

RASEN - 316853

Deliverable D3.3.3 and D4.3.3

RASEN Tools for:

Compositional security risk assessment and
security test result aggregation v.3

and
Compositional Security Risk Assessment and

Security Testing v.3

Brief Description, Documentation and
Installation Guide

RASEN - 316853 Page 2 / 43

Project title: RASEN

Project number: 316853

Call identifier: FP7-ICT-2011-8

Objective: ICT-8-1.4 Trustworthy ICT

Funding scheme: STREP – Small or medium scale focused research project

Work package: WP3 and WP4

Deliverable number: D3.3.3 and D4.3.3

Nature of deliverable: Prototype & Report

Dissemination level: PU

Internal version number: 1.0

Contractual delivery date: 2015-09-30

Actual delivery date: 2015-09-30

Responsible partner: UFC

RASEN - 316853 Page 3 / 43

Contributors

Editors Fabien Peureux (UFC)

Contributors Fabien Peureux (UFC), Fredrik Seehusen (SINTEF), Alexandre Vernotte
(UFC), Johannes Viehmann (Fraunhofer), Frank Werner (SAG)

Quality assurors Fredrik Seehusen (SINTEF), Bjørnar Solhaug (SINTEF)

Version history

Version Date Description

0.1 15-09-15 ToC and contents overview

0.2 15-09-28 Contents provided to all sections

0.3 15-09-29 Complete version finalized for internal review

1.0 15-09-30 Final version

Abstract
This report provides some basic information about the tools of the WP3 and WP4 prototype
deliverable month M36. The delivered tools are CORAS from SINTEF, RACOMAT and RASEN
Security Dashboard from Fraunhofer FOKUS, Smartesting CertifyIt and its plugin from UFC, and
ARIS Business Architect from Software AG.

Keywords
Security, security risk assessment, security testing, test-based risk assessment, tool support,
prototype

RASEN - 316853 Page 4 / 43

Executive Summary

The overall objective of RASEN WP3 and WP4 is to develop tools and techniques to support test-
based and compositional security risk assessment. Deliverable D3.2.3 presents the WP3 techniques
that were developed during the first two years of the project and deliverable D4.2.3 shows the WP4
techniques that were developed during the first two years of the project, while D5.3.1 presents the
methodologies that the WP3 techniques should support. This report accompanies the D3.3.3 and
D4.33 prototype deliverable, and gives an overview and introduction to the four tools of that
deliverable.

The set of tools are as follows:

• The CORAS tool from SINTEF, supporting model-driven risk analysis

• The RACOMAT tool from Fraunhofer FOKUS, which is a tool for the bidirectional combination
of low level risk assessment with security testing that could also be used as an integration
platform for other tools in such a process

• The Security plugins developed by UFC to extend the tool Smartesting CertifyIt devoted to
model-based security testing

• The ARIS Business Architect from Software AG, supporting security assessment and risk
modeling of software and IT systems

• The RASEN Security Dashboard provided by Fraunhofer FOKUS to aggregate test results
and to provide test metrics and measurements.

RASEN - 316853 Page 5 / 43

Table of contents
TABLE OF CONTENTS .. 5

1 INTRODUCTION ... 6
2 CHARACTERISTICS OF THE IDENTIFIED WP3 AND WP4 TOOLS ... 7

2.1 RACOMAT TOOL ... 7
2.2 SMARTESTING CERTIFYIT WITH UFC SECURITY PLUGIN ... 8
2.3 ARIS BUSINESS ARCHITECT WITH RASEN PLUGIN .. 9
2.4 CORAS ... 10
2.5 RASEN SECURITY DASHBOARD ... 11

3 DESCRIPTION OF THE PROTOTYPE TOOLS ... 12
3.1 RACOMAT TOOL ... 12

3.1.1 Features of the RACOMAT Tool .. 13
3.1.2 Installation of the RACOMAT Tool ... 14
3.1.3 Documentation of the RACOMAT tool .. 14

3.2 SECURITY PLUGINS FOR SMARTESTING CERTIFYIT ... 18
3.2.1 Presentation ... 18
3.2.2 Installation Guidelines ... 18
3.2.3 User Guide .. 19

3.2.3.1 Modeling Activity ... 19
3.2.3.2 Test Purpose Activity ... 20
3.2.3.3 Test Generation Activity ... 22
3.2.3.4 Test Concretization and Execution Activities ... 23

3.3 ARIS BUSINESS ARCHITECT – RASEN PLUGIN .. 25
3.3.1 Presentation ... 25
3.3.2 Installation Guidelines ... 25
3.3.3 User Guide .. 26

3.4 CORAS TOOL SET ... 29
3.4.1 Presentation ... 29
3.4.2 Installation Guidelines ... 30
3.4.3 User Guide .. 31

3.4.3.1 Core CORAS Tool .. 31
3.4.3.2 Capec2Coras Tool .. 31
3.4.3.3 CorasAnalyzer Tool .. 33

3.5 SECURITY DASHBOARD ... 42
3.5.1 Presentation ... 42
3.5.2 Installation Guidelines ... 42

4 CONCLUSION .. 43

RASEN - 316853 Page 6 / 43

1 Introduction
This report is a brief documentation and introduction to the RASEN WP3 and WP4 prototype tools.
The prototypes are developed to provide support for the methods and techniques that are also
developed in this work package. The reader is referred to deliverables D3.2.3 and D4.2.3 for an
overview of the WP3 and WP4 research results after the three years of the RASEN project.

The prototypes presented in this report serve as a part of the RASEN tool-box for security risk
assessment and security testing that is developed in the context of WP5. WP5 defines the common
RASEN data meta-model that will be used for integrating the tools by facilitating the communication
between them. An important part of the RASEN prototype development is therefore to provide support
for exporting and importing data to and from the common RASEN data model.

The tools that are presented in the next two sections are RACOMAT, Smartesting CertifyIt and its
RASEN plugins, ARIS Business Architect, CORAS, and the RASEN Dashboard. In Section 2 we give
a brief overview of the main characteristics of the WP3 and WP4 tools. In Section 3 we present the
tools in some more details, give installations and user guidelines, and explain the planned and current
status for the development of tool features relevant in WP3 and WP4. Finally, in Section 4 we
conclude.

RASEN - 316853 Page 7 / 43

2 Characteristics of the Identified WP3 and WP4 Tools
In this section we give an overview of the RASEN tools relevant for WP3 and WP4, providing some
basic general information and technical information, as well as other information that may be useful.

2.1 RACOMAT Tool
General information

Name RACOMAT (Risk Analysis COMbined with Automated Testing) Tool

Provider Fraunhofer FOKUS

Topic addressed The entire combined test-based risk assessment (TBRA) and risk-based
security testing (RBST) process.

Description

Utilizing static and dynamic analysis techniques, the RACOMAT tool generates
initial editable fault trees or CORAS risk graphs with linked system models for
programs, libraries, components and web interfaces. Users decide which
elements from existing risk related libraries like MITRE CAPEC and CWE
should be added. The RACOMAT tool supports compositional risk analysis with
simple drag and drop for existing artefacts and it calculates likelihoods for
dependent incidents by performing Monte Carlo simulations. Security test
patterns are automatically associated with risk analysis artefacts as well as
system model components (e.g. input and output ports) and their priority is
calculated. If no appropriate test patterns exist in the library, the tool allows its
users to create new test patterns within the tool and to upload them to the library
for sharing. Given an appropriate test pattern, test generation, execution and
result aggregation are at least semi-automated. Indeed, there is no need for
additional manual work at all for testing many common issues like overflows or
SQL injections. Security testing metrics suggested by the test patterns can be
used to analyze and evaluate test results. New security testing metrics can be
created and edited in the RACOMAT tool. With appropriate security testing
metrics, it is possible to update the risk graphs automatically with more precise
likelihood estimates or new faults / incidents based on the test results.
Besides using the RACOMAT tool as a stand-alone tool, it is possible to use the
RACOMAT tool as an integration platform and to utilize other eventually more
specialized tools for some steps in the combined TBRA and RBST process.

License
RASEN project partner can obtain a license for the project duration.
The final license model is not yet decided.

Website http://www.rasenproject.eu/the-racomat-tool-2/

Technical information

Download site Public beta planned for fourths quarter 2015

OS Windows Vista or newer Windows version

Technology
environment

.Net 4.5, WPF

Other
dependencies

none

Additional information

Known issues/risks RACOMAT security testing is meant to attack SUTs – use with caution!

Additional useful
information

Since there is not yet a public security test pattern library server online, only a
local test pattern library can be used in the delivered RACOMAT tool version.

RASEN - 316853 Page 8 / 43

2.2 Smartesting CertifyIt with UFC Security plugin
General information

Name Smartesting CertifyIt

Provider Smartesting

Topic addressed Model-Based Testing solution

Description

The tool is composed by a Rational Software Architect plugin for
modelling activities, a standalone Java application for the test
generation and test case management, and dedicated RASEN plugin to
manage DASTML specifications, vulnerability test generation from test
purposes and RASEN test publisher.

License RASEN project partner can obtain a license for the project duration.

Website www.smartesting.com

Technical information

Download site www.smartesting.com

OS Win or Linux

Technology environment
Rational Software Architect v8.0.x and v8.5.x, EMF compliant

JAVA 1.6, 1.7 compliant

Other dependencies N/A

Additional information

Known issues/risks N/A

Additional useful
information

N/A

RASEN - 316853 Page 9 / 43

2.3 ARIS Business Architect with RASEN Plugin
General information

Name ARIS Business Architect + RASEN Plugin

Provider Software AG

Topic addressed Security Assessment and Risk Modeling of Software and IT Systems

Description
The model extension is based on the ARIS Business Process Analysis Platform,
a proprietary solution of Software AG and provides an interface to model risk
assessment of IT security systems.

License Proprietary

Website http://www.softwareag.com/corporate/products/aris_alfabet/bpa/overview/default
.asp

Technical information

Download site
Download site of the RASEN Model Extension
https://project.sintef.no/eRoomReq/Files/ikt2/RASEN/0_48ae6/Y3-
SAG%20Tool%20Deliverable%20RASEN.zip

OS Web-based solution, server installation supports Windows, Linux, (Any OS
supported by the ARIS Business Architect)

Technology
environment None

Other
dependencies None

Additional information

Known issues/risks None

Additional useful
information None

https://project.sintef.no/eRoomReq/Files/ikt2/RASEN/0_48ae6/Y3-SAG%20Tool%20Deliverable%20RASEN.zip
https://project.sintef.no/eRoomReq/Files/ikt2/RASEN/0_48ae6/Y3-SAG%20Tool%20Deliverable%20RASEN.zip

RASEN - 316853 Page 10 / 43

2.4 CORAS
General information

Name CORAS tool

Provider SINTEF

Topic addressed Model-based risk assessment

Description The tool is based on Eclipse and the GMF/EMF framework, but it is distributed
as a stand-alone tool

License Eclipse Public License v1.0 (http://www.eclipse.org/legal/epl-v10.html)

Website http://coras.sourceforge.net

Technical information

Download site http://coras.sourceforge.net/downloads.html

OS Tested on Windows; a non-tested distribution is also available for Linux

Technology
environment The tool needs Java

Other
dependencies None

Additional information

Known issues/risks None

Additional useful
information None

http://coras.sourceforge.net/
http://coras.sourceforge.net/downloads.html

RASEN - 316853 Page 11 / 43

2.5 RASEN Security Dashboard
General information

Name RASEN Security Dashboard

Provider Fraunhofer FOKUS

Topic addressed RASEN Security Dashboard, visualizing security test metrics and generating
aggregated test reports.

Description

The RASEN Security Dashboard processes the models generated during the
RISK security process of RASEN, namely: risk models, test report models and
test procedures in the exchange format, also specified in the RASEN project. It
generates different metrics and visualizes them in different view formats and
provides an export of an aggregated test report for items of interest.

License
RASEN project partner can obtain a license for the project duration.
The final license model is not yet decided.

Website N/A

Technical information

Download site N/A

OS Windows

Technology
environment

Java, Eclipse Juno (Eclipse Modelling Tools)

Other
dependencies

CORAS tool in case of installed CORAS bridge

Additional information

Known issues/risks Not recommended installation component of the CORAS tool

Additional useful
information

N/A

RASEN - 316853 Page 12 / 43

3 Description of the Prototype Tools

3.1 RACOMAT Tool
Risk assessment might be difficult and expensive, and it often depends on the skills and estimates of
the analysts. Testing is one analysis method that might yield more objective results, but security
testing itself might be difficult and expensive, too, because security testing means to test for unwanted
behavior and there is usually no specification what to expect. Besides that manual testing is itself error
prone and infeasible for large scale systems, even highly insecure system can produce lots of correct
test verdicts if the “wrong” test cases have been created and executed. Therefore, it makes sense to
do Risk Assessment COMbined with Automated Testing, i.e. to use RACOMAT Tool. The RACOMAT
Tool is intended to cover the entire process of combined test-based risk assessment (TBRA) and risk-
based security testing (RBST) within a single standalone tool. It allows applying and evaluating the
RASEN Method without troubling about interoperation and interaction between different tools.

However, more specialized tools might be more powerful than the RACOMAT Tool for some tasks.
Eventually, use case partners do already use some existing tools for some steps of the risk
assessment and security testing process. Therefore, we try to build bridges from the RACOMAT tool
to other tools, especially to those developed or used by our project partners. The idea is to make the
RACOMAT Tool the central integration platform which can be used to control the overall combined
TBRA and RBST process while for some tasks within that process, other tools are used. Since the
RACOMAT Tool itself implements the entire process, there will be no gaps, for sure, even if for some
steps within the process there were no other tools than the RACOMAT Tool available.

Figure 1 – The process of the RACOMAT Method with the RACOMAT tool as a platform
integrating various other tools

RASEN - 316853 Page 13 / 43

3.1.1 Features of the RACOMAT Tool
Current Status

• Component based, low level system analysis and risk assessment

o Automatically creates interface models for programs, APIs, components, Web-Pages
or Web-Services

o Generates semi automatically initial fault trees (FTA), event trees (ETA) or CORAS
risk graphs

o Reusable risk assessment artifacts – uses existing risk catalogues (MITRE CWE /
CAPEC, BSI IT-Grundschutz …)

o Compositional risk analysis,edit and compose per Drag and Drop

o Calculates likelihoods for dependent incidents automatically

 Supports timing issues – likelihoods might change over time

o Identifies and prioritizes elements worth further investigation

o Allows to model relations between risk artefacts and with system components

• Supports security testing as a part of the risk analysis process

o Security Test Pattern instantiation

 Suggests test patterns for identified threat scenarios

 Assisted association with risk artefacts and system components by drag and
drop

• Indicates where to stimulate and what to observe

o Execution of tests, observation

 Once a test pattern is instantiated, generating, executing and evaluating tests
woks at least semi automatically

• Often no manual work is required at all, e. g. for overflows or (SQL-)
Injections

 Automatic observation and basic aggregation of raw test results

• Updates the risk picture based upon the test results semi automatically

o Makes suggestions using the metrics associated with the security test pattern

o More precise likelihood values

o Allows to add unexpected observations as new faults or unwanted incidents by
dragging them to the risk graph

 Automatically creates relations to related threat scenarios that were tested

• Create, edit and share reusable artefacts

o Threat interfaces

o Security test patterns

o Security testing metrics

• Flexible dashboard showing final risk assessment results for the management

• Interoperability

o Import and export in XML RASEN exchange formats

o Import from and export to ARIS Business Architect (Software AG case study)

RASEN - 316853 Page 14 / 43

Planned Features

The most relevant upcoming features expected within the first public beta release are the following:

• Calculate how much test effort should be spend for which tests (monetary value)

• Further import / export functionality

• Integration into Microsoft Visual Studio IDE

o Plug-in

o Use powerful Visual Studio code editor, debugging tools etc. for creating and editing
test patterns and testing metrics directly within Visual Studio

• Public RACOM server to share threat interfaces, test pattern and testing metrics

3.1.2 Installation of the RACOMAT Tool
To install the RACOMAT tool, just execute the setup executable contained in the RACOMAT.zip file on
a computer running Microsoft Windows Vista or a newer Microsoft Windows version. For best
compatibility, we recommend using the latest Microsoft Windows 10 version.

The RACOMAT tool requires Microsoft .NET 4.5 or a later, compatible version. The RACOMAT setup
program should automatically download and install the .NET framework if no appropriate version has
been installed before. Eventually the user has to confirm the installation of .NET and accept the
related Microsoft license terms. The latest version of .NET can also be obtained manually from
https://www.microsoft.com. Note that an internet connection will be required anyway to download the
.NET setup program since it is not included in the RACOMAT.zip file.

3.1.3 Documentation of the RACOMAT tool
RACOMAT is still a prototype. The online documentation is currently under construction. However,
there are already some tool tips in the program and there is a short Video Demo / Tutorial showing the
basic workflow included in the tool deliverable ZIP file.

Here we also give a short tutorial introducing the most important concepts. For demonstration, a web
application called Damn Vulnerable Web Application (DVWA) will be used here, because it has many
weaknesses. DVWA can be obtained from here: http://www.dvwa.co.uk/.

After starting RACOMAT, users will see an empty risk graph. By dragging elements from the toolbar
on the left to the risk graph, it is possible to manually create a risk model. Drag one threat interface to
the graph. Choose “HTTP interface” from the small dialog that pops up.

The http interface assistant will be opened, which is most appropriate to create the initial system
model for an application having an http based web interface like DVWA.

The http assistant basically contains a web browser. Just enter an URI in the address field and hit
return or click the “Go” button. While browsing the web, RACOMAT automatically records messages
that could eventually be used to test the interface. These recorded messages will be displayed in the
list view at the bottom of the http assistant window. Drag and drop one or more of the recorded
messages to the risk graph.

In the example shown here, we just log in to DVWA, choose SQL Injection from the menu and submit
the value “1”. We drag the only the last message to the graph.

Close the http assistant window when done by clicking the cross in the upper right corner of that
window.

So far, the risk graph only contains a system model. In order to add risk related information, click on
one of the “String” buttons in the input column of some added threat interface instance. A window with
a list of MITRE CWE based weaknesses typically related to that kind of input parameters will be
shown. If some weakness in the list is not applicable, right click it. Else, drag it into the input field for
which it might be relevant. Thereby, a new vulnerability will be added to the risk graph.

In the example, we drag the SQL injection weakness to the input field “ID”.

https://www.microsoft.com/
http://www.dvwa.co.uk/

RASEN - 316853 Page 15 / 43

Figure 2 – The http assistant

RASEN - 316853 Page 16 / 43

Figure 3 – Adding risk information with the MITRE CWE based assistant

Close the MITRE CWA assistant and click on one of the “CWE” button of some vulnerability. In the
menu that opens choose CAPEC based threat scenarios and drag any relevant threat scenarios to the
“What might happen” column of the threat interface. This will add threat scenarios to the risk graph
and create relations to the weaknesses from which the threat scenarios were created. In the example
we add the attack pattern “SQL Injection”.

The threat scenarios have a “CAPEC” button. Clicking such a “CAPEC” button opens another menu,
which can be used to add unwanted incidents. Add one or more of these unwanted incidents by
dragging them to the risk graph, e.g. to some field in the output column of the threat scenario. In the
example we select the unwanted incident “SQL injection most likely occurred”, which is actually
defined by some test pattern.

Each vulnerability, threat scenario and unwanted incident has a small button with a plus sign in its
lower right corner. Clicking on that button will show more detailed information. To start security testing,
open the detail area for some threat scenario by clicking on its “+” button. From the combo box on the
very top of that detail area, it is possible to choose a test pattern that should be applied. If there is
already at least one fitting test pattern existing for that threat scenario and associated with the CAPEC
ID, then by default some test pattern will already be selected. Otherwise, a test pattern has to be
selected manually. Eventually, even a new test pattern has to be created. In the example, the Basic
SQL Injection test pattern is already pre-selected. So there is nothing that needs to be done manually.

Just hit the execute button (Figure 4) in order to start the testing process.

RASEN - 316853 Page 17 / 43

Figure 4 – Executing tests

The test results will be shown in a separate window. Hit the “Calc likelihoods” button to update
likelihood values in the risk graph. If there are any unexpected incidents detected, then these should
be dragged to the risk graph.

Figure 5 – Interpreting test results in the terms of risk assessment

RASEN - 316853 Page 18 / 43

3.2 Security Plugins for Smartesting CertifyIt
This section introduces the Security plugins developed by UFC for the tool CertifyIt provided by the
company Smartesting. It enables to generate security test cases from vulnerability risk assessment,
and to produce test results, which can actively contribute to identify, estimate and finally treat the risk
of the tested application

It should be noted that a more detailed presentation of the tool features including tutorial, and tips to
use it efficiently, are provided with the tool (modeling guide, UML/OCL reference guide and software
documentation).

3.2.1 Presentation
Smartesting CertifyIt is a tool suite that automatically generates test cases based on a model of
system requirements. Manual test design is labor intensive and error prone; this manual work can be
avoided for complex applications by modeling the key concepts (abstraction) and allowing Smartesting
CertifyIt to automate your test design work. Since the model is more expressive and simpler than the
system-under-test, it can more readily be reviewed for correctness and coherency, as well as be
updated more easily. Some plugins have been developed during RASEN project for the deployment of
the RASEN approach in order to assess its accuracy and precision regarding risk-based objectives.
Smartesting CertifyIt including these plugins supports UML/OCL models as the specification modeling
language, and generates test cases to cover security test patterns used as test objectives. Finally, the
generated test cases can be exported in UML sequence diagrams and can be fully integrated into the
RASEN Security Dashboard introduced in section 0.

More precisely, the Smartesting plugins developed by UFC concern the following features:

1. Test Purpose language extension, enabling sets creation using OCL code evaluated on the
initial state of the system

2. Keyword creation to be used by Test Purposes. This mechanism enables to create generic
Test Purposes, and to help for maintenance and reuse.

3. Capability to link a Test Purpose to a requirement identifier to ensure the traceability through
the all test generation process.

4. Test Purpose catalogue import/export to reuse and apply Test Purposes on several systems
under test.

5. Generation and Animation standalone Java API to enable fuzzed test sequences validation
regarding the model.

6. A DSML allows the validation engineer to easily create the UML model. This DSML specifically
addresses web-based applications.

7. A RASEN dedicated Wizard assist the user during the model creation, and pattern selection
regarding the Risk analysis.

8. A RASEN publisher makes it possible to export the test result into the RASEN Security
Dashboard.

Those features are presented in a more detailed way in the D4.2.3 RASEN deliverable.

3.2.2 Installation Guidelines
Smartesting test generation solution works with models edited by an Eclipse-based UML modeler.
Smartesting provides a plug-in that checks whether the model fits the Smartesting CertifyIt restrictions
on UML, and exports a model to be used by the Smartesting CertifyIt tool to generate the test cases.
To use Smartesting test generation solution, both the Eclipse-based modeler plug-in for IBM RSA and
the Smartesting CertifyIt software are needed.

RASEN - 316853 Page 19 / 43

IBM RSA Modeler Plug-in installation

1. This plug-in must be installed with the Eclipse update site tool. The following steps describe
the installation of a new release.

2. Start RSA modeling tool.

3. From the tool menu, select Help->Software Updates->Find and Install...

4. A dialog opens. Select "Search for new features to install", and click "Next". Select "New
Archived Site ...".

5. Specify the path to a .zip file available in the 'install' folder of the Smartesting CertifyIt
installation directory. Once the path is selected, the following window should appear. You can
use the 'Name' field in order to define your own Local Site name.

6. Click the "Finish" button of the "Install" window to launch the installation.

7. Check the Smartesting CertifyIt plug-in, and click « Next ».

At this stage, you may have warnings indicating that some features cannot be installed (due to
unavailable dependencies). In that case, check the “System Requirements and Supported
Software”, and upgrade RSA modeler if required.

8. Accept terms of the license agreement, and click « Next ».

9. Click the « Finish » button to install the plug-in.

If verification messages appear, just accept those in order to complete the installation. It should be
noted that write permissions for the install location are needed. Afterwards, restart RSA modeling
workbench. The Smartesting CertifyIt plug-in should be successfully installed at this point.

Smartesting CertifyIt software with Security plugin installation

To install Smartesting CertifyIt software and the dedicated Security plugins, simply run the setup
program and follow the installation instructions (this implies accepting the terms of the displayed
license agreement).

Before using Smartesting CertifyIt, a license needs to be defined. Prerequisites are: Smartesting
CertifyIt must be installed and the RSA Eclipse-based modeler plug-in must be installed. There are
two types of licenses: floating license server or capacity-based license.

3.2.3 User Guide
This section introduces each step of the testing process supported by the tool.

3.2.3.1 Modeling Activity
The first action in the process is Web application modeling. A domain-specific modeling language
called DASTML enables to create textual UML models. Therefore, any text editor can be used for
model design. Designing a DASTML model does not require any testing skills, and consists of doing a
manual crawling of the Web Application under test to gather relevant information that will be used for
vulnerability detection purposes.

The first step of this manual process should be about creating a “map” of the Web application, that is
to say the page flow. This can be done by clicking on links and filling Web forms, the goal is to identify
each unique page that requires testing (e.g., because it provides user interactions that are not purely
navigational) or would be part of an attack process (e.g., a result page).

Then, the second step is to do reconnaissance on each page that has been modeled to gather
information in order to design a DASTML model, in a text file. Once the model is complete, or a first

RASEN - 316853 Page 20 / 43

subset of the Web application has been modeled, the file can be processed by RSA to translate its
content in a UML test model.

Figure 6 shows the RSA interface, which has been has been extended with several plugins for testing
purposes.

Figure 6 – IBM RSA Modeling Environment

The first plugin, Smartesting for RSA, enables to create UML test models, animate them, check their
compliancy with the UML meta-model, and export them in a standardized XML file. It is used to
manage generated UML entities and potentially make adjustments in special cases where
experimented test engineers need to create new test purposes. It is also possible to animate models
to check whether they are accurate regarding the Web application under test.

The second plugin, Test Purposes connector for RSA, provides a graphical interface to manage test
purposes: creation, import / export, validity check. It is more discussed in the next section.

The third plugin, PMVT Connector for RSA, is responsible for the translation of DASTML models in
UML test models. DASTML models are parsed using an ANTLR3 grammar, which creates an Abstract
Syntax Tree (AST) out of it. Then, a dedicated algorithm visits the AST to create the corresponding
UML entities on the fly. This is delivered to users of the solution in two ways.

First, test engineers can choose to create a new modeling project. An eclipse wizard has been created
and provides two inputs: a DASTML model file, and a test purpose catalog. From these inputs, the
wizards automatically create the corresponding UML test models, and integrate the test purposes from
the catalog. Second, it is possible to import a DASTML model in an existing project. However, model
evolution is not yet supported at this point and test engineers must remove any previously generated
entity before importing a new DASTML model.

Next step of the process is the selection and / or creation of test purposes, as described in the next
section.

3.2.3.2 Test Purpose Activity
Once the model has been designed, test engineers have to proceed to test selection. This is done
using test purposes. The design and selection of test purposes is also done through RSA. A graphical
interface has been created, which is depicted in Figure 7. The upper part of the interface concerns
keywords lists. Such list can contain a set of Enumeration literals, instances, states, behaviors, etc.
Lists content is then used by test purposes iterators to compute test cases based on a refined set of

RASEN - 316853 Page 21 / 43

model elements, therefore allowing test engineers to generate precise test suites that only address the
selected elements. Note that all the visible keywords lists visible in the figure have been generated
automatically.

The lower part of the interface is the test purpose editor. The left side lists all the created or imported
test purposes, and on the right side is the actual editor. It is shipped with test purposes and OCL
expressions on-the-fly syntax check.

Figure 7 – Test Purpose Editor

Users can add and remove test purposes, and export their test purposes as a catalog in an XML file
that is linked with CORAS. This way, they can directly import them from risk assessment. For that, we
provide to users of the RASEN approach a predefined catalog containing the existing test purposes.
Users can import all or part of this catalog. The test purposes stored this catalog are usable as is to
test any Web application, without the need for adaptation. Figure 8 shows the interface for importing
test purposes from the catalog in a test project.

RASEN - 316853 Page 22 / 43

Figure 8 – Test Purpose Catalog

When the model and the test purposes have been defined, Test engineers can check the validity of
their project. If it has been successfully checked, the next step is to export this project in a
standardized XML file and pass it on to the test generation engine.

3.2.3.3 Test Generation Activity
The test generation engine that is used as part of the process is supported by the tool CertifyIt
provided by Smartesting. This tool generates abstract test cases by finding paths in the test model to
reach the test targets that have been derived from the test purposes. Figure 9 shows its interface.

RASEN - 316853 Page 23 / 43

Figure 9 – Test Generation Environment

The left part lists all the test targets that the tool extracted from the model. If a test target is
successfully reached, a test case is produced and all its steps are displayed on the right part of the
tool.

CertifyIt interprets test purposes using a two-step process. First, during the importation of a test
project, the test generation unfolds the test purposes: if a test purpose contains iterators, then the test
generation engine creates a test target for each element of the list linked to the iterator. Second, the
test generation engine tries to reach each test target by animating the model. When test generation is
completed, test engineers must export the generated abstract test cases in executable test scripts,
which are introduced in the next section.

3.2.3.4 Test Concretization and Execution Activities
Abstract test cases are not executable as is on the real system, therefore they must be concretized
(adapted) and exported as test scripts. Test engineers must implement each operation from the
model, provide concrete data to match each abstract data, and may need to develop a test harness in
order to simplify test execution.

In the context of RASEN, generated abstract test cases are exported as JUnit test scripts. These
scripts allow to automatically interacting with the Web application through its GUI, as a normal user
would do. To accomplish this programmatically, test scripts use libraries such as Selenium1 or
HTMLUnit2, which enable to operate a headless browser using primitives (i.e. methods such as filling
form fields and clicking buttons / anchors).

Test concretization activity represents a considerable amount of work to obtain executable test scripts.
A dedicated test publisher has therefore been designed in order to automate most of the process.
When all abstract data have been matched with concrete data and all methods have been
implemented, the obtained test scripts can be executed on the real Web application.

1 http://www.seleniumhq.org/ [Last visited: August 2015]
2 http://htmlunit.sourceforge.net/ [Last visited: August 2015]

http://www.seleniumhq.org/
http://htmlunit.sourceforge.net/

RASEN - 316853 Page 24 / 43

Test execution and verdict assignment are fully automated, thanks to the test harness generated by
the publisher. Test engineers execute the test suite, and collect the results.

Both the test concretization and execution activities are performed preferably using an IDE (in our
case, IntelliJ Idea), as depicted in Figure 10. Such tool provides a graphical view of the test results,
and an “export” function to store the results, for instance in an XML file. For instance, a RASEN
exporter allows engineers to produce a XML files including test cases and results that can be imported
into the RASEN Security Dashboard presented in section 0.

Figure 10 – Test Concretization and Execution Environment

RASEN - 316853 Page 25 / 43

3.3 ARIS Business Architect – RASEN Plugin

3.3.1 Presentation
The ARIS Business Architect (ABA) is proprietary software from Software AG. A screenshot of the
ABA with the different modeling aspects is depicted in Figure 11. It shows on the left hand side a list of
all possible Common Weakness Enumerations (CWEs)3which can directly be aligned to a software
component. On the right hand side (cf. Symbol Box) a selection of other components can be selected
and drawn into the modeling pane in the center of the screen.

Figure 11 – Screenshot of the Security Risk Assessment in RASEN model

3.3.2 Installation Guidelines
An individual installation program can be started using the provided Setup.exe which is guiding the
used through the provided setup-routine. If system files are changed during installation, you are
prompted to reboot your computer after installation. In addition to that there is a detailed installation
guide of how to install the ARIS Business Architect on most spread operating systems.

3http://cwe.mitre.org

http://cwe.mitre.org/

RASEN - 316853 Page 26 / 43

On top of the base installation of the ARIS Business Architect, the RASEN methodology is added by
importing the RASEN artefacts from a ZIP file which contains the base package, consisting of the
reports, the definition of necessary modeling elements, the macro, a preliminary set of already defined
CWEs, and a predefined set of generic component types previously generated.

3.3.3 User Guide
The Product Model builds the base of the proposed modeling approach. The respective product is
modeled as the root entry of the model; the corresponding components are modeled as child entries
(cf. Figure 15). An exemplary RASEN model of the Comment Central Component is shown in the
figure below, providing a full detailed description of the Software AG’s product, the CCE Vignette, the
component tree and the final CWSS scoring.

Figure 12 – The final product model with the resulting CWSS Score (CCE Score 164)

At least one so called Component Template which specifies a special type of component is assigned
to each component. Additionally a list of CWEs is assigned to the component. This list represents the
union of all relevant CWE for this component which are automatically derived from the Component
Template. This list can be modified in sense of deleting irrelevant CWEs or extending them according
to the needs of the security expert doing the risk assessment.

The present model type represents a program under test as a set of components with their hierarchical
relation. This relation is not restricted to one level but as several layers of sub-components building
are feasible (subcomponents, sub-subcomponents, etc.), this can also be reflected within the model.
Each component has a list of CWEs defined by the Component Template as denoted earlier. The
initial content of these lists is defined by the connected Component Types provided as a Risk
Template.

The product is now tested for all CWEs in its components lists. Afterwards the test results are imported
into the tool and consequently all irrelevant CWEs where deleted from the property list. A CWE Model
contains all relevant information as the ID, name and technical impacts about one CWE from the CWE

RASEN - 316853 Page 27 / 43

database. The technical impacts where mapped to 8 technical impacts to fit the vignette schema and
later on used for score computations. A clipping of the vignette is shown in the figure below.

Figure 13 – The Product’s Vignette containing information about the deployment scenario

The most frequently used components are defined as generic components which can be used as a
kind of library to quickly instantiate a new product with components and accelerate the modelling
effort. As shown in the figure below, each Generic Component Type consists of a set of assigned
CWEs and the assignment follows best practices.

Figure 14 –ARIS Security Risk Assessment: the left the associated CWE list for the generic
“Authentication” type; right: Clipping of CWEs linked to the “Authentication” type

The following functionality is implemented as either Reports (run on the ARIS server) or as Marcos
(executed in the ARIS client):

• New Product – A wizard which supports the creation all necessary templates and directory for
the security risk assessment of a new product

RASEN - 316853 Page 28 / 43

• New Component Type – A Wizard to support the creation of defining user-specific component
types

• Import CWE Database --.Import and update the ARIS RASEN CWE database with inputs
obtained from the MITRE CWE database

• Import Component Types – Import the set of generic component types from an external file or
database

• Union Components – Compute the aggregation of all components
• Evaluate: The functionality which computes from the lower level aggregated and the vignette

the CWSS score of the modeled product

An exemplary RASEN model of the Comment Central Component is shown in the figure below,
providing a full detailed description of the Software AG’s product, the CCE Vignette, the component
tree and the final CWSS scoring.

Figure 15 – The final product model with the resulting CWSS Score (CCE Score 168)

RASEN - 316853 Page 29 / 43

3.4 CORAS tool set
In this section we describe the CORAS tool set for model based risk assessment. The toolset consists
of three stand-alone tools:

• The CORAS risk diagram editor (referred to as the CORAS tool for short). This is tool
represents the core of the CORAS tool set. The other two tools may be seen as extensions of
this core tool

• The Capec2Coras tool for automatically translation security attack patterns of the CAPEC
catalog in to CORAS risk models

• The CorasAnalyzer for performing analysis functions on CORAS diagrams, and for combining
CORAS risk diagrams with testing related activities.

In the following, we will in Section 3.4.1 describe the main functionality of the core Coras tool. Then, in
Section 3.4.2 we provide installation guidelines of the three tools. Finally in Section 3.4.3 we provide
user guidelines for the three tools.

3.4.1 Presentation

Figure 16 – Screenshot of the CORAS tool

RASEN - 316853 Page 30 / 43

The CORAS tool is an open source diagram editor that supports the CORAS risk analysis language.
The CORAS language is a graphical language whose constructs correspond to notions that are
relevant during a risk analysis, e.g. threats, vulnerabilities, risks, unwanted incidents, threat scenarios
and assets. The CORAS tool is intended to be used intensively during workshops where information is
gathered through structured brainstorming. The tool is also intended to be used to document a risk
analysis and to present the risk analysis results.

The CORAS tool is designed to support on-the-fly modeling using all five kinds of basic CORAS
diagrams, thus facilitating the entire CORAS risk analysis process. A screenshot of the CORAS
diagram editor is given in Figure 16. As indicated in the figure, the editor has six main parts:

• A pull-down menu that offers standard functions such as open, save, copy, cut, paste, undo
and print.

• A tool-bar that offers easy access to the standard functions of the pull-down menu.

• A palette that contains the model elements and relations for drawing the diagrams.

• A drawing area or canvas for drawing the diagrams.

• A properties window that lists the properties of a selected element, and that can be used to
edit the values of the properties.

• An outline that presents a project and its diagrams as a tree.

Except for the pull-down menu and the tool bar, all parts of the tool can be closed or hidden.

In the tool, a project is a collection of diagrams, and each diagram must belong to a project. A project
must therefore be created before any diagrams are created.

The outline contains a tree representation of the project. The diagrams of the project are listed at the
first level, and under each diagram all the diagram elements are listed. When a new element is
created in the drawing area, it is automatically added to the tree under the correct diagram.

The drawing area is the part of the tool where the diagrams are made by inserting, editing, annotating
and deleting elements. This is also where likelihoods and consequences are inserted to diagrams as
part of the risk estimation, and it is also where risk levels are inserted as part of the risk evaluation.

3.4.2 Installation Guidelines
CORAS tool version 1.4:

• Download the zip-file containing the current version of the tool.

• Extract the zip-file to any folder of your choosing.

• Double click the file "Coras.exe" located in the Coras folder of the distribution.

Capec2Coras

• Download the zip-file containing the current version of the tool.

• Extract the zip-file to any folder of your choosing.

• Double click the file "Capec2Coras.exe" located in the Capec2Coras folder of the distribution.

Coras Analyzer

• Download the zip-file containing the current version of the tool.

• Extract the zip-file to any folder of your choosing.

• Double click the file "RUN_CORAS_ANALYZER.BAT" located in the Coras Analyzer folder of
the distribution.

RASEN - 316853 Page 31 / 43

3.4.3 User Guide

3.4.3.1 Core CORAS Tool
Creating a new project

Before the CORAS tool can be properly used, a new project must be created. To create a new project:

• Select File -> New ->Coras Project in the File menu located near the top left corner of the
window.

• Enter the desired file name and folder of the new project.

• Check “High Level CORAS”, “Dependent CORAS”, or “Legal CORAS” if you want to use these
extensions of the basic CORAS language.

• Press “Finish” when done.

Creating a new diagram

The first time a new project is created, a new threat diagram called unnamed is automatically created
within the project as shown in the outline view of the right hand side of the Figure 16. To create an
additional diagram:

• Right-click the project entry in the tree outline located on the right hand side of the CORAS
tool window.

• In the pull-down menu, select “new X diagram” (where X is the type of diagram that can be
created e.g. threat, asset).

• The new diagram should appear in the tree outline. In order to open the new diagram, double
click the diagram in the tree outline.

The difference between the diagrams is the kind of risk model elements that can be created within
them. Note that the diagram type "Treatment" can contain (almost) all risk model elements; all other
diagrams are subsets of this diagram (except the asset diagram).

Editing diagrams

Once a project and an appropriate diagram have been created, risk model elements can be added to
the diagram by selection the appropriate element in the palette on the left hand side of the window,
and left-clicking the diagram canvas. Relations can be created by selecting them from the pallet, or by
holding the mouse over a source or target element until two small boxes appear on the border of the
element. Holding down the left-mouse button on one of these small boxes will allow you to create a
new relation.

3.4.3.2 Capec2Coras Tool
Capec2Coras is program that enables the user to transform an XML file containing CAPEC attack
patterns into a CORAS file which can be read by the CORAS tool. The tool allow the CAPEC-file to be
viewed and edited before being transformed into CORAS. Parameters which are needed by the
transformation can also be configured.

RASEN - 316853 Page 32 / 43

Figure 17 – Screenshot of Capec2Coras tool

After starting the Capec2Coras tool, the user is presented with a tree view as shown in Figure 17. This
is where the CAPEC attack patterns and the parameters of the transformation can be edited. The tool
has two main functions:

• Open: This function allows two kinds of files to be opened and displayed in the tree view of the
Capec2Coras tool. The first kind of file is an XML-file containing a CAPEC library of attack
patterns. The second kind is a file (not XML) which contains a previously edited version of the
imported CAPEC library into the Capec2Coras tool.

• Save as: This function allows two kinds of saves (depending on the extension of the file being
saved). The first kind transforms and saves the file into a CORAS-file (if the file extension
".coras_project" is used). The second kind saves the CAPEC library into a file so that he edits
made to the file are not lost (if the file extension is not ".coras_project").

After a CAPEC library has been opened in the Capec2Coras tool, a tree view containing two top
nodes is displayed as shown in Figure 18. These are "Attack-library" and "Default-likelihoods". The
former contains all the attack-patterns which are defined in the CAPEC library, the second contains
values which are used as parameters by the transformation. Specifically, default values which are
produced by the transformation to CORAS can be configured as shown in Figure 18.

RASEN - 316853 Page 33 / 43

Figure 18 – Screenshot showing transformation parameters

3.4.3.3 CorasAnalyzer Tool
CorasAnalyzer is a program that can be used to analyze Coras risk models. A screenshot of the tool is
shown in Figure 19. Here we can see that the analysis functions are separated into two areas:

• Core analysis allows the user to perform the basic analysis functions: Check consistency,
calculate likelihoods, and export risks.

• Risk-based-testing functions which allow the user to generate prioritized test procedures from
a risk model and to aggregate test results to the risk model. Specifically, the following
analysis features are supported: "Risk model to test procedures", "Test report to
measurements", "Calculate measurements", and "Measurements to risk model".

RASEN - 316853 Page 34 / 43

Figure 19 – Screenshot showing main Coras analysis window

In the following, we describe each analysis feature in more detail.

3.4.3.3.1 Check Consistency
The check consistency feature allows the user to check whether the likelihood estimates of a Coras
risk model are consistent. A screenshot of the check consistency feature is shown in Figure 20. Here
we can see that the function takes three files as input (two of which are optional) in addition to one
numeric parameter:

• Risk model in file: Refers to a Coras risk model file (with the .coras_project extension) whose
consistency we want to check.

• Type definition (optional): Refers to an xml file defining the types of the likelihood values of the
risk model. See Section 3.4.3.3.8 for more details.

• Risk model outfile (optional): This refers to a Coras risk model file which will contain an
example of a consistent risk model which has been generated on the basis of the input risk
model.

• Precision: This parameter specifies the precision with which consistency is checked.

By pressing the "Check consistency" button, the tool will load the risk model in file and check whether
its likelihood values are consistent up to the specified level of precision. If the model is found to be
consistent, and the risk model out file is specified, the tool will store an example of a consistent risk
model to that file.

Example: The check consistency function can be tested on the risk model in file
examples/scenario1/risk_model_initial.coras_project and the type definition file
examples/scenario1/typeconf.xml which are located in the CorasAnalyzer distribution.

RASEN - 316853 Page 35 / 43

Figure 20 – Screenshot of check consistency feature

3.4.3.3.2 Calculate Likelihoods
The calculate likelihoods function allows the likelihoods of a risk model which have not been estimated
to be derived based on likelihood values that have been estimated. In addition, the function ensures
that likelihood estimate ranges never include values which would always lead to inconsistency. As
shown in Figure 21, the function takes three input values

• Risk model in file: Refers to the Coras risk model whose likelihood values will are to be
calculated.

• Type definition (optional): Refers to an xml file defining the types of the likelihood,
consequence, and risk values of the risk model. See Section 3.4.3.3.8 for more details.

• Risk model out file: Refers to the Coras risk model where the results of the likelihood
calculation will be stored.

Figure 21 – Screenshot of the Calculate likelihoods function

If the "Generate max consistent" button is pressed, the tool will read the risk model in file and the type
definition file (if any), calculate the likelihoods, and store the results in the risk model out file.

Example: The calculate likelihoods function can be tested on the risk model in file
examples/scenario1/risk_model_initial.coras_project and the type definition file
examples/scenario1/typeconf.xml which are located in the CorasAnalyzer distribution.

RASEN - 316853 Page 36 / 43

3.4.3.3.3 Export Risks
The export risks function allows the Coras risk model to be exported to comma-separated file
containing all relevant information about all risk risks in the risk model. A risk in a Coras risk model is
an unwanted incident which is connected to an asset. The function assumes that each unwanted
incident constituting a risk is connected to exactly one asset. As shown in Figure 22, the export risks
function takes three parameters:

• Risk model in file: Refers to the Coras risk model file whose risks will be exported
• Type definition (optional): Refers to an xml file defining the types of the likelihood values of the

risk model. See Section3.4.3.3.8 for more details.
• Risks export file: Refers to the file where the risks will be stored. The file should have the

extension .csv, since the risks are exported as comma-separated text file.

If the user presses the "Export risks" button, to tool will read the risk model infile and the type definition
file (if any), calculate the risk values, and export the risks with the risk values to the risks export file in
a comma separated text format.

Figure 22 – Screenshot of export risks function

Example: The export risks function can be tested on the risk model in file
examples/scenario1/risk_model_initial.coras_project and the type definition file
examples/scenario1/typeconf.xml which are located in the CorasAnalyzer distribution.

3.4.3.3.4 Risk Model to Test Procedures
The risk model to test procedures function allows the user to generate a prioritized list of test
procedure from a Coras risk model. These test procedures are meant to be used as a starting point for
a test design and implementation activity. As shown in Figure 23, the function takes three input
parameters:

• Risk model in file: Refers to the CORAS risk model on the basis of which the test procedures
will be generated.

• Type definition (optional): Refers to an xml file defining the types of the likelihood,
consequence, and risk values of the risk model. See Section 3.4.3.3.8 for more details.

• Test report out file: Refers to the file where the test procedures will be stored. Two different file
formats are supported: If the out file ends with the .csv extension, then a comma-separated
text file will be generated. Otherwise the test procedures will be stored in an XML file which
conforms to the RASEN Test report XSD schema described in deliverable D5.4.3. This file

RASEN - 316853 Page 37 / 43

may be seen as an initial empty test report which can be populated with actual test results in
the test execution phase.

If the user presses the button "Generate test report", then the tool will read the risk model in file
and the type definition file (if any), generate a prioritized list of test procedures, and store the
results to the test report out file.

Figure 23 – Screenshot of risk model to test procedures function

Example: The "risk model to test procedures" function can be tested on the risk model in file
examples/scenario1/risk_model_initial.coras_project and the type definition file
examples/scenario1/typeconf.xml which are located in the CorasAnalyzer distribution.

3.4.3.3.5 Test Report to Measurements
The "test report to measurements" function takes a test report as input, and generates an aggregated
test report which contains measurements that can be used for the purpose of updating a risk model.
As shown in Figure 24, the function takes four arguments:

• Risk model: Refers to a Coras risk model which was used to produce an initial version of the
test report (using the risk model to test procedures function described in Section Figure 23.

• Type definition (optional): Refers to an xml file defining the types of the likelihood,
consequence, and risk values of the risk model. See Section 3.4.3.3.8Error! Reference source
not found. for more details.

• Test report: An XML file containing the test results on the basis of which the aggregated test
report with measurements will be generated. The test report must confirm to the Test_Report
XSD schema specified in deliverable D5.4.3.

• Aggregated test report (out): Refers to the file where the aggregated test report with the
measurements is stored. Two formats are support. If the file ends with ".csv", the aggregated
test report will be stored in a comma-separated text file. Otherwise the aggregated test report
will be stored in an XML file which conforms to the Aggregated_Test_Report XSD schema
specified in deliverable D5.4.3.

If the user presses the "Generate measurements" button, the tool will load the risk model, the test
report, and the type definition file (if any), generate the measurements, and stored these as an
aggregated test report in the measurement file. Note that the reason the risk model is loaded as
opposed to only the test report, is that some of the measurements may be generated on the basis of
information contained in the risk model (but not in the test report).

RASEN - 316853 Page 38 / 43

Figure 24 – Screenshot of the test results to measurements function

Example: The "test results to measurements" function can be tested on the risk model in file
examples/scenario1/risk_model_initial.coras_project and the type definition file
examples/scenario1/typeconf.xml, and the test report file examples/scenario1/test_report.xml" which
are located in the CorasAnalyzer distribution.

3.4.3.3.6 Calculate Measurements
The "calculate measurements" function takes measurements of an aggregated test report as input,
and based on some of these measurements, derives new measurements which are needed in order to
update the a risk mode, and stores these together with the input measurements into a new aggregated
test report file. As shown in Figure 25, the function takes two arguments

• Aggregated test report (in): The aggregated test report containing the measurements that are
the basis for the derivation/calculation of new measurements. Two file formats are supported.
If the file ends with the .csv extension, then it assumed that the aggregated test report is in a
comma separated text file. Otherwise, the tool assumes that aggregated test report is in an
XML file conforming to the Aggregated_Test_Report XSD schema documented in deliverable
D5.4.3.

• Aggregated test report (out): Refers to the file where the new derived measurements together
with the input measurements will be stored. As with the input file, xml and csv file formats are
supported.

If the "calculate measurements" button is pressed, the tool will read the aggregated test report in file,
calculate new measurements, and store these together with the input measurements to the out file.

Figure 25 – Screenshot of the calculate measurements function

RASEN - 316853 Page 39 / 43

Example: The "calculate measurements" function can be tested on the aggregated test report in file
examples/scenario1/aggregated_test_report.csv which is located in the CorasAnalyzer distribution.

3.4.3.3.7 Measurements to Risk Model
The "measurements to risk model" function takes a risk model and an aggregated test report as input,
and updates the likelihood estimates of the risk model based on the measurements contained in the
aggregated test report. As shown in Figure 26, the function takes the following parameters:

• Risk model: Refers to a Coras risk model which contains the likelihood estimates that may be
updated.

• Type definition (optional): Refers to an xml file defining the types of the likelihood,
consequence, and risk values of the risk model. See Section 3.4.3.3.8 for more details.

• Aggregated test report: An XML or CSV file an aggregated test report with the measurements
that will be used to update (some of) the likelihood values of the risk model. This file should be
generated using the "Calculate measurements" function described in Section 3.4.3.3.6.

• Risk model (out): Refers to the CORAS file where the updated risk model will be stored.

If the "Generate risk model" button is pressed, the tool will read the input risk model, the type
definition, and the aggregated test report, update the likelihood values of the risk model based on the
measurements of the aggregated test report, and store the results in the risk model out file.

Figure 26 – Screenshot of the measurements to risk model function

Example: The "test results to measurements" function can be tested on the risk model in file
examples/scenario1/risk_model_initial.coras_project and the type definition file
examples/scenario1/typeconf.xml, and the test aggregated report file
examples/scenario1/aggregated_test_report_calc.csv" which are located in the CorasAnalyzer
distribution.

3.4.3.3.8 The Type Configuration File
The type configuration file is an XML will which contains list of type definitions, and list of type
assignments to elements of the risk model. The main purpose is to specify whether frequency or
probability estimates should be used, the specify the risk function kind, and to specify precisely

RASEN - 316853 Page 40 / 43

defined human readable qualitative values such as "Low", "High", etc. to numeric values which are
need for automated analysis.

Each type definition specifies:

• The name of the type.
• A basetype, where the following values are possible: Frequency, Probability, Real,

RiskFunctionAddition, RiskFunctionProduct. The latter two specifies whether the risk level be
calculated by adding or multiplying the likelihood and consequence values that constitute the
risk.

• A list of literal definition which map qualitative human readable values such as "Low", "High"
into specific values. A literal definition consists of a name, a description, and a value definition.

An example of a type definition is shown below:

<typedef name="NodeLikelihoodType" basetype="Frequency">
<literal name="Seldom" description="Attack initiation scale">
 <value><intervalReal min="0.0" max="0.1"/></value>
</literal>
<literal name="Unlikely" description="Attack initiation scale">
 <value><intervalReal min="0.1" max="1.0"/></value>
</literal>
<literal name="Possible" description="Attack initiation scale">
 <value><intervalReal min="1.0" max="13.0"/></value>
</literal>
<literal name="Probable" description="Attack initiation scale">
 <value><intervalReal min="13.0" max="61.0"/></value>
</literal>
<literal name="Certain" description="Attack initiation scale">
 <value><intervalReal min="61.0" max="10000.0"/></value>
</literal>
</typedef>

In this example, we define a type with name NodeLikelihoodType, and basetype Frequency. In
addition, there are five literals defined with names such as "Seldom", "Possible", etc. If these names
are used in the risk model, they will be automatically replaced by their value as defined by the literals
during analysis by the tool. As in the example, literals are usually defined as an interval with a
minimum and maximum value.

The type assignments assign types to elements of the risk model. Each type assignment consists of:

• a namedefining the kind of risk element that will be assigned a type, where the following
values are possible: NodeLikelihood (referring to likelihood values of nodes in the risk model),
EdgeLikelihood(referring to likelihood values of edges in the risk model),
NodeConsequence(referring to consequence values of nodes in the risk model),
NodeRisk(referring to risk values of nodes in the risk model).

• atype referring to the name of a type definition list.

The following shows an example of a list of type assignments:
<typeassignment name="EdgeLikelihood" type="EdgeLikelihoodType"/>
<typeassignment name="NodeLikelihood" type="NodeLikelihoodType"/>
<typeassignment name="NodeConsequence" type="NodeConsequenceType"/>
<typeassignment name="NodeRisk" type="NodeRiskType"/>
In this example, four type assignments are defined. For instance, here the likelihood type of edges is
set to the type with name EdgeLikelihoodType and the likelihood type of nodes is set of the type name
NodeLikelihoodType.

RASEN - 316853 Page 41 / 43

The assignments may also be used to define mappings values to intervals. This is useful when risk
evaluation criteria are defined in risk matrices. As an example, consider the risk matrix shown in the
following table:

 Seldom Unlikely Possible Probable Certain

Insignificant 1 2 3 4 5

Small 2 3 4 5 6

Medium 3 4 5 6 7

High 4 5 6 7 8

Critical 5 6 7 8 9

Here columns represent likelihood values, and the rows represent consequence values. Combinations
of likelihood and consequence values are mapped to one of the three risk levels: green, yellow, or red.
In order to determine the risk level given a likelihood and a consequence value, we need to map these
onto the appropriate rows and columns. This is the purpose of the mapping assignments.

A mappings assignment consists of

• a name defining the kind map assignment, where the following values are possible:
LikelihoodMap (specifying that the map applies to likelihood values), ConsequenceMap
(specifying that the map applies to consequence values), RiskMap (specifying that the map
applies to risk values).

• atype referring to the name of a type definition list.

As an example, consider the following definitions:

<typeassignment name="LikelihoodMap" type="NodeLikelihoodType"/>
<typeassignment name="ConsequenceMap" type="NodeConsequenceMap"/>
<typeassignment name="RiskMap" type="NodeRiskType"/>

For instance, here the map for likelihood values is defined by the type NodeLikelihoodType. The
intervals of the likelihood values is defined by the literals in the NodeLikelihoodType. If we assume that
this type is the one defined in the example above, then we can see that likelihood values in the range
between 0 and 0.1, will be mapped to 1 (the first literal in the list), likelihood values in the range
between 0.1 and 1.0 will be mapped to 2 etc.

The XSD schema defining the format of type definitions can be found in the folder misc located in the
Corasanalyzer tool distribution folder.

RASEN - 316853 Page 42 / 43

3.5 Security Dashboard
This section introduces the RASEN Testing Dashboard developed and provided by the Fraunhofer
FOKUS institute. The Dashboard manages the referenced models for the RASEN security
assessment, generates test metrics and measurements for the security elements of interest, visualizes
them in different views and provides an exporter for aggregated results.

3.5.1 Presentation
The Testing Dashboard is designed as a Java plugin for the Eclipse environment. It consists of a risk
test model analyzer, a metric generator and two different views embedded in the Eclipse workbench: a
dashboard metric table view and a metric chart view. The risk test model analyzer processes
registered models for metric generation and visualization. The GUI part of the Testing Dashboard
provides different user interaction options, including selecting elements and metrics for the analysis,
and setting different parameters for their visualization. Selected elements and their metrics can be
exported as aggregated test reports.

3.5.2 Installation Guidelines
The Testing Dashboard has to be installed from the update site. Therefore, select the menu Help ->
Install new Software -> Add… -> Archive …. and select the file or enter the link of the update site.

Figure 27 – Update Categories

After this, it can be chosen between four categories. The required component RASEN Testing
Dashboard installs all core components such as the security model analyzer, the metric generator, the
metric table view and the metric chart view. Also required component List up metrics provides the
dashboard with list up metrics for analysis processing. Metrics such as coverage metrics and
efficiency metrics are planned for further development. The Testing Dashboard is designed to interact
with the CORAS editor: CORAS risk models can be directly added to the dashboard and risk elements
can be selected in the CORAS editor to use them for the metric chart view. The Dashboard CORAS
Bridge realizes this interaction. The CORAS tool can also be installed from here, but this is not
recommended. The installed version causes failures because it is not an approved installation. To
install the CORAS editor see the tool description for the CORAS tool.

RASEN - 316853 Page 43 / 43

4 Conclusion
In this report we have given an overview of the RASEN WP3 and WP4 tools. The tools presented in
this deliverable are CORAS (SINTEF), RACOMAT (Fraunhofer FOKUS), Security plugins (UFC) for
Smartesting CertifyIt, ARIS Business Architect (Software AG) and RASEN security dashboard
(Fraunhofer FOKUS). In addition to give an introduction to the features and purposes of these tools,
we have described the further development goals and the current status of these tools.

	Table of contents
	1 Introduction
	2 Characteristics of the Identified WP3 and WP4 Tools
	2.1 RACOMAT Tool
	2.2 Smartesting CertifyIt with UFC Security plugin
	2.3 ARIS Business Architect with RASEN Plugin
	2.4 CORAS
	2.5 RASEN Security Dashboard

	3 Description of the Prototype Tools
	3.1 RACOMAT Tool
	3.1.1 Features of the RACOMAT Tool
	3.1.2 Installation of the RACOMAT Tool
	3.1.3 Documentation of the RACOMAT tool

	3.2 Security Plugins for Smartesting CertifyIt
	3.2.1 Presentation
	3.2.2 Installation Guidelines
	3.2.3 User Guide
	3.2.3.1 Modeling Activity
	3.2.3.2 Test Purpose Activity
	3.2.3.3 Test Generation Activity
	3.2.3.4 Test Concretization and Execution Activities

	3.3 ARIS Business Architect – RASEN Plugin
	3.3.1 Presentation
	3.3.2 Installation Guidelines
	3.3.3 User Guide

	3.4 CORAS tool set
	3.4.1 Presentation
	3.4.2 Installation Guidelines
	3.4.3 User Guide
	3.4.3.1 Core CORAS Tool
	3.4.3.2 Capec2Coras Tool
	3.4.3.3 CorasAnalyzer Tool
	3.4.3.3.1 Check Consistency
	3.4.3.3.2 Calculate Likelihoods
	3.4.3.3.3 Export Risks
	3.4.3.3.4 Risk Model to Test Procedures
	3.4.3.3.5 Test Report to Measurements
	3.4.3.3.6 Calculate Measurements
	3.4.3.3.7 Measurements to Risk Model
	3.4.3.3.8 The Type Configuration File

	3.5 Security Dashboard
	3.5.1 Presentation
	3.5.2 Installation Guidelines

	4 Conclusion

