text normalisation usually begins by mapping canonical equivalences to a unique 
sequence, thus easing the complexity of subsequent processing (lexical lookup). 

An input text cannot be simply interpreted as a sequence of words and sentences. The 
interpretation of punctuation marks, for example, is sometimes problematic. A “.” is most 
often considered to be a full-stop in many scripts, but it may also indicate the end of an 
abbreviation or it may need to be read out aloud as a word in itself (within a web page 
address, for example). Abbreviations need to be expressed in full form in order to be read 
aloud correctly. Similarly, numbers written as a sequence of digits need to be expanded into a 
sequence of spoken words. The text normalisation determines how an input text is to be read 
into words. 
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The way in which a sequence of digits is read aloud in words is highly language-dependent. 
Many languages may read numbers with the base of ten (English) whereas others may use a 
base of twenty (French) or a base of five (Wolof); there are also differences in word-order 
and the addition of conjunctions. The manner of reading numbers often depends on what the 
number refers to, such as telephone numbers, monetary values and years. Number reading 
may even depend on what is being countered (Japanese) and on its grammatical context 
(declination of numbers in Polish, Russian). This means that there is no common approach to 
processing digits during text normalisation, and that text-to-speech systems resort to 
rudimentary computer programming to address the problem for each supported language. 

Breaking text into a sequence of words is no trivial task either. Many scripts use a white-space 
to separate words, but some languages (Mandarin) require a word segmentation process to 
disambiguate competing hypotheses. If we consider a word as being an element of language 
that conveys a single grammatical construct, then even when white-spaces are present, words 
may be concatenated (“don't” is verb “do” plus adverb “n't”) and a word may contain a space 
(adjective locution “al dente”). Given that word segmentation requires lexical information, it is 
not performed during the text normalisation process. Instead, there is a simplified 
tokenisation process whereby text is split into sequences of characters of similar type 
(number, spaces, punctuation, and letters). 

The input text may be enriched by a markup language to assist a speech synthesis system 
with text normalisation. The Speech Synthesis Markup Language (SSML) is commonly 
supported by TTS systems. SSML provides elements that are designed to assist explicitly with 
number reading (<say-as>) and word segmentation (<token>/<w>). 

Determination of pronunciation from text 

Determination of pronunciation is essentially a task that converts text to a sequence of 
phonemes. 

Unfortunately for text-to-speech synthesis, a word is often not pronounced as it is written; 
there is no one-to-one correspondence between letters and sounds. Furthermore, there are 
words which are written the same be pronounced differently (heteronyms). Many languages 
are written in a script that does not include information that is pronounced; for example, 
English is written without lexical stress placement, French may be written without accents (in 
e-mails), Arabic is typically written without short vowel diacritics, and Hausa may be written 
without any indication of tone. Such information relevant to pronunciation must be inferred 
from another source. 

A TTS system makes reference to a pronunciation lexicon, which gives all information relevant 
to a word's pronunciation, including a sequence of phonemes, lexical stress, tones and 
syllabification. However, the lexicon cannot contain the pronunciation of every possible word 
in a language (since there are innumerable loan words, declinations of nouns, conjugations of 
verbs, proper nouns, new technical jargon). The system must therefore be able to determine 
the pronunciation of out-of-lexicon (OOL) words. If the system's default manner of determining 
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OOL pronunciations is accurate, then the lexicon reduces in size as it only needs to retain 
exceptions to the default. 

Today's TTS systems use a complex combination of grapheme-to-phoneme rules, 
morphological analysis and pronunciation lexicons in order to attribute one or more plausible 
pronunciations to each word in the input text. An explicit tie is made between the grammatical 
form of a word and its pronunciation. In this way, the grapheme-to-phoneme rules are not only 
dependent on orthographic context, but also on the grammatical form of the word to which 
they are applied. The morphological analysis also exploits grammatical information to restrain 
combinations of affixes and word roots. 

The manner in which grapheme-to-phoneme conversion, morphological analysis and lexicons 
are developed for TTS systems depends on the available linguistic resources. If pronunciation 
lexicons already exist, then grapheme-to-phoneme conversion may be automatically deduced 
from them (Damper 2001). Otherwise, conversion rules need to be written on the basis of 
expert linguistic knowledge and a lexicon of exceptions laboriously composed. 

In the cases that a word is attributed many plausible pronunciations, each pronunciation is 
associated with a distinctive (grammatical and/or semantic) tag. Disambiguation of the tags 
leads implicitly to disambiguation of the pronunciation. If linguistic resources are available, 
such as tagged textual corpora, then tag disambiguation may be established though statistical 
language modelling [Stolcke 2002]. 

The placement of pauses in the reading of text also plays an important role in its pronunciation 
and meaning. Punctuation marks are the most convenient source for a TTS system to 
determine pause placements. The SSML <break> element may also be used in enriched text. 
A TTS system can however go beyond these basic clues and introduce pauses and prosodic 
breaks from the syntactic structure of a sentence. This may be performed by rule or through 
the automatic learning techniques [Schmid et Atterer 2004]. 

Contextual modification of pronunciations 

Contextual modification is essentially a phoneme-to-phoneme transformation. 

The pronunciation of a word when spoken in isolation may differ when placed in the context of 
other words. Tone sandhi in Mandarin depends on word context; for example, the first of two 
tones of type 3 becomes a tone of type 2. Liaisons in French also depend on word context; for 
example, consonant sounds are introduced between articles and nouns beginning with 
vowels. Co-articulation, assimilation and epenthesis may also be implemented as context-
dependent transformations of the pronunciation. 

The pronunciation modifications may depend on a word's tag and on phonetic contexts (they 
are independent of orthographic context at this stage). The modifications are usually 
implemented as rules devised on expert linguistic knowledge. 
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The linguistic processing of TTS systems is orientated towards providing a sequence of 
sounds (phonemes and pauses) enriched with information such as tones, syllabification, 
prominence and the strength of prosodic breaks. This is fed to the acoustic processing block.  

Acoustic processing 

Parametric approaches 

In speech synthesis, parametric approaches aim to determine a set of parameters or features 
necessary to generate speech. These features include spectral parameters which essentially 
convey the informative content of the text as well as the prosodic parameters (fundamental 
frequency, phoneme duration and energy).  

Articulatory speech synthesis 

Articulatory speech synthesis can be seen as an anthropomorphic approach. Indeed, it aims 
to reproduce numerically the physical mechanisms involved in the speech production process. 
For that purpose sophisticated speech production models approximate the propagation of an 
air flow generated at the glottis through the vocal tract. These models are intended to 
characterize the air flow (periodical/noise like wave) and to follow the movements of the 
speech articulators such as the tongue, jaw and lips during the phonation process. 
 
This approach yields low-quality speech and is currently used essentially for research 
purposes rather than for industrial deployment. 

Formant-based speech synthesis 

The formants correspond to the various resonances of the vocal tract. Each of these 
resonances produces a spectral peak with a specific frequency location and bandwidth which 
therefore characterizes the spectral form of the speech signal, hence the name “formant”. The 
formant-based speech synthesis approach relies on the fact that by determining the position 
of the first three or four formants and their evolution over time, it is possible to generate most 
of the sounds in a given language. The main difficulty of this approach is to define the 
evolution of these formants for all possible combinations of speech sounds. This operation is 
tedious since it is carried out manually by an expert who edits a certain number of rules 
characterizing the formant evolution. This approach, which is also referred to as “rule-based” 
synthesis, yields intelligible speech, but whose naturalness is poor. Despite its commercial 
use until the 1980’s (see e.g. the DecTalk system), this technology has been more or less 
abandoned.  
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HMM-based speech synthesis 

Hidden Markov Models have shown their efficiency in the context of speech recognition, 
where they are considered as the standard approach. In speech synthesis, they are not 
considered in a decoding context but rather in a generative role. In such a paradigm, the 
objective is to learn statistical models given a training database of annotated speech and then 
to generate trajectories of acoustic parameters based on these models. From these 
parametric trajectories, the output signal is then synthesized using a dedicated speech 
decoder. Phonemic HMM models are used and can also be associated to classical clustering 
techniques such as decision trees to perform more detailed context dependent modelling. 
Typically, spectral features (e.g. Mel Frequency Cepstral Coefficients, aperiodicity coefficients) 
as well as the fundamental frequency are considered. 
 
Two methodologies have been proposed for HMM-based synthesis. The first one is based on 
speaker dependent models estimated on a training database of a specific speaker. A second 
methodology is to define an average voice model, i.e. a speaker independent model learnt 
using a database from many speakers and then to rely on adaptation techniques to estimate 
the models of a specific speaker. The advantage of this speaker independent methodology is 
that it is able to capture the timbre of a new speaker with few adaptation data. From published 
results [Yamagishi J. 2009], the speaker independent methodology is recommended when the 
training database contains less than one hour of speech. 
 
HMM-based synthesis has received considerable attention for more than a decade and 
currently concerns the majority of academic research work. Its success is due to the 
robustness and the flexibility of the HMM-based synthesis paradigm. Regarding the 
robustness issue, the intelligibility of the synthesized speech can be guaranteed. Besides, an 
HMM-based approach is able to cope with noisy speech data, since even in that case the 
estimated statistical models will enable capturing global spectral trends in the data. This 
robustness to noise is important since it allows for the use of recordings with data of limited 
quality, which is generally not the case in speech synthesis. HMM-based synthesis is also 
very flexible, since it allows for rapid voice creation through speaker adaptation in a speaker 
independent context. Moreover, it can take into account rich contextual information including 
supra-segmental information in order to model, for instance, different types of discourses or 
speaking styles. Last but not least, the footprint of a HMM-based speech synthesis system is 
very low (compared to concatenative speech synthesizers), which is a very strong asset for 
the deployment of this technology in embedded devices with low capacity. 
 
By essence however, the HMM-based synthesis paradigm suffers from a strong limitation. 
Indeed, the quality of speech produced by an HMM-based synthesizer is intrinsically bounded 
by the parametric description of the data and the analysis-synthesis algorithm. In current 
HMM-based synthesizers, the speech representation by means of MFCC and aperiodicity 
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coefficients does not allow for high quality speech. Such a quality is not enough for a 
deployment of this technology in IVR systems; where higher-quality proposed by all industrial 
TTS players are generally preferred.  

Concatenative approaches 

Another approach for speech synthesis is to build speech from natural speech recordings. 
More specifically, given a database recorded by a professional speaker, speech segments 
corresponding to phonological units are extracted and labelled and consequently stored in an 
acoustic inventory. At synthesis, these units are then selected, adapted and then 
concatenated to produce the expected speech synthesized message. The key idea of this 
concatenative approach is to avoid acoustic modelling as in parametric approaches, relying on 
the acoustic quality of the recorded data itself. In the following subsections, the two main 
concatenative technologies that have led to massive industrial deployment are presented. 

Diphone-based  synthesis 

In designing a concatenative speech synthesis system, the first question to answer is what 
kind of speech segments should be considered. Using phones as basic speech units leads to 
very bad speech quality with very low intelligibility. This is due to the fact that preserving 
phone transitions is essential for preserving speech intelligibility. This observation led to the 
choice of diphones as the basic speech units: a diphone is a speech unit spanning from the 
stable part of a phone up to the stable part of the next phone and thus preserves the transition 
between two phones. 
 
The first systems based on diphone concatenation were developed in the late 1970’s. At that 
time, due to computational limitations, only a single instance of each diphone was considered. 
The difficulty is that these diphones must be concatenated without artefacts and so, in such a 
framework, it is necessary to produce diphones in a mean configuration. This is achieved by 
recording non-sense phonetic sequences referred to as logatomes. 
 
In this diphone-based approach, the major issue is in conveying an acceptable prosody. This 
has two strong implications on the output speech quality. First, the prosody must be predicted, 
which includes the location of pauses, the prediction of numerical fundamental frequency 
contours and the determination of the durations of each phoneme. As mentioned previously, 
only coarse prosodic information can be predicted, which yields synthesized sentences with a 
normative (thus intelligible), but also monotonous and unnatural prosody. Second, the 
sequence of selected diphones must be modified to satisfy the desired target prosodic 
patterns. For that purpose, a prosodic modification algorithm such as TD-PSOLA [Moulines E. 
1990] can be used. However such signal modifications degrades the output speech quality in 
such a way that the resulting speech cannot be considered as natural. 
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To summarize, diphone-based synthesis is a low cost concatenative speech synthesis 
approach that was deployed by most industrial TTS players.  
 

Unit selection speech synthesis 

With the increase in computational resources, it becomes possible to increase the size of the 
acoustic inventory. Thus, it is possible to store many instances of each speech units recorded 
in several linguistic and prosodic contexts. By doing so, the paradigm of the concatenative 
approach changes drastically. The objective becomes to select a sequence of speech units 
that best match the desired synthesis context. The underlying idea is that if the recorded 
speech database sufficiently covering a given speaker space can be obtained, then it should 
be possible to select and concatenate the units that fit the synthesis context, thus avoiding 
prosodic modification. In this framework, the selection process plays a key role and aims to 
minimize a cost function consisting of a target cost (measuring the appropriateness of a 
candidate unit to the target information) and a concatenation cost (measuring the 
discontinuity between two adjacent units) as suggested in [Hunt A. 1996]. The selected units 
are then simply concatenated with some smoothing in order to reduce potential mismatches. 
This way, the speech units are kept almost intact and consequently the naturalness of the 
voice can be maintained. It must be noted that in a unit selection speech synthesis system, 
the prosodic prediction module does not play the same role as in the previous diphone-based 
synthesis approach. Indeed, it is not used to provide numerical prosodic target that will be 
applied to the speech signal, but rather produce prosodic information (either of symbolic or 
numeric nature) that will be used subsequently during the unit selection process. Otherwise 
stated, the prosodic information guides the selection rather than imposes numerical prosodic 
patterns. Consequently, the output prosody will – to a large extent – reflect the prosodic 
content of the speech corpus. 

Unit selection approaches heavily rely on the recorded corpus, hence their denomination 
“corpus-based” speech synthesis. This implies that particular care must be dedicated to the 
design of the text corpus to be recorded. To this end, greedy approaches can be used to 
optimize the unit coverage as in (François H. 2002). Moreover, the recording itself must be 
very well-controlled, hence the need for supervision during the recording, so that the speaker 
follows the awaited phonological sequence with a correct prosody and a stable timbre. The 
recorded corpus is then labelled and segmented into the required speech units and annotated 
according to the linguistic and prosodic information needed by the selection module. Most of 
these processing stages can be automated, but depending on the quality of the recording, 
some checking and manual correction may be needed.  

Current unit selection systems are able to produce high to very high quality synthetic speech 
using between one and ten hours of recorded speech. The unit selection technology was 
considered a major breakthrough, since it really increased the adoption of TTS technology in 
many services. However, it must be noted that despite its tremendous success, unit selection 
speech synthesis suffers from some drawbacks. First, the quality of the output speech is more 
variable than with other technologies (diphone or HMM-based speech synthesis). This 
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problem can be attributed to an insufficient coverage of the acoustic database or to some 
linguistic or prosodic defects. To circumvent such problems interfaces have been designed in 
order to post-process the output of a speech synthesis system. In an interface such as Speech 
Online [2011], a user can correct the placement of pauses, the phonetisation or even can 
discard the speech units that led to artefacts. Using such an interface, it is then possible to 
generate very high quality synthetic speech that can be used as an alternative to pre-recorded 
cues in any voice service. A second drawback of unit selection speech synthesis is that the 
voice creation process is tedious and costly. This can be a serious shortcoming for applications 
where personalized voices are needed. Third, the prosody is constrained to the prosodic style 
contained in the corpus. Current technology is based on an acoustic database recorded 
according to a “neutral reading style”. This style may be sufficient in many applications 
including IVR, but is certainly not enough for using speech synthesis in applications such as 
video games or audio books. The next breakthrough in speech synthesis is certainly the 
control of the expressiveness in speech synthesis.  

Acoustic data recording and processing 

An important issue in the development of a TTS system is related to the recording and 
processing of the acoustic data. This concerns the concatenative synthesis, but also the HMM-
based approach.  

In a concatenative speech synthesis framework, the need for high quality and controlled 
acoustic data is crucial. For this purpose, high quality microphones and recording devices 
must be used. Moreover, recording generally requires the presence of a supervisor. Indeed, it 
is essential that the recorded data corresponds to the awaited data, since corpora are 
generally designed so as to maximize a certain linguistic – and consequently acoustic – 
coverage, while minimizing the number of sentences to be recorded. So the role of the 
supervisor is essentially to check the pronunciation of the recorded utterances. An important 
point is that by doing so, the processing of the data requires few or even no manual 
intervention. Specifically, if the recorded data matches the awaited phonetic sequence, then 
the segmentation of the speech data can be done automatically; e.g. by means of standard 
toolkits such as HTK.  

In HMM-based speech synthesis, the constraints on the data can be somehow relaxed, since 
the data is not actually stored; it is only used to provide generative models for speech 
synthesis. Stated another way, sufficient acoustic coverage is needed no matter how it is 
attained. This enables the use of very large databases not dedicated to speech synthesis. 
Another asset of HMM-based speech synthesis is that the quality and the homogeneity of the 
data is not a crucial issue since an HMM-based synthesizer can cope with data recorded in 
various conditions. Note that the speech data must be labelled in phonemes (and, if 
necessary, richer linguistic information when more complex context dependent HMMs are 
considered), which may require a tedious laborious annotation task.  

As mentioned previously, HMM-based synthesis with an independent speaker model is a very 
attractive solution for creating new voices. However, in the case of new languages, and 
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especially under-resource languages, such an approach is questionable. The main issue is 
related to the so called average voice model. Ideally, such a model should be build for each 
new language so as to cover the phonological space as well as the prosody of the language. 
In the case of under-resourced languages, this approach is too costly and so a compromise 
has to be found. At the phonological level, approximations can be done in order to relate the 
necessary phonemes to those of other languages for which acoustic models are available. The 
same kind of approximation can be considered on the prosodic level, but it is then probable 
that the underlying prosodic models may not be suited to the language under scope. These 
approximations may reduce the overall quality of an HMM-based speech synthesis system. 
Thus, the fundamental question is whether such approximations can lead to acceptable TTS 
solutions, even in a low-cost development strategy.  

Recommendations in TTS for the development of under-resourced 
languages 

The development of a speech synthesiser for under-resourced languages can be considered 
as a real challenge since it requires the adaptation of linguistic processing as well as the 
recording and annotation of speech corpora.  

Recommendations about which technology to use essentially depend on the applicative 
context. To a large extent, the linguistic modules do not depend on the acoustic processing 
modules. Thus, the distinction between existing technologies (HMM-based, diphone-based or 
unit selection speech synthesis) is rather on the acoustic level and more specifically may 
depend on the acoustic data that will be needed in a given applicative context.  

Regarding the approaches for speech synthesis, it is very difficult to formulate definite 
recommendations. On one hand, HMM-based synthesis seems an attractive solution due to its 
flexibility. For instance, an HMM-based speech synthesis solution can be implemented using 
data not necessarily dedicated to speech synthesis, provided that such data is labelled and 
yields sufficient acoustic coverage. On the other hand, concatenative approaches can yield 
more natural synthesised speech. More specifically, the quality of a unit selection system 
essentially depends on the data and consequently can be optimized depending on the 
applicative domain.  

For limited domain applications, a unit selection system can be developed with a limited 
amount of speech data (numbers, dates, or any other application dedicated lexicons). This is 
typically the case for the deployment of services where sentences consisting of slot and fillers 
are vocalized. In that respect, unit selection synthesis is particularly well suited. Indeed, when 
designing such a service, the fixed parts of the messages is recorded and can be reproduced 
as-is during synthesis. Then the variable parts (numbers, dates, …) are synthesised using 
dedicated data (i.e. a sub-corpora built using numbers, dates). This way very high synthesis 
quality can be reached provided that the concatenation between fixed and variable parts can 
be controlled. 
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For unlimited domain, according to Van Niekerk, Barnard and Schlünz [2009], it seems that 
HMM-based approach is preferable when very little data is available (e.g. 100 utterances), 
while unit-selection seems to yield higher quality when a sufficient amount of data (~30 
minutes) is available.  



VOICES – 269954                                                                    www.mvoices.eu 

  

 

 

D3.1 Report on State of the Art and Development Methodology 

Page 18 of 29 

STATE OF THE ART IN AUTOMATIC SPEECH RECOGNITION 

Automatic Speech Recognition (ASR) refers to a set of technologies that allow digital systems 
to respond to the contents of human speech. Given the importance that speech plays in 
human communication, it is not surprising that ASR has a large range of potential 
applications. These include command-and-control applications (allowing a person to control a 
digital system with spoken commands), dictation (in which documents are created by 
converting speech to a textual representation), information access (typically used to allow 
telephone callers or non-literate users to access information sources by speech), and several 
others. 

Background 

As mentioned above, current ASR systems are found in a wide range of applications. To 
contextualise the class of ASR approaches that are the focus of the current review, it is useful 
to distinguish between three classes of ASR applications: 

• Embedded applications are those which run on special-purpose digital systems (e.g. 
household appliances, telephone handsets, laboratory equipment). Such applications 
typically require the recognition of a relatively small set of command words / phrases, 
spoken in isolation, and are specifically characterized by their need to execute within 
significant constraints of computational resources (memory and computer cycles). 
Depending on the details of the application, embedded systems may require speaker-
independent or speaker-specific recognition. 

• Desktop applications are executed on a general-purpose computer system – typically a 
personal computer containing a sound card with attached microphone. These 
applications often require very large recognition vocabularies, for tasks such as 
dictation, but typically have more generous computational resources available. 
Desktop applications can generally also be tuned to the particular user of the personal 
computer, which improves their performance considerably. 

• Server-based applications allow a large number of users to use the same ASR system, 
by executing the recognizer on a compute server. This is the most common 
arrangement for telephone-based systems, which are mostly speaker-independent 
systems (since the identity of the caller is generally not known), and require medium-
to-large vocabulary dictionaries for typical information-access applications. 

Since the current review is mostly focused on applications in the developing world, where 
server-based architectures are most likely to be useful, the final category above will be our 
core concern. However, most of the principles and practices that we discuss are also 
applicable to the other two classes. 

The overwhelming majority of server-based ASR systems are built around three language-
specific components, as shown in Fig. 1 below.  
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• The language model describes the content that the system is expecting as input – 
thus, for a system that is designed to provide the market prices for a range of 
products which are traded on each of several markets, the language model would 
represent sentences such as “The price of maize in Delhi” or “Milk in Uttar Pradesh”, 
etc. 

• The pronunciation dictionary specifies how each of the words in the language model 
should be pronounced, in terms of simpler units. Those units are typically linguistically- 
motivated entities such as phones, phonemes or syllables.  

• The acoustic model is a representation of the sounds corresponding to each of these 
entities – thus, in a syllable-based system, it represents the sounds corresponding to 
each of the syllables that can occur in the target language. 

 

 

Figure 1: Block diagram of a speech-enabled application; the most important language-specific 
components are shaded. 

 
The remaining components in Fig. 1 are generally much less language dependent (though 
possibly not entirely so – for example, the user interface is likely to contain some language-
dependent components such as recorded prompts). In the remainder of this section, we 
therefore summarize the properties of each of these subsystems. We start by providing a 
somewhat more detailed description of state-of-the art representatives of each component, 
before shifting our attention to approaches that are particularly relevant in resource-
constrained environments. 
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Core components of an ASR system 

Each of the shaded components in Fig. 1 has been – and continues to be – the subject of 
intensive worldwide research, and numerous approaches have been proposed in each case. 
Given the continued activity in these topics, no single methodology or approach can plausibly 
be claimed to be optimal, but in each case a small set of core concepts apply to most of the 
state-of-the-art systems. Our attention will therefore be limited to these core ideas – for a 
recent and comprehensive overview, see Gales and Young [2007]. 

A dichotomy that has played a significant role in ASR research and development (and in 
language technology more generally) derives from a fundamental divide in pattern 
recognition, namely that between rule-based and statistical approaches. For the former class 
of approaches, the system developer specifies the rules that describe each of the entities in 
the system (in an appropriate formalism), whereas the latter relies on automatic approaches 
to extract such descriptions from a set of exemplars or training samples. We will see that this 
dichotomy is relevant to each of the core ASR components. 

Language models 

Recall that the purpose of a language model is to specify the textual representation of 
utterances that will be recognized by an ASR system. This corresponds exactly to the 
capabilities of languages in the Chomsky hierarchy, and the specification languages 
(grammars) of such formal languages are commonly employed to describe language models. 
The lowest levels of the hierarchy (regular grammars and context-free grammars) are most 
widely used, and both rule-based and statistical are employed widely. 

For rule-based language models, the designer is required to envision all the likely utterances 
that a speaker is likely to produce in a particular situation, and then to capture those 
utterances in a convenient description language. For example, the market-price application 
mentioned above may contain a prompt “For which product do you wish to hear the price?”, 
and the corresponding rule based grammar will contain entries such as “$product_name”, 
“For $product_name” and “The price of $product_name”, where $product_name specifies a 
variable that can further be expanded to “wheat”, “maize”, “milk”, etc. 

For small, constrained tasks such a grammar is reasonably straightforward to develop and 
evaluate. Also, for tasks such as the recognition of dates, numbers or amounts, rule-based 
models can be created with guaranteed coverage of all reasonable utterances. However, as 
the complexity of the task increases, rule-based models become arduous to develop and error 
prone in practice. 

Statistical language models, in contrast, require a corpus of task-relevant text in the target 
language. Statistical algorithms then automatically extract a grammar description for that 
task. Most practical grammars are based on so-called n-gram models – that is, the probability 
of sequences of n words occurring together, where n ranges from two to six (depending on 
the application). Various refinements to this basic model have gained acceptance, for example 
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class-based n-grams, in which similar words are grouped together. These models work 
extremely well if trained with large enough corpora. Astoundingly large corpora are therefore 
used for applications such as dictation – corpora containing hundreds of millions, or even 
billions of words are not uncommon. 

Acoustic models 

Modern acoustic modelling typically consists of three stages. In the first, known as “feature 
extraction”, the raw acoustic signal is chopped into a sequence of equal-sized frames, and 
each frame is converted to a representation that is suitable for statistical modelling – the so-
called “feature representation”. Thereafter, statistical models are used to compute the 
likelihood that each frame corresponds to each of the basic elements (e.g. phonemes) that 
are used to describe the speech of the target language. Finally, a search process is used to 
assemble these frame-based likelihoods into probabilities for larger units such as words, 
phrases or utterances.  

Although numerous workable approaches for each of these stages have been proposed, they 
are not as diverse as the language-modelling approaches summarized above. In particular, 
almost all modern approaches are statistical in nature, and most popular feature 
representations use some variant of a smoothed short-time spectrum to represent speech. 
The search step is invariably based on some variant of dynamic programming, which assumes 
that successive frames are conditionally independent of one another. 

Pronunciation dictionaries 

Since a pronunciation dictionary simply lists the sequence of basic units (e.g. phonemes) that 
constitute each of the words that a system can recognize, a straightforward approach would 
simply be to create all pronunciations manually. This was indeed the approach taken in almost 
all early ASR systems, but it suffers from a number of drawbacks. For a system containing 
more than a few thousand words, the dictionary-creation process can be quite time 
consuming, and ensuring consistency across such a large list of manually generated 
pronunciations is a non-trivial task. Also, the addition of new words to the system then 
requires the assistance of someone able to create pronunciations that are consistent with 
those already in the dictionary. 

For all these reasons, more recent systems typically contain a component that can 
automatically predict the pronunciations of words, which is typically known as a letter-to-
sound (or grapheme-to-phoneme) converter. In some languages, which have a very regular 
relationship between the written and spoken forms of a word, the letter-to-sound system can 
be used by itself, but irregularities (especially of loan words) are sufficiently frequent for this 
to be uncommon. Most modern systems therefore have a core of manually-produced 
dictionary entries, combined with a letter-to-sound system that can be used to predict 
pronunciations for any words not in that dictionary. 
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Most current letter-to-sound systems are trained from examples (since manually written rules 
have proven to be insufficiently accurate for various languages). As is true of many ASR 
components, a diverse set of approaches achieve comparable accuracies in practice, with the 
Joint-Sequence Model [Bisani and Ney, 2008] currently being the most popular approach. 

ASR in under-resourced languages: State of the art 

The statistical components described above (n-gram language models, acoustic models, 
letter-to-sound converters) all require language-specific inputs as training data. However, the 
algorithms that are used to convert these inputs into a useable ASR system are, to a large 
extent, language independent. This dichotomy translates into a substantial opportunity for the 
development of ASR for under-resourced languages, since the massive investment that went 
into the development of ASR algorithms for languages such as English, French and German 
need not be repeated for the under-resourced languages. (Of course, we must be careful not 
to force technology that was created in the developed world into mismatched developing-
world circumstances – such “technology drop” has been responsible for many of the failures 
of IT in the developing world. We return to this matter below.) 

The non-statistical (“rule-based”) components, namely manually-produced pronunciation 
dictionaries and rule-based language models are even easier to develop in under-resourced 
languages. These components are created manually using tools such as text editors or simple 
graphical user interfaces, and it is generally a straightforward matter to translate these tools 
into a new language. 

The default process for creating an ASR system in a new language, based on the approaches 
described above, is summarized in Fig. 2. Most of the steps in Fig. 2 are readily accomplished 
with standard tools such as text editors or scripting languages, but specialized software is 
very useful for some of the more complex processes. Fortunately, powerful open-source 
packages exist to address each of these issues, and we next discuss some of the packages 
that can be used to create state-of-the-art systems. 
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Figure 2: Typical ASR development process  

Tools for the creation of statistical language models 

The two basic steps used for the creation of statistical language models are (a) selecting or 
creating a relevant text corpus and (b) calculating the parameters of an appropriate language 
model, based on that corpus. For well-resourced languages, there are generally several 
sources (commercial and free) of suitable text corpora, but for under-resourced languages the 
ASR system developer often has to create a usable corpus from more or less appropriate 
sources. Fortunately, a bootstrapping approach for the development of such corpora based on 
Web content has been developed, and has been shown to give good results for languages in 
which sufficiently diverse content is available on the Web [Schultz, 2008]. For less-resourced 
languages, such content is often not available. With somewhat more effort, electronic content 
in these languages can often be gathered from sources such as government agencies, 
universities and publishers. 
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Once a suitable text corpus has been obtained, the process of parameter calculation is well 
supported by a number of toolkits, such as the SRILM toolkit (developed at the SRI Speech 
Technology and Research Laboratory – see http://www.speech.sri.com/projects/srilm) and 
HTK (from Cambridge University Engineering Department – see http://htk.eng.cam.ac.uk). 
Such packages generally contain several highly sophisticated tools, since they were developed 
to support cutting-edge research. However, using them for more straightforward language 
modelling is generally fairly easy to do, and a number of tutorials are included with the 
packages to guide the novice user through the development process. 

Tools for the creation of acoustic models 

The creation of acoustic models is again (broadly) a two-step process, and – as with language 
models – the more challenging part is often the conceptually simple step of creating a suitable 
corpus of speech. An additional challenge here is that orthographic transcriptions of the 
speech are generally required for the creation of acoustic models (that is, the words 
corresponding to the recorded speech must be transcribed). For some under-resourced 
languages, appropriate corpora are available from sources such as the Linguistic Data 
Consortium (LDC) or commercial suppliers such as Appen. In others, collections of recorded 
speech are available on Web sites such as news archives or cultural repositories, sometimes 
with (more or less accurate) transcriptions. However, the majority of languages will require a 
dedicated data collection effort. Several software open-source packages are available to 
support both the recording of speech corpora and the transcription of the recordings, for 
example Praat [Boersma and Weenink, 2001], which is suitable for corpus creation using 
recordings on a personal computer and Woefzela [De Vries et al., 2011], which is used for 
data collection using mobile telephones. 

The two most prominent toolkits for creating acoustic models once a suitable transcribed 
corpus has been created are HTK and CMU Sphinx (developed at Carnegie Mellon University – 
see http://cmusphinx.sourceforge.net/). Both toolkits contain a number of components to 
assist in the modelling process, and tutorials included with the toolkits as well as numerous 
hints and tutorials on the Internet can be useful to assist new users in developing such 
models. 

Tools for the creation of pronunciation dictionaries 

As described above, the pronunciation component of an ASR system generally consists of a 
manually-created list of pronunciations along with a rule set that can be used for letter-to-
sound conversion. As is the case for the resources discussed above, ready-made 
pronunciation lists are valuable when available, but scarce in most under-resourced 
languages. When such lists are available, they can also be used as training data for the 
creation of letter-to-sound rules. 

DictionaryMaker [Davel & Barnard, 2008] (http://dictionarymaker.sourceforge.net/) is an 
open-source package that can be used to create both manual pronunciation dictionaries and 
letter-to-sound rules. The system does not require the knowledge of an expert linguist nor 
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any programming skills. It is suitable for languages (such as English, Turkish or Zulu) in which 
the writing symbols (letters) roughly correspond to phonemes. 

Additional requirements 

The principles summarized in the Introduction along with the tools described in the previous 
subsection make it possible to develop an ASR system in a new language with a manageable 
amount of effort. A more precise analysis of the required effort requires information about the 
extent of available resources in the target language, the details of the required recognition 
system (vocabulary size, diversity of user population, etc), but a rough estimate of 
approximately one to two person years per language holds for many languages. However, 
such estimates assume that the development is in the hands of highly experienced speech 
technologists, and for many applications of ASR systems the availability of such skilled 
personnel becomes the major limiting factor.  

A crucial need for the wider availability of ASR systems is therefore that this bottleneck should 
be alleviated. Fortunately, recent years have seen much progress in this regard: the toolkits 
that we have mentioned above have each played a substantial role in reducing the complexity 
of developing the specific components for which they are relevant. However, two related 
issues are not resolved by these tools: 

• None of the toolkits is specifically aimed at the needs of under-resourced languages. 
As a consequence, their documentation and tutorials often make assumptions about 
resources and skills that are not suitable for such languages. 

• Given the very specific tasks for which they were designed, none of these tools 
provides a complete overview of the process of ASR development. 

During the current project, we will address both of these shortcomings by creating tutorials as 
well as working examples that span the entire process of ASR development, from the 
definition of grapheme and phoneme sets to their use in practical applications. 

Another type of intervention, which requires a somewhat larger scope than that, provided by 
the VOICES project, is the creation of resources that allow for the efficient sharing of 
resources across languages. Without such sharing it is unlikely that a meaningful fraction of 
all the world’s languages will reap the benefits of speech technology. If, however, speech 
technologists across the globe can create open resources that are specifically aimed at 
spanning most of the major language families on earth, and tools are developed that make it 
possible to port ASR resources and systems efficiently between closely related languages, 
meaningful coverage of the world’s languages becomes much more feasible. 

ASR in the context of the VOICES project 

We have discussed the basic principles behind the operation of modern ASR systems, and 
provided some guidance on the open-source tools that can be used to develop such systems 
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in languages with limited resources. These guidelines will be used during the rest of the 
current project to guide our development of ASR systems for the use cases developed in the 
other Work Packages of the project. 

Given the initial requirements that have emerged out of those Work Packages, one potential 
concern is that these state-of-the-art methods may be unnecessarily complicated for those 
specific purposes. In particular, the requirements specify small and fixed recognition 
vocabularies – for such limited, static systems, whole-word recognizers can be developed with 
substantially lower effort than the more flexible ASR systems we have discussed [Huang et 
al., 2001]. A number of factors argue against such an inflexible approach, however. Most 
importantly, any changes to the vocabulary of a whole-word system require substantial effort 
– thus, changes to the user interface that may be suggested by user trials will be much 
harder to implement if they happen later in the development cycle. Also, the subword-based 
approaches can easily be applied to a variety of tasks besides that for which it is initially 
developed. Finally, it is hoped that experience with state-of-the-art methods when applied to 
under-resourced languages will be useful beyond the scope of the current project. For all 
these reasons, we believe that the methodology suggested in this review will be the right one 
to follow for the VOICES project. 
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CONCLUSION 

We have summarized the two types of speech technology most relevant to developing-world 
applications, namely ASR and TTS. Several other speech technologies, such speaker 
recognition, language identification and topic classification follow similar principles, and the 
background provided here should be useful preparation for readers who want to delve into the 
literature relevant to those domains. 

Our survey has made it clear that the basic principles for the development of useable TTS and 
ASR systems are now well understood, and several tools that support such development are 
now available. However, a fairly detailed understanding is still required to deploy those tools 
successfully, and we have not yet reached the stage where any skilled computer programmer 
can develop useable speech-based systems. (This is to be contrasted, for example, with the 
development of Web sites or databases, where a much wider range of developers are 
empowered by currently available tools.) 

Another major deficiency in the current understanding of speech technology is related to its 
deployment in the developing world. Whereas speech technology in the first world is already a 
highly profitable industry, with widespread impact, there are hardly any successful, 
sustainable products or services based on speech technology in less-developed countries. 
Thus, a significantly improved understanding of issues related to business models, user 
interfaces and similar matters is equally important if these technologies are to have 
widespread impact outside the developed world. 
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