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1  Executive summary 

 

Evolutionary dynamics is a general mechanism through which nature develops and maintains 

highly complex adaptive systems. In the first part we review research in how far this mechanism can 

also explain the human brain's remarkable development and functioning. There is new 

neurophysiological evidence on structural plasticity as well as new models of learning that show 

how hierarchical representations of complex actions might evolve, mutate and recombine in the 

brain. There are also new models of adaptive language processing and problem solving that 

provide interesting windows on how evolutionary dynamics could be relevant for explaining higher 

order mental functions. All this raises many fascinating open questions and exciting challenges that 

we should tackle now in order to understand the full potential of evolutionary neurodynamics to 

explain our uniquely human capabilities. 

The ways in which brains solve problems remain elusive. Two mechanisms are important. 

First, associations amongst neurons build up by reinforcing synapses that spike together given a 

stimulus. This predisposes the response to similar stimuli, and emphasizes the role of learning in 

creativity. Second, given the multifactorial space of possibilities, most random variants over a 

pattern previously learnt are extremely unlikely to produce a sequence of spikes that approaches a 

better solution. Hebbian learning addresses the first mechanism whilst evolution in an adaptive 

landscape addresses the second one. In the second part we investigate a hybrid theory that 

considers both types of mechanisms. A population of neurons evolves to maximise fitness, while at 

the same time, it learns the properties of the adaptive landscape. This mechanism results in the 

maximum speed of response, and reaches a peak with virtually no “mutational” load. This is a 

possible explanation of how the brain can reach solutions in a vast landscape of possibilities in 

short time. We also study the effect of distinct neuronal network topologies on this process, and 

find that highly connected networks provide the best response. By employing modifier allele theory 

we also study synaptic plasticity. That is, the change in network topology driven by long-term 

learning. By imposing fitness costs on the number of neuronal connections we constrain the system 

to evolve topologies that maximise learning with a possible minimum of neural connections.  

Cognitive processing in the brain  may occur in a massively parallel way. Parallelism is 

necessary (though not sufficient) for effficient evolution. Evolution via mutation and selection 

provides a very efficient search method over a rugged and complex fitness lendscape. It has been 

suggested multiple times that the brain solves certain highly complex problems, mostly during 

insight and language learning, in a parallel way that utilizes such Darwinian dynamics. 

A model is presented in the third part that will allow comparison of evolutionary search algorithms 

and theory-search during human learning (as hypothesized by e.g. Tenenbaum). The model 

simulates Darwinian search for tRNA structure and sequence over a population of random RNA 

molecules. The search is restricted by a limited set of “servers” (evaluators) that could fold RNA 

sequences and assign fitness to them according to the folded minimum free energy structure being 

closest to the cloverleaf of the tRNA. The inherent parallelism of the population and the 

architecture of shared servers provide an efficient search method over a hierarchical fitness 

landscape that performs better than a population of independent stochastic hill climbers of the 

same size. Relationships to theory-search are discussed.  
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2 Hebb, Bayes and Darwin: Evolutionary neurodynamics (an Insight manifesto) 

 

Chrisantha Fernando, Michael Öllinger, Luc Steels, Gábor Tamás, Eörs Szathmáry 

 

In this paper we examine the idea that Darwinian dynamics possibly plays a crucial role during 

development of the brain and in cognition. If this idea holds, then cognitive development consists 

of, at least partly, the evolutionary origin, maintenance and elaboration of different coevolving 

populations of neuronal representations and their associated support structures in the brain. This 

evolution, as evolution by natural selection in general, is thought to generate complex adaptive 

solutions through cumulative selection. This idea is by no means new: it can be traced back to 

some passages in the classical work of William James1, and has been explored in the 

neurobiological context, especially by Changeux2-4 and Edelman5. There are other sporadic 

attempts to explore this idea21-24, but they have failed to root themselves deep enough in 

neurobiology and cognitive science. There are three related questions that we wish to address here: 

Why are we dissatisfied with the older, allegedly ‘Darwinian’ approaches? What makes us believe 

that a fresh start is not only welcome, but also timely? How would this approach change our 

understanding of higher cognition and thinking? 

Our analysis is structured as follows: First 

we explain critical features of evolutionary 

dynamics that we think are relevant for a 

new approach to the brain. Then we 

survey possible mechanisms by which 

selection of heritable variation at various 

timescales could contribute to adaptive 

brain function. We consider then the 

examples of Bayesian inference, 

reinforcement learning, language 

development and insight problem 

solving, in which an evolutionary 

component is either already apparent or 

at least covert. We close by outlining a 

research programme that might lead to 

the success of a truly Darwinian view of 

cognitive processes in the brain.  

2.1 Essential evolution: natural and 

artificial 

It is instructive to start with the criteria for 

evolutionary units as summarized by 

Fig. 1. Classical and compressed units of evolution 

 



  

 
INSIGHT 

FP7-ICT-2011-C 

Project n. 308943   

   

 

 
Deliverable No. 1.1 Revision n. 4 Page | 6 

 

Maynard Smith6: units of evolution must multiply, show heredity and variability (meaning that 

heredity is not exact; Fig. 1). If among the hereditary traits there are at least a few which affect the 

chance of survival and/or reproduction of the units bearing them, then in a population of such 

units, evolution by natural selection can take place, and possibly lead to complex adaptations. Note 

there are quantitative conditions that must be met, e.g. small selective differences result in adaptive 

evolution in large enough populations only. It is striking that essential Darwinism can be 

summarized this shortly. The main message is so simple that some find it difficult to understand. 

Note that in this formulation there is no reference to any particular level of organization, which we 

regard as an asset. IF the conditions are satisfied, THEN a Darwinian dynamic can unfold. Of course 

Darwin was mostly concerned with organisms (he could not know about molecular replicators or 

genes, for example), but we today are not so restricted. Evolutionary thinking has been applied with 

varying success to almost anything, from molecules and algorithms to cultural items (memes) and 

even cosmology. We shall return to the example of the adaptive immune system below.  

It is important to spend some time on aspects of search that an evolutionary mechanism can 

explain. Evolutionary dynamics is particularly effective at finding good solutions in very large 

combinatorial spaces. This becomes clear when looking at two different search procedures for  

chemical functionality: combinatorial chemistry7,8 or in vitro evolution.9,10 The former works if the 

combinatorial space is small enough and one can perform an exhaustive search, meaning that all 

possible molecular sequences of a certain size can be synthesized, functionally tested and selected. 

But this method does not work well with polymer molecules of even modest size. There are 20100 

possible proteins composed of 100 amino acids, which roughly equals 10130. Only a tiny fraction of 

these possible structures could be realized using up all the known available matter in the 

Universe11. It is true that many variants are as good as others, but such selective neutrality merely 

reduces the problem of search space size from hyper-astronomical to astronomical in the best 

case. In vitro evolution, such as the SELEX procedure, uses replication with errors and 

recombination. It works with population sizes around 1010 in about a dozen generations but can 

nevertheless generate catalytic RNA molecules (ribozymes) with pre-determined function. 

It is noteworthy that Darwin got his idea partly from artificial evolution, namely animal breeding. 

Various types of evolutionary algorithms are also examples of artificial evolution, and arguably the 

adaptive immune system is also a kind of breeding with goal functions set by the breeder (the 

organism). This observation is important. In artificial evolution one can apply component processes 

and selection schemes that cannot happen in the wild because of constraints on either the genetic 

system or selection. For example, one can use unconventional mutation operators or unnatural 

selection schemes (such as elitism, whereby some of the best individuals are copied into the next 

generation unchanged).  A further important difference is that in the wild whole distributions of 

organisms survive, while the breeder can just throw away what he or she does not like to 

propagate.  

Let us take a look at a didactic version of breeding from the point of view of population dynamics. 

Begin with a number of animals that fill a stable of N slots (the size of the population). A subgroup 

selected according to the breeder´s criteria is selected for breeding, and the rest of the individuals 

are removed from the stable. Empty slots are filled up with offspring of the breeding 
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subpopulation. Thus individuals compete for leaving offspring in the next generation, and slots 

occupied first by inferior individuals are populated by offspring of the superior ones later. From the 

slots´ point of view, there is information transfer from slots with good content to those with bad 

content, and the bad content is erased. From the selected individuals´ point of view, information 

transfer is mediated by inheritance. Recombination and mutation generate hereditary novelty in the 

system, and the novel variants also enter the competition. All this happens in a population in 

parallel: thus we can summarize that the Darwinian dynamic rests on parallel, competitive search 

with information transfer and hereditary variability12. All these components are necessary to have the 

full power of evolutionary search for complex adaptive solutions. 

There is a variant of the basic Darwinian logic (Fig. 1a) that qualitatively preserves the essential 

feature of evolutionary search leading to cumulative adaptation (Fig. 1b). First of all, there is in 

general no need for multiplication, but there is a need for strengthening or weakening in some 

measure the different variants according to fitness criteria. Note that strengthening requires 

autocatalysis (leading to growth), but not necessarily a copying of replicators at the level of the 

strengthened structure, so that they would become separated in physical space. It is only when a 

novel variant is generated that copying must happen: information from the source is transferred to 

the new unit with “mutation”. Applying the famous definition of information: “the difference that 

makes a difference”13, it is crucial to have a distinct representation of the “mutated” part; the 

invariant part can be shared with the old unit, provided the old and new pieces of information can 

be evaluated for fitness effects independently (see the path evolution algorithm below).  

It is important also to consider the distinction between units of selection and units of evolution6. 

Crucially, the former type of unit shows heredity but not variability (the production of novel 

variants). Selection acts on the variation that is provided by the initial conditions. This way the 

population ultimately settles down to some attractor (such as a stable distribution of types), which 

is the “end” of selection. We explore the hypothesis of evolution in the brain do exist.   
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The seminal works by Changeux2-4 and Edelman5 were the first attempts to apply evolutionary 

thinking to brain dynamics. However these are examples of selection, not full open-ended 

evolution12, 14-17. In Changeux´s classic picture there is overproduction of neurons and connections 

in development, out of which a considerable fraction gets eliminated according to functional 

criteria4. This view is valid and important, but one is missing the ongoing generation of novelty 

from this picture. Or could it be that the initial variation in the population is sufficient to solve any 

problem? Does moulding of the brain follow the ‘algorithm’ for sculpting given by Michelangelo, 

namely pruning away from the block of marble everything that does not fit? Note that apart from 

the required expertise, it is indeed true that the statue could be thought of as embedded in the 

marble block: production is by elimination (Fig. 2). This is made possible by the fact that the block 

has no holes in it: it is as dense as crystal structure allows. The brain is far from that:  even transient 

redundancy around year two in child development is very far from complete overall connectivity. 

Globally, one can say that there is sparse activation (spiking) in an already sparsely connected 

network18 (apart from local networks, e.g. Ref. 19). It would thus be very surprising to find 

everything in the initial population of pre-

representations that would be useful later in 

the life of the animal. Developmental 

overproduction and subsequent pruning 

under functional criteria are established and 

they are very important components of 

neuronal development, but we need more: 

ongoing production and testing of novel 

variation. In the case of humans, cumulative 

selection of novel variants looks to be 

massive. As Rossi aptly wrote: “... the main 

goal of neural adaptation is to allow 

individual organisms to cope with changing 

environmental conditions. A closer 

examination of neural development and 

plasticity in this perspective actually 

suggests that the nervous system must be 

endowed with an intrinsic capability to 

construct neural circuits so to create novel 

functional properties, beyond the original 

set of potentialities. As a consequence, both selective and constructive mechanisms participate to 

determine neural ontogenesis and plasticity. Constructive strategies, however, prevail over selective 

ones when the individual nervous system has to face contextual environmental demands” (Ref. 20, 

p. 154-155). This aspect is related to the open-endedness of natural evolution. The environment can 

always change, which translates into change of the fitness landscape on which the population 

evolves. New variants must be produced and tested. Without ongoing construction, heritable 

variation gets exhausted and evolution comes to a halt.  

Fig. 2. A view of brain development: functional 

pruning of transient redundancy 
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Finally, one should be aware of the limits of evolution by natural selection. Although it has 

produced a huge number of spectacular solutions, there is no guarantee that it would solve any 

problem that is in principle solvable, or that it would solve it in reasonable time; actually, theory 

tells us that this would be impossible for any algorithm. When solutions are found, they frequently 

(but not necessarily) deviate from the engineering optimum, being often only approximately 

correct25. Such evolutionary optima have lower fitness than “perfect” solutions (i.e. the engineering 

optima) and the reason for this limitation is in population dynamics: the smaller the difference in 

fitness between two states, the larger the population size that allows natural selection to “feel” this 

difference26. Since every real population is finite, variants with small enough fitness differences 

remain “effectively neutral”. (Thresholding in neural systems might alleviate this problem. By 

adjustment of the firing threshold a subpopulation of a small group of neurons may emit as strong 

a signal as that of a larger one.) Despite all these limitations, evolutionary search remains the “Swiss 

army knife” of algorithms27 to look for complex solutions in huge combinatorial spaces in 

reasonable time and for open-ended criteria. Let us therefore consider further what it can bring us 

in the brain.  

2.2 Hebb and Darwin 

The exciting results about structural plasticity of neuronal networks in adult animals calls for an 

evolutionary interpretation, which goes back at least to the pioneering paper by Adams28, 

appropriately entitled “Hebb and Darwin”. Adams draws some useful analogies between classical 

evolution and some brain processes. In particular, he notices that synaptic strengthening is like 

increase in frequency of a certain allele, whereas 

the formation of new connections can be 

regarded as ‘synaptic mutation’ (Fig. 3).  Adams 

is right in stating that a novel hypothesis, if we 

expect it to be productive, should generate 

novel insights and predictions. He boldly 

suggests that Eigen’s insight into the error 

threshold of molecular replication might be 

relevant here. Briefly, Eigen calculated that if the 

mutation rate increases steadily, there is a 

critical point (the error threshold) beyond which 

selection cannot maintain information in the 

system11. By analogy, the prediction is that too 

much synaptic plasticity should melt neuronal 

information. (It would be excellent to 

demonstrate that this transition is really sharp, 

and functional systems might be close, but still 

safely below, this level of ‘synaptic mutation 

rate’). Structural plasticity seems to be 

important in finding new solutions, but not for their maintenance, as is proposed in Kilgard’s 

Fig. 3. Synaptic replication (top) and synaptic 

mutations (bottom), after Adams 
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cortical map expansion-renormalization model29. The proposal that a rather small number of new 

but enduring synapses are sufficient for memory is important (Fig. 4), consonant with facts, and 

testable30. As Kilgard31 observes: “The Expansion–Renormalization model is based on principles of 

Darwinian selection. In ecosystems and market economies, the Darwinian two-step model [i.e., (i) 

replication with variation; and (ii) selection] is highly effective at generating robust and complex 

networks” (p. 717).  

Synaptic mutation and selection operate on the 

timescale from minutes to days and weeks. Is there a 

possibility for faster evolutionary neurodynamics? 

One suggestion, at the millisecond timescale, is the 

copying of bistable activity patterns from one array 

of neurons to another (synfire chains)32,117. Such a 

process could realize something like a genetic 

algorithm provided copying of the patterns is gated 

so that better candidate solutions are copied into the 

arrays of inferior solutions 

Another possible candidate for a unit of evolution in 

the brain is a local connectivity pattern (synaptic 

weights) in a group of neurons (the ‘teacher’), which 

can be copied to a neighbouring one (the ‘student’), 

connected to each other by a topographic map33. A student network would then inherit the 

weights of the original network by causal inference, see Box 1a. Synaptic mutation and selection 

operate on the timescale from minutes to days and weeks. Is there a possibility for faster 

evolutionary neurodynamics? One suggestion, at the millisecond timescale, is to copy  bistable 

activity patterns in an array of neurons to another (synfire chains)32, see Box 1b.  Such a process 

could realize something like a genetic algorithm provided copying of the patterns would be gated 

so that better candidate solutions are copied into the arrays of inferior solutions. The proposed 

mechanisms require Hebbian learning, spike-time dependent plasticity (STDP) and gating. The 

copying shown would naturally occur with a certain error rate, so hereditary variation, on which 

selection could act, would be guaranteed. It is in this context that a remarkable synergy between 

Hebbian learning and replication-based evolution has been demonstrated. Whereas in genetic 

replication the identity of the nucleotide in the copy is influenced predominantly by the nucleotide 

facing it in the template strand, such a constraint does not apply in neural tissue. In short, for 

“neuronal replicators” the mutation matrices become evolvable. This effect has already been shown 

to confer a distinct computational advantage on the neuronal implementation, relative to a classic 

genetic algorithm16.  

One of the reasons why people may feel uncomfortable with the idea of evolutionary 

neurodynamics is that neurons do not reproduce. But, as shown in Box 1, patterns of activity and 

connectivity might reproduce. Another objection could now be raised: especially the mechanisms 

mentioned above look too much like a mechanistic (and low-dimensional in the neuronal context) 

analogy of nucleic acid replication. We agree with this criticism (even though these mechanisms 

Fig . 4. Expansion and renormalization: an 

explicitly Darwinian view of synaptic 

plasticity (Kilgard’s view) 
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might be realized as special cases). However, the relevant question  is this: how could functionally 

similar mechanisms be embedded in realistic neuronal networks? In order to tackle this question, 

we look closer at one possible implementation, the path evolution algorithm (PEA), proposed by 

some of the authors34.  

 

BOX 1a (Left) Two candidate neuronal units of evolution that replicate in a way analogous 

to DNA template replication are shown. On the left is a mechanism for copying of patterns 

of neuronal connectivity between neurons. The parental circuit is shown on the bottom 

sheet. It consists of neuron A1 connected to neuron A2 which is connected to neuron A3. 

The parent undergoes low frequency spontaneous activity due to homogeneous external 

stimulation. A topographic map connects the parent to its offspring neurons in the sheet 

above, which are initially only weakly connected to each other. This mapping transmits the 

spike-time correlations that arise in the parent to the offspring. The synapses connecting 

offspring layer neurons are subject to spike-time-dependent plasticity that undertakes 

causal inference to reconstruct the parental circuit. Of-course some strengthening between 

B1 and B3 is expected, which could remain at the sub-threshold level resulting in effect in 

copying with mutation. 1b (Right). Another possibility is the copying of bi-stable activity 

patterns between arrays of neurons. One array is randomly initialised with an activity 

pattern which is copied by a topographic map to an offspring array. There are errors 

(mutations) in the copying of the bi-stable activity array. Both arrays have their fitness 

assessed. If the offspring has higher fitness it becomes the parent, and makes a copy that 

overwrites the parent, else the parent makes another offspring. This process continues in 

the fashion of a 1+1 Evolution Strategy (REF), until convergence at which point a small 

amount of Hebbian learning takes place between the parent and offspring. The process is 

then restarted from another random initial condition. This time, copying is biased by the 

Hebbian off-diagonal weights that have formed which ‘remember’ previously visited local 

optima. It has been shown that this mechanism can solve certain deceptive problems in 

polynomial time that could only be solved in exponential time with mutation only genetic 

algorithms16,35. 
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2.3 Path evolution and its possible embedding in realistic neuronal networks 

Imagine a network of nodes with an initial connectivity pattern (Fig. 5a). Nodes are meant here to 

represent neurons and edges the synapses between them, emphatically, at a very abstract level. We 

assume that new nodes can be generated with a certain probability (this may simply mean that 

nodes from a hitherto indifferent 

part of the network get 

connected), thus allowing for the 

generation of more paths (Fig. 

5b). Similar processes can 

generate, for example, a 2-point 

crossover between existing paths. 

The phenotype in this abstract 

model is defined by the identity of 

the nodes: they could send 

efferents do different extensor 

and flexor muscles, for example. 

The weight of edges is a random 

variable. A first stimulus spreads 

probabilistically across the 

network, at every node the 

outgoing edge is selected 

proportional to the weight of that 

edge relative to the weights of the 

other outgoing edges. Once a 

path is being traversed, it is given 

an eligibility trace, and the 

phenotype of the visited nodes 

defines the value assignable to 

this path. Then a second stimulus 

is sent, and if the path taken 

probabilistically is different from 

the previous one, it also gets an eligibility trace. Then the fitness values (assumed to be linked to 

some functions) of these paths are compared, and the edges specific to the winning and losing 

paths are strengthened and weakened, respectively. Weights get normalized and eligibility traces 

are erased. Mutations and crossovers are generated with fixed probability. Inactive nodes and weak 

edges undergo decay. 

PEA performs as well as classical genetic algorithms on various combinatorial optimisation 

problems, and performs significantly better on the very rugged fitness landscape of the HIFF 

(Hierarchical If and only IF) problem with many local optima (cf. Ref. 35). The population size of the 

Fig. 5. Elements of path evolution 
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paths belonging to the network show expansion-contraction dynamics: during search, parallelism is 

increased in a self-organized way and decreases once the solution has been found. This kind of 

dynamics has been described in detail to take place in cortical map plasticity29. A slightly more 

neuronally realistic version with spiking neurons, activity-dependent synaptic mutation and winner-

take-all lateral inhibition has also been worked out34, but this model is still more algorithmic than 

implementational.. Nevertheless, it shows that something like PEA is a powerful computational 

method for adaptive search in large combinatorial spaces.  

Intensive research must be carried out for embedding of PEA in realistic neuronal networks; we 

propose two possible lines of investigation. One is the embedding of PEA in spiking networks with 

STDP but without structural plasticity. This may sound awkward since the PEA has been proposed 

with the latter in mind, but a way to embed the PEA in a structurally stationary network would look 

as follows. Consider a recent cortical model36 in which groups of neurons self-organize into 

assemblies under different kinds of repeated input. A crucial element is stochasticity, whereby 

different paths can be traversed during repeated runs with the same initial conditions and input. 

Thus there is a stochastic exploration of different paths, and selective amplification of certain 

assemblies due to STDP. This suggests that evolutionary dynamics happens already within this 

model. This idea needs testing; for example by following of transients during which the responsive 

assembly forms. Visualization of different paths with large-scale population imaging methods 

during the transient could provide evidence for an embedded PEA. A further experiment could 

mimic a process of “sympatric speciation”, the latter meaning the split of a species into two within 

the same habitat in evolutionary biology37. Suppose the network forms assembly A under input a. 

Now we retrain the network with randomly repeated inputs a and a’, where a’ is similar, but not 

identical to a (e.g. two similar, but recognisably different variants of the same tune). Two 

corresponding assemblies A and A’ will arguably be formed. If the two assemblies emerge by some 

form of splitting (division) of the original assembly A, then the speciation analogy holds and this 

would strongly support evolutionary neurodynamics. Alternatively, should A’ self-organize 

somewhere else, essentially unrelated to assembly A, then this we would find discouraging.  

A test of PAE should also be carried out using a neuronal model such as SORN38,39, involving also 

structural plasticity, essentially along the lines described in the previous paragraph. An obvious 

extension is the examination of the role of embedded PEA in combination with reinforcement 

learning (see below). If the underlying dynamics turns out be Darwinian, reward would provide the 

appropriate fitness landscape, on which the transitional assemblies would climb. It is possible to 

use any of the dopamine-mediated temporal difference error signals from in the domain of 

reinforcement learning to define the fitness of path-based units. We note that evolutionary 

assembly dynamics governed by reinforcement would establish a unit of selection that is definitely 

above the level of “selfish synapses” that are programmed to undergo strengthening if the rules 

acting locally permit28,53. It is a major issue in evolutionary biology how replicator dynamics at lower 

levels (e.g. genes) does not disrupt higher level units (e.g. cells). Egalitarian mechanisms (such as 

Mendelian segregation) have repeatedly evolved that keep internal competition at bay40,41. 

Eligibility traces would mark synapses that could systematically and functionally be linked together: 
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the set of synapses thus bound together would be analogous to genes sitting on the same 

chromosome.  

 

2.4 Bayes and Darwin  

There are two striking quotes: “Inductive inference is the only process known to us by which 

essentially new knowledge comes into the world”, from Sir Ronald Fisher42; and “The theory of 

evolution by cumulative natural selection is the only theory we know of that is in principle capable 

of explaining the existence of organized complexity”, from Richard Dawkins43. Given the fact that 

organized complexity represents knowledge about the world, are we dealing with two different 

mechanisms or only just one? Work by Shalizi44 and Harper45 argues for at least a strong 

mathematical isomorphism between these two processes. In fact it is not counter-intuitive to think 

of different replicators in the population as alternative hypotheses for success across generations in 

the given environment; in this case it is the sampling of the fitness landscape that provides the 

evidence whereby one arrives at the posterior distribution of replicator frequencies. Fig 6  shows 

that this relationship is remarkably deep. This is impressive, but it is selection, and not yet 

evolution! Evolution comes into play when we are interested in the innocent-looking questions: 

where do alternative and novel hypotheses come from and how does the brain search among them 

for better ones?  

 In this context we remind 

the reader of combinatorial 

chemistry versus in vitro 

evolution. If the combinatorial 

space is modest and the selection 

criteria do not change, any 

generative mechanism can do, 

and a simple brute force search 

process (such as greedy search) 

will also do. As we learnt from 

the chemical example, efficient 

search in large spaces will 

require something like a genetic algorithm, also utilising recombination, to arrive at reasonably 

good solutions in reasonable time.  

 Bayesian approaches have proven tremendously successful in explaining learning in various 

contexts. Recent examples include, among others, concept formation and theory construction. 

Remarkably, essentially the same formalism can describe finding the right kind of theory and within 

this kind the right model that fits the data46,47. Such hierarchical models are very impressive, and we 

concur that they conceptualize the problem to be solved nicely at the computational level. Due to 

computational limitations of real organisms the authors suggest that the hypothesis testing is done 

by a sequential Markov model48, which is an admittedly cumbersome and slow search, and does 

not scale well with the number of dimensions. As they write: “these algorithms are slow, unreliable, 

Fig. 6. Comparable Bayesian and selection dynamics  

(Harper, 2010). 
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and unsystematic (indeed often random), but with enough patience they can be expected to 

converge on veridical theories” (Ref. 48, p. 16), and “Moving forward, a broader range of algorithmic 

approaches, stochastic as well as deterministic, need to be evaluated both as behavioral models and 

as effective computational approximations to the theory search problem for larger domains.” (p. 44, 

our italics). We agree, especially with the second sentence, and suggest that one of the alternative 

stochastic search dynamics to be evaluated is a kind of evolutionary dynamics, since we expect it to 

reduce the degree of slowness and unreliability.  

The crucial elements of symbolic representation, some form of generative mechanism and a 

“knowledge landscape” (that may be often rugged with several local optima) of the hierarchical 

Bayesian approach48 are shared with our evolutionary interpretation. In the latter case the 

landscape becomes a fitness landscape, the search is evolutionary. Local search would rest on 

mutations, whereas escaping from local optima would be made possible by finite population and 

recombination. Incidentally, we see recombination, in line with Monod, as a major source of 

evolutionary innovation in a space of ideas of all sorts50, as have other authors106. Ullmann et al.  in 

their Bayesian framework propose that “Our algorithm proposes variants to the current hypothesis 

by replacing a randomly chosen part of the theory with another random draw from the 

probabilistic generative grammar for theories (that is, the prior over theories)” (Ref. 48,   p. 17). 

Notice that this describes recombination. But we suggest that recombination between hypotheses 

at the same level can also be very rewarding, this is in fact what happens in biological evolution; we 

shall see a linguistic case below. It could also be one of the mechanisms of transfer learning 

between different domains.  

 

2.5 Evolutionary tools in cognitive architectures  

Development of behavioural patterns in individuals has the crucial component of trial and error. It 

has been repeatedly noted that Skinnerian operant conditioning and natural selection are formally 

isomorphic6: alleles are to fitness as behaviours are to reward. It is not surprising that a replicator-

based formalism for reinforcement learning has been suggested52. However, such general 

isomorphism is of limited utility in making predictions about the capabilities of specific learning 

systems. Consider the case in biology that whilst DNA was discovered in 1953 we still only have a 

limited understanding of the function of most DNA. The isomorphic problem is as follows. If 

evolutionary neurodynamics happens and neuronal replicators exist, how could they operate within 

the cognitive architecture of the brain and what extra functionality could they provide? The 

question is a rather hard one because we do not yet understand the cognitive architecture of the 

brain. We emphasize again (cf. Ref. 12) that it is one (albeit important) thing to cast synaptic 

function53 and reinforcement learning in very general selectionist terms54, and it is quite another to 

consider how units of evolution could contribute to learning and cognition with their full capacity. 

In this vein, at least three areas exist in which evolutionary neurodynamics may be expected to 

contribute to a cognitive architecture.  

i) Evolutionary neurodynamics may allow the hierarchical representation of complex actions to 

evolve, mutate, and recombine in the brain. Compositional and hierarchical action representation 
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has been studied both in reinforcement learning55 and in neuroscience56, and in both domains the 

question of how an unlimited number of complex actions, especially for tool use57, can be 

generated and flexibly recombined remains a mystery. Both robotic control problems and human 

experiments lend strength to the concept that actions are learned in conjunction with the goals to 

which they are directed58,59.  

ii). Evolutionary neurodynamics may facilitate the generation and selection of inductive models of the 

world. There is too much raw sensory data to model and predict, as evidenced by the surprising 

results of change blindness experiments in which for example a gorilla can walk in full view in 

between a group of basketball players and not be noticed by an observer60. We model, predict, and 

experience only a very sparse subset of our raw sensory input. What determines this subset? 

Thinking about the brain from an evolutionary neurodynamics perspective allows us to take a more 

sophisticated approach to this question: the subset is determined by the constraints on generation 

of models and the criteria for model selection. In terms of this approach fitness cannot simply be 

achieved by minimizing prediction error61. If this were so then models of trivial, easy to predict 

events would dominate the brain. A variety of other model fitness criteria are suggested by work in 

intrinsic motivation, e.g. prediction progress62, compression progress63, empowerment64, and 

predictive information 65. Conversely, action selection may be carried out to improve model 

learning, for example in a recent robotic simulation it was found that the best kind of motor 

babbling is that which is likely to produce most disagreement between predictions in a population 

of models66. Fisher’s fundamental theorem of natural selection states that the rate of increase 

in fitness of any population at any time is equal to its genetic variance in fitness at that time26. This 

suggests a very general (tentative) intrinsic motivation-like meta-heuristic for neuroevolution: 

allocate more neuronal resources to populations with higher standing fitness variance, because 

these are predicted to improve the most.  

iii) Evolutionary neurodynamics may provide a powerful ensemble learning method for boosting 

supervised and unsupervised learning processes taking place in the brain. It would be foolish to use 

evolutionary methods where the desired targets of a function are already known, or where an 

unsupervised learning algorithm such as Hebbian learning, or Self-Organising Maps are effective. 

Allowing multiple models to exist that compartmentalize and segment tasks, permits weaker 

individual models to be combined in an open-ended manner. The advantage comes in the 

coupling of efficient methods of local search (effectively a kind of Lamarckian directed variation, 

such as the delta-rule107 with the evolutionary processes capable of stochastically shuffling 

information between simultaneously maintained populations of solutions, and improving this 

shuffling by a process known as the evolution of evolvability67. It is exciting that the brain has far 

more capability for learning to structure exploration than genetics does. The use of Hebbian 

learning and more sophisticated methods such as deep belief networks68 to learn to bias 

‘mutations’ so that a variant is more likely to be fit is probably a core feature of evolutionary 

neurodynamics. In short, a role of Evolutionary neurodynamics is to make blind but intelligent 

guesses that channel powerful local learning methods through specific paths of problem domains. 
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2.6 Can language learning be viewed as an evolutionary system? 

We believe the development of language in humans offers a window on evolutionary 

neurodynamics at work. Language learning results in a complex representation and communication 

system that shows cumulative adaptation for communication. It takes several years for children to 

develop this competence100and it keeps expanding and adapting throughout adult life101. In this 

process, combinatorial construction and feedback through communicative success play a crucial 

role. There is no general agreement among linguists how to describe language in detail and there 

is no consensus on how language gets processed by the brain, but we suggest that for linking 

language to its biological foundations, linguistic theory has to meet a number of criteria, such as (i) 

account for linguistic variation underlying the fluid and adaptive nature of language in populations 

and within individuals; (ii) offer a computational account how language learning and use are carried 

out by individuals; (iii) scale well with respect to the true complexity of  language in realistic 

communicative situations.  

The theory and the computational platform of Fluid Construction Grammar (FCG) is an attempt at 

fitting the above criteria102. FCG is a symbolic-computational model of language processing and 

language development. FCG follows a trend in current linguistics to use constructions as the core 

unit of linguistic knowledge103. A construction implements a set of constraints on well-formed 

meaningful utterances. For example, the causative construction regulates how to express that a 

causing agent is making another agent do something (as in “Eörs made Chrisantha burst out 

laughing”). The construction constrains the sentence structure, the verb sense (“make”), and the 

case roles of the participants. In many instances, a construction also constrains some of the 

morphological and phonological properties of the utterance and incorporates discourse issues. The 

construction inventory of a typical language user is estimated to contain at least 100,000 

constructions115, ranging from lexical constructions constraining the use of words to very specific 

idiomatic or ready-made constructions and then more general ones (such as the causative 

construction). Some constructions are in competition with others, either because they express 

similar meanings in different ways (e.g. “burst in laughter” versus “burst out laughing”), because the 

speaker is still learning the language and therefore not yet sure how something is expressed, which 

implies that he has to store competing hypotheses, or because there is genuine variation in the 

population and speakers have to be able to recognize them. Empirical studies of language change 

and language learning show that populations and individuals tend to converge, retaining the 

constructions that have most communicative success, require the least cognitive effort, and provide 

adequate expressive power104. All this is consistent with the hypothesis that evolutionary 

neurodynamics underlies the language faculty. Although many details, particularly the neural 

implementation, are not yet worked out, current computer simulations102 give already clear 

confirmation that this hypothesis is a viable track.  

Constructions and transient structures. A transient structure in FCG contains all information 

assembled about an utterance (semantic, syntactic, etc.). In comprehension, the initial transient 

structure contains information about the surface form of the utterance itself (words and their 

ordering and intonation) and constructions add partial descriptions until the meaning could be 

reconstructed. In production, the initial transient structure contains the meaning to be expressed 



  

 
INSIGHT 

FP7-ICT-2011-C 

Project n. 308943   

   

 

 
Deliverable No. 1.1 Revision n. 4 Page | 18 

 

and then constructions add partial descriptions until the form of the utterance is completely 

determined. Each construction has a score reflecting the success of the construction in previous 

language interactions. Due to the ambiguous nature of language, transient structures can often be 

expanded in multiple ways, leading to a search space with competition between transient 

structures, possibly explored in a parallel fashion.  

Copying within FCG. In order to so see how and why evolutionary neurodynamics is appropriate, 

we must first make a distinction between (i) the routine process of applying a construction C to a 

transient structure T to generate an expanded transient structure T' and (ii) the formation of new 

constructions. 

(i) Applying constructions: C x T => T'. This happens in two phases. First a matching phase where 

compatibilities are tested between C and T and then a merging phase in which the elements of C 

which are not in T are added to T to yield T'. Before merging, copies of T and C are made. A copy of 

T is needed because the original may possibly merge with other constructions. C has to be copied 

because all internal variables (= open slots) need to be made unique and elements of the copy of C 

are used to build T'.  

(ii) Creating new constructions. New constructions are formed by abstraction from transient 

structures or by modifying or combining existing constructions. The latter implies that the old 

constructions are copied first. They stay around, and the new ones have to compete with the old 

ones for survival in the construction inventory.  

The generation of variation through repair strategies. In current models of FCG, new constructions 

are created based on learning/invention strategies. These are executed when the language user 

encounters missing elements in his own language (for example an unknown word or a new use of a 

syntactic construction) or failures in communication (for example, inappropriate use of a word). The 

strategies are very similar to error correction in the genetic system, except that strategies carried 

out by the speaker or hearer create new constructions or change existing ones. Repair strategies are 

'smart' and driven by concrete cases. They are often based on re-entry (i.e. re-producing a sentence 

that was parsed from input or re-parsing a sentence that was self-produced). Some of the different 

repair strategies are:  

(i) Take a construction and make it more abstract (by introducing variables for some units, leaving 

out some of the details, etc.). 

(ii) Take an existing construction and add additional constraints, narrowing its scope of application.  

(iii) Re-categorise existing words so that they get coerced into new functions. For example, re-

categorise the noun Google into a verb as in “he googled him”.  

(iv) Combine a number of constructions into a single construction, possibly leaving out some of the 

components (chunking).  

Thus, in FCG the creation of new constructions is like site-directed mutagenesis, induced by stress 

(demand). This is rare but not unheard of in the context of bacterial evolution116, for example, but it 

is possible and indeed expected to be typical in the case of cognitive development.  

Fitness. As mentioned above, communicative success and minimisation of cognitive effort (e.g. 

damping combinatorial search, avoiding articulatory effort) give the direction of selection to the 

population of linguistic constructs in FCG (105). Scoring of constructions implements selection 
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dynamics not unlike that in population dynamics: the score of a successful construction goes up, 

whereas those of competitors (other forms with the same meaning and same forms with other 

meaning) go down. 

 We point out that FCG combines a kind of replicator dynamics with Hebbian learning because 

some new constructions are formed by chunking and these chunks then start to behave as a unit of 

their own188. Note that this is analogous to a major transition in evolution, namely the linking of 

previously independently segregating genes on a chromosome, whereby competition between the 

different genes is suppressed as they are “sitting in the same boat”40,41.   

 

2.7 Insight problems and parallel search 

Massive parallel computations followed by slow and sequential processing were shown in the 

perceptual domain109. We propose that similar processes take place during human creativity, which 

is likely to be the highest human intellectual faculty. Although there is some progress in 

understanding the underlying mechanism, it is still unclear how novel solutions to difficult 

problems are produced in the brain. In particular, it remains unclear what causes the transition 

between having no idea how to solve a given problem and suddenly knowing the appropriate 

solution. We suggest that evolutionary neurodynamics might help answer this question, by 

providing a fundamental principle by which novel information can be generated and tested. We 

suggest that the interplay of parallel and sequential processing in our evolutionary neurodynamics 

model helps to integrate already existing psychological theories that postulate parallel, 

subconscious processes69,70, with evolutionary theories of creativity71, and neuroscientific findings 

that coarsely assume generative mechanisms before the moment of insight72,73. An optimal solution 

would be that some representation of a problem and its match to candidate solutions should be 

achieved with some degree of parallelism. How this could be done we do not yet know, but it has 

been adapted to the generation and testing of a large body of alternatives and hypotheses, that 

brings us back to hierarchical Bayesian networks that might play an important role (see above).  

We propose to put some limitations of existing psychological theories of insight problem solving in 

the context of evolutionary dynamics and explore how this might contribute to the solution of 

these problems. For a number of insight problems it is well known why they are difficult, and that 

often a representational change is the key element for the solution. For example in the nine-dot 

problem (Box 2) it is crucial to draw lines outside the given square. A burning unanswered question 

is what exactly happens before a representational change occurs relaxing self-imposed constraints. 

One answer to this question might be that upon an impasse parallel search processes can take place 

that generate and test candidate solutions. It is conceivable that these processes might be widely 

unconscious and potentially will come up with the solution to the problem, before it goes beyond 

the threshold of consciousness69,84. “Insight is sudden, but it is preceded by substantial unconscious 

processing” (Ref. 85, p. 88). Figure C in Box 2 depicts an exemplary parallel search for the first move 

of the nine-dot problem.  
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We stress that parallel 

search is a broader 

category than evolutionary 

search. There is some 

behavioural evidence for 

unconscious, parallel search 

in solving anagram 

problems70. In the 

particular case, a parallel 

constraint satisfaction 

search has been suggested 

without considering any 

alternative and its 

Box 2.  The Nine-Dot Problem 

The nine-dot problem (Fig. A) is one the most famous and most controversially discussed insight 

problems
74,75

. The solution of the problem stands often pars pro toto for creativity, innovation, and “out of 

the box” thinking. There are a number of factors explaining the problem difficulty and the peculiarities of 

the nine-dot problem
76-81-78

. An important role is played by moves that end and turn at non-dot locations, 

which requires one to overcome the initial perceptual grouping of the given nine dots.  

The first computational model that attempted to explain the underlying processes was provided by 

MacGregor et al.
80

. The authors extended problem space theory
82

 to explain insight problem solving. They 

assume that search guided by heuristics is the key element for solving the nine-dot problem. The first 

heuristic following a maximization criterion that implies in the case of the nine-dot problem to connect as 

many dots as possible with each line (hill climbing). The second heuristic is a progress monitoring heuristic. 

It monitors the ratio between the remaining dots and the remaining lines for an attempt; e.g. cancelling 

out three dots with the first line, results in a situation where six remaining dots have to cancel out with 

three remaining lines. Therefore, the model assumes phases of generation and testing. Variation occurs in 

this model when problem solvers realize that no further progress can be made with the applied strategy. 

Now, successful solvers start to search for new and promising states. Promising states elicit new solution 

possibilities that finally support a solution.  

Öllinger et al.
81

 elaborated on this account and suggested a model of consecutive stages where the 

applications of heuristics sensu MacGregor et al. play an important role before and after an impasse (Figure 

B). Sticking within an impasse increases the likelihood that a representational change relaxes the self-

imposed constraints on the search space. After the impasse efficient strategies are necessary to restrict the 

even larger combinatorial state space.  

An evolutionary model can shed light on the different phases of the model. An assumption is that a 

successful solver starts with a sequential search approach that shows variation in terms of starting points 

and move configuration (see Figure C) for a hypothetical problem solver, and the fitness-function). The first 

attempt showed the maximum number of dots that can be cancelled out within the over-constraint search 

space, namely 8 dots. After a number of attempts the solver is idling around and an impasse is reached. 

Within an impasse parallel search processes can take place that generate and test candidate solutions 

(Figure D). It is conceivable that this processes might be widely unconscious and potentially will come up 

with the solution to the problem, before it goes beyond the threshold of consciousness
84

.  
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behavioural testability, however. Parallelism is necessary but not sufficient for evolutionary search. 

Parallel search is known in auditory and visual processing—the question now is how much 

parallelism there is in complex thinking, e.g. involving language. This relates to the general problem 

that there is invariably a serial bottleneck, since behaviour (including language) is serial: one cannot 

utter several different sentences at the same time, or do several different movements 

simultaneously by the hand, for example. If there is parallel search, then it is covert rather than 

overt. One should also mention that in order to search in hypothesis space in parallel, the brain 

must be able to assess the alternative solutions also in parallel, although the channel for parallel 

assessment might be considerably narrower than that for the production of variants.   

It is conceivable that in humans the right hemisphere is better wired for parallel search possibly 

facilitated by its cytoarchitectonic features, such as the larger synaptic input fields of dendrites and 

longer axons85. Exactly because of parallelism, this search cannot be conscious. The idea that there is 

ongoing, possibly massively parallel search for insight problems (which include scientific ones, such 

as the solution of the structure of benzene by Kekule in the form of a ring of carbon atoms86) is 

consonant with the finding that sleep promotes insight84, but a lot more targeted work should be 

done to move from the suggestive to the conclusive. 

 

2.8 What makes us human: evolutionary neurodynamics evolves  

People have been puzzled by the nature of the apparent gap between humans and the rest of the 

animal kingdom. Arguably, the emergence of the capacity for natural language was the last major 

evolutionary transition with a solid background in genetic evolution. Yet, it has been heavily 

contested what exactly is innate as a result of past selection on genetic variation. Opinions have 

ranged from an innate universal grammar to a universal language of thought. We cannot analyse 

this complicated issue in this article, but we would like to state that undoubtedly there is a 

qualitative change in the complexity of adaptive behaviour from animals to humans, and this 

change must somehow rest on distinct neurobiological mechanisms (“original resources” in the 

words of Ramón y Cajal87) conditioned by genetic changes affecting the development of the brain. 

What constitutes the “language readiness”108 that you apparently do not find in avian and other 

mammalian brains?  

Although we argue that evolutionary neurodynamics emerged in brains before the origin of 

humans, only the human brain is capable of unlimited heredity. The theory of the major transitions 

in evolution40,41  highlighted the facts that (i) novel forms of storing heritable information did 

appear a number of times during evolution, and that (ii) such evolution typically proceeded from 

limited to unlimited heredity. Limited heredity means that the number of possible replicator types 

is much lower that the allowed number of individuals on which selection can act. In the case of 

unlimited heredity the number of possible types is for all practical purposes hyper-astronomically 

larger than that of the number of individual in any realistic system. (As an example, think of short 

pieces of DNA versus genes. Whereas nucleic acids built of say, 10 nucleotides can all be physically 

realized in parallel , they can carry only limited information. In contrast, genes carry a lot more 

information but parallel realization of all sequences is firmly excluded; c.f. the previous example of 
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combinatorial chemistry). Unlimited heredity is necessary but not sufficient for open-ended 

evolvability. It is in this sense that we suggest that evolutionary neurodynamics, to the extent it 

exists in other species, rests on limited hereditary mechanisms in those brains. Put differently, the 

units of evolution in other brains have limited complexity, thus the complexity of representations is 

also limited.  

The next question is whether there is a physiological basis for the capacity of unlimited heredity. 

Recently, exciting evidence has appeared differentiating human cortical dynamics from that of rats 

and monkeys.  Contrary to animal studies showing relatively high firing rates and infragranular 

dominance in determining rhythmic cortical activity, assessment of human oscillations using 

intracortical electrodes revealed a marked decrease in neuronal firing rates and identified a 

governing role of 

supragranular layers and 

weak infragranular 

contribution108. This suggests 

structural elaboration of the 

underlying microcircuits and 

a potentially increased signal 

to noise ratio in the upper 

layers of the human cortex. 

Enhanced anatomical 

complexity of the human 

microcircuits has been 

initially suggested by Cajal92. 

He observed a greater 

variation in human vs. rodent 

interneuron types. In addition, 

a striking increase was found 

in the complexity of dendritic 

organization of individual 

pyramidal neurons at the 

single cell level in humans 

compared to primates109. 

Activation of single neurons 

in the human brain 

demonstrated a high 

sensitivity of cortical networks 

to the action potentials of 

some, but not all, single 

neurons89 and it seems that 

the human cortex is especially 

sensitive to perturbations 

Fig. 7. Some crucial differences in human microcircuits to those of other 

animals. Potential elements of pathway evolution in human microcircuits. 

Human-specific increase of variation in pyramidal dendritic complexity 

(ph) and number of inhibitory interneuron types (ih), altered rules for 

STDP on inputs arriving to pyramidal cells (sh), and strong synapses 

linking pyramidal cells (eh) might contribute to unique features of signal 

propagation in human microcircuits. Spikes in an individual pyramidal 

cell (red triangle) trigger postsynaptic action potentials in some 

inhibitory (blue circles) and some inhibitory/excitatory GABAergic cells 

(chandelier cells, red and blue circles) through strong synapses (thick 

arrows). In contrast, single pyramidal cells cannot fire postsynaptic 

pyramidal cells (weak synapses, thin arrows) and both inhibitory and 

inhibitory/excitatory GABAergic cells also respond to pyramidal cells with 

subthreshold EPSPs. Simultaneous triggering of inhibition (noise 

suppression pathway) and excitation (composed of alternating 

glutamatergic and GABAergic steps, signal pathway) could increase 

signal to noise ratio. Pathway evolution might involve groups of 

pyramidal cells dynamically recruited through repeated motifs of feed-

forward spike propagation depending on their membrane potential, 

GABAA reversal potential and combination of inputs.  
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triggered by a single cell110. In other words, experimental investigation of the synaptic effect of 

individual action potentials of identified human pyramidal cells revealed complex events triggered 

in the human neocortical network. Compared to occasional polysynaptic events reported from 

other species90, single action potential triggered human event sequences lasting an order of 

magnitude longer. Importantly, some of these long lasting sequences showed a very precise and 

repeatable temporal structure unprecedented in recordings studying nonhuman networks to date. 

Human event series required selective spike-to-spike coupling from pyramidal cells to GABAergic 

interneurons and resembled Hebbian or Lego-like neuronal assemblies that are proposed to be 

building blocks in cognitive processes111,112. We think the importance for our topic of this finding is 

that complex patterns can be ignited by minimal regulatory action, which is consonant with what 

researchers believe about the triggering and application of linguistic constructions. If the cell 

assembly is the basic unit of “neuronal syntax”91 then the demonstrated mechanism offers a unique 

way of linking them. In the footsteps of Cajal, who proposed that the complexity of circuits formed 

by “short-axon” cells (GABAergic interneurons) increases as with brain complexity in evolution92 we 

suggest further that relatively minor differences might have pushed human neuronal network 

action above thresholds, whereas non-human cortical  systems could not cross them. In addition to 

potential differences in the number and sophistication of cell types, small changes in the 

magnitude and routing of strong versus weak synapses have a profound effect on signal to noise 

ratio and spike propagation93. Compared to rodent networks human short-term dependent 

plasticity rules are altered and operate in a wider temporal window due to differences in intrinsic 

ion channel distributions94. Finally, relatively moderate changes in presynaptic neurotransmitter 

production and postsynaptic alterations in receptor composition or in the recruitment of voltage 

gated ion channels might prime human patients to illnesses like schizophrenia which are difficult to 

elicit in nonhuman individuals95.  

 

2.9 Conclusion and open questions 

Evolutionary neurodynamics as a concept is old and new at the same time. It is old because its 

roots go back to thoughts of Williams James1. It is new because it pursues a firmly evolutionary 

research programme about brain function at various spatial and temporal scales,  consistently 

applies this hypothesis to cognitive phenomena  including Bayesian and reinforcement learning, 

natural language and insight problem solving, and rests on species-specific dynamics of neuronal 

networks including cell assemblies. We emphasize that we are still at the exploration rather than 

exploitation stage, but we think that this exploration is very worthwhile. The recent results on 

structural plasticity are especially encouraging, but there are other highly promising areas for 

evolutionary neurodynamics. In the best case, aspects of brain function will turn to be more 

powerful than evolution by natural selection in the wild; a prime example for this perspective is the 

possibility of evolvable mutation rates by Hebbian plasticity.   

We especially draw attention to the application of the evolutionary dynamics to understand the 

adaptive immune system. The generation and affinity maturation of antibodies has two distinctive 

features: there is a generative system (as a result of past genetic evolution) and a Darwinian 
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evolution of the functional products thus generated. Note a few critical features. Not all of the 

immune system is Darwinian, only an important component of it, which works in synergy with other 

component mechanisms. Evolutionary dynamics is embedded in a complex network with the 

associated properties, including immunological memory96. The system is open-ended because at 

least in mammals the antibodies can nearly fully cover the shape space of antigens97. In short, 

evolution by natural selection has reinvented itself in the form of a complex information-gathering 

and storing device with open-ended search possibilities.  

Due to the complexity of the whole problem of evolutionary dynamics in (as opposed to of) the 

brain, it should be attacked simultaneously at different fronts. Open questions are naturally legion. 

A few critical open issues are the following:  

 What are the most important manifestations of evolutionary neurodynamics, and at what 

spatial and temporal scales?  

 We share the view that concepts and grammatical constructions (among other mental 

things) have identifiable neuronal representations. Currently various cell assemblies are the 

best candidates91 for the physical carriers of these representations. This raises the question 

whether concepts, hypotheses, rules and policies evolve at this level. Alternatively, does 

evolutionary dynamic contribute at some lower level, and is the change of the mentioned 

entities a result of this underlying evolution?  

 In organismal evolution the separation of genotype and phenotype is an enabling 

constraint. Not unrelated to this issue, the division of labour between nucleic acid genes 

and protein enzymes, along with the emergence of the genetic code, was an enabling 

constraint4ö,41. Is there anything like this in evolutionary neurodynamics? One way for this 

would be that entities that vary (“mutate and recombine”) are “translated” into entities that 

are tested and do the work. Were such a two-level neuronal representation system active, 

then the “neural code” would be not one thing but at least two.  

 This raises the question of the evolvability of neuronal representations. Imagine a genetic 

algorithm for making designs for tables. One could encode the length of the legs 

separately, in which case the legs would mutate independently from each other. 

Undoubtedly, another coding that would regulate the lengths of legs together would 

produce more useful (fitter) designs more often. What are the evolvability components67,98,99 

of the units in evolutionary neurodynamics?  

 Is the difference between us and other animals, at least in part, due to some crucial 

differences in the implementation of cerebral evolutionary mechanisms, including that 

between limited and unlimited heredity?  

 Another aspect of evolvability is more subtle, but critical for our case. Natural evolution 

does not solve predetermined tasks; it finds its tasks by itself: this is in contrast to the area 

of genetic algorithms. Evolutionary dynamics is very opportunistic: it produces all kinds of 

variants, some of which turn out to be useful in the given environment: what we see are 

mostly the success stories. We suggest that evolution within the brain unfolds along similar 

lines: during the maturation of each brain variants get selectively fixed with opportunistic 

functions. (In order to see this both the environment and the internal mechanisms must be 
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sufficiently rich, which is a challenge to modelling.) There are two important constraints, 

however. The first is the set of innate initial conditions. The second is communication by 

language. Since mental information can be passed from brain to brain, and this has got 

survival value (proximately as reward, distally as fitness), language is a mechanism that 

grossly constrains individual development, and ensures a considerable degree of parallel 

evolution in different individuals. This is yet another interesting possibility to verify or reject.  

 

 

2.10 References 

1. James, W., The Principles of Psychology. 1890: Dover Publications. 

2. Changeux, J.P., P. Courrege, and A. Danchin, A Theory of the Epigenesis of Neuronal Networks by Selective 

Stabilization of Synapses. Proc Natl Acad Sci USA, 1973. 70: p. 2974-2978. 

3. Changeux, J.P., T. Heidmann, and P. Patte, Learning by selection., in The biology of learning, P. Marler and 

H.S. Terrace, Editors. 1984, Springer: New York. p. 115-133 

4. Changeux, J.P., Neuronal Man: The Biology of the Mind. 1985: Princeton University Press. 

5. Edelman, G.M., Neural Darwinism. The Theory of Neuronal Group Selection 1987, New York: Basic Books. 

6. Maynard Smith, J. (1986) The Problems of Biology. Oxford Univ. Press. 

7. Furka, A. F. Sebestyen, M. Asgedom, G. Dibo (1988) Cornucopia of peptides by synthesis  

In: Highlights of Modern Biochemistry. Proceedings of the 14th International Congress of Biochemistry, 

VSP. Utrecht, The Netherland, 1988, Vol. 5, p 47. 

8. Furka, A., F. Sebestyen, M. Asgedom, G. Dibo (1991) General method for rapid synthesis of 

multicomponent peptide mixtures.  Int. J. Peptide Protein Res. 37, 487-493. 

9. Ellington, A.D., Szostak, J.W., 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 

346, 818–822. 

10. Szathmáry, E. (1990) Toward the evolution of ribozymes. Nature 344, 115. 

11. Eigen, M. (1971) Self-organization of matter and the evolution of biological macromolecules. Naturwiss.  

12. Fernando, C., Szathmáry, E. & Husbands, P. (2012) Selectionist and evolutionary approaches to brain 

function: a critical appraisal. Front. Comput. Neurosci. 6, 24. 

13. Bateson, G. (1972) Steps to an Ecology of Mind. Chandler, San Francisco, Ca.  

14. Fernando, C. & Szathmáry E. (2010) Chemical, neuronal and linguistic replicators. In: M. Pigliucci and G.B. 

Müller (eds): Evolution–the Extended Synthesis. MIT Press, Cambridge, Ma., pp. 209-249. 

15.Fernando, C. & Szathmáry E. (2010) Natural selection in the brain. In: B. Glatzeder, V. Goel and A. von 

Müller (eds) Towards a Theory of Thinking. Springer-Verlag, Berlin, pp. 291-322. 

16. Fernando, C., Goldstein, R., Szathmáry, E. (2010) The neuronal replicator hypothesis. Neural Comput. 22, 

2809-2857. 

17. Szathmáry, E. & Fernando, C. (2011) Concluding remarks. In: B. Calcott & K. Sterelny (eds) The Major 

Transitions in Evolution Revisited. pp. 301- 310. MIT Press, Cambridge, Ma.  

18. Barlow, H. (1972) ….  

19. Yuste (2013)….  

20. Rossi, F, (2010) Evolutionary Mechanisms and Neural Adaptation: Selective Versus Constructive Strategies 

in the Development and Plasticity of the Nervous System.  

21. Calvin, W.H., The brain as a Darwin Machine. Nature, 1987. 330: p. 33-34. 

22. Calvin, W.H., The cerebral code. 1996, Cambridge, MA.: MIT Press. 

23. Calvin, W.H. & D. Bickerton (2000) Lingua ex Machina: Reconciling Darwin and Chomsky with the human 

brain. MIT Press, Cambridge, Ma.  

24. Aunger, R., The Electric Meme: A New Theory of How We Think. 2002, New York: The FreePress. 

25. Les Valiant (    ) …   

26. Crow, J.F., Kimura, M. (1970) An Introduction to Population Genetics Theory. Harper and Row, New York. 



  

 
INSIGHT 

FP7-ICT-2011-C 

Project n. 308943   

   

 

 
Deliverable No. 1.1 Revision n. 4 Page | 26 

 

27. Fogel, D. (2006) Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, Third 

Edition. IEEE Press, .... 

28. Adams, P. (1998) Hebb and Darwin. J Theor Biol. 195(4): p. 419-38. 

29. Reed, A., Riley, J., Carraway, R., Carrasco, A., Perez, C., Jakkamsetti, V., Kilgard, M.P. (2011) Cortical Map 

Plasticity Improves Learning but Is Not Necessary for Improved Performance. Neuron 70, 121–131. 

30. Fu, M. & Zuo, Y. (2011) Experience-dependent structural plasticity in the cortex. Trends Neurosci. 34, 177-

187.  

31. Kilgard, M.P. (2012) Harnessing plasticity to understand learning and treat disease. Trends Neurosci. 35, 

715-722.  

32. Abeles ...   synfire chains....  

33. Fernando C. (2013). From blickets to synapses: inferring temporal causal networks by observation. Cogn 

Sci. 37, 1426-1470. 

34. Fernando, C., Vasas, V. Szathmáry E. Husbands, P. (2011). Evolvable neuronal paths: a novel basis for 

information and search in the brain. PlosOne 6(8), e23534. 

35. Watson, R. (2006) Compositional Evolution. The Impact of Sex, Symbiosis, and Modularity on the Gradualist 

Framework of Evolution. MIT Press Cambridge Ma.  

36. Klampfl, S. & Maas W. (2013) Emergence of Dynamic Memory Traces in Cortical Microcircuit Models 

through STDP. J. Neurosci. 33, 11515–11529.  

37. Maynard Smith, J., 1966. Sympatric speciation. Am. Nat. 100, 637–650. 

38. Lazar A, Pipa G and Triesch J (2009). SORN: a self-organizing recurrent neural network. Front. Comput. 

Neurosci. 3:23. 

39. Zheng P, Dimitrakakis C, Triesch J (2013) Network Self-Organization Explains the Statistics and Dynamics 

of Synaptic Connection Strengths in Cortex. PLoS Comput Biol 9(1): e1002848. 

40. Maynard Smith, J. & Szathmáry, E. (1995) The Major Transitions in Evolution. Freeman & Co., Oxford.  

41. Szathmáry, E. & Maynard Smith, J. (1995) The major evolutionary transitions. Nature  374, 227-232.  

42. Fisher, R.A. (1935) The Design of Experiments..... 

43. Dawkins, R. (1987) The Blind Watchmaker. Norton Company,  

44. Shalizi, C.R., Dynamics of Bayesian updating with dependent data and mis-specified models. . Electronic J. 

Statistics, 2009. 3: p. 1039–1074. 

45. Harper, M., The replicator equation as an inference dynamic. Arxiv preprint arXiv:0911.1763v3, 2010. 

46. Kemp, C. and J.B. Tenenbaum, The discovery of structural form. Proc Natl Acad Sci U S A., 2008. 105(31): 

p. 10687-10692. 

47. Tenenbaum, J.B., et al., How to Grow a Mind: Statistics, Structure, and Abstraction. Science, 2011. 331: p. 

1279-1285. 

48. Ullman, T.D. & Goodman, N.D. & Tenenbaum, J.B. (2012) Theory learning as stochastic search in a 

language of thought. Cogn. Dev. 27, 455-480.   

49. Strens, M.J.A., Evolutionary MCMC sampling and optimization in discrete spaces. , in Proceedings of the 

Twentieth International Conference on Machine Learning (ICML-2003). 2003: Washington DC. 

50. Monod, J. (1972) Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology. Vintage 

Books, New York.  

51. Skinner, B.F. (1976). About Behaviourism.Vintage Books, New York. 

52. Börgers, T. and R. Sarin (1997) Learning through reinforcement and replicator dynamics. J. Econ. Theor. 77: 

p. 1-14. 

52. Börgers, Tilman, and Rajiv Sarin. "Learning through reinforcement and replicator dynamics." Journal of 

Economic Theory 77.1 (1997): 1-14. 

53. Seung, S.H., Learning in Spiking Neural Networks by Reinforcement of Stochastic Synaptic Transmission. 

Neuron, 2003. 40: p. 1063-1973. 

54. Loewenstein, Y., Synaptic theory of replicator-like melioration . Front. Comp. Neurosci., 2011. 4: p. 17. 

55. Botvinick, Matthew M., Yael Niv, and Andrew C. Barto. "Hierarchically organized behavior and its neural 

foundations: A reinforcement learning perspective." Cognition 113.3 (2009): 262-280. 

56. Grafton, Scott T., and Antonia F. de C Hamilton. "Evidence for a distributed hierarchy of action 

representation in the brain." Human movement science 26.4 (2007): 590-616. 



  

 
INSIGHT 

FP7-ICT-2011-C 

Project n. 308943   

   

 

 
Deliverable No. 1.1 Revision n. 4 Page | 27 

 

57. Johnson-Frey, Scott H. "The neural bases of complex tool use in humans." Trends in cognitive sciences 8.2 

(2004): 71-78. 

58. Sommerville, Jessica A., Michaela B. Upshaw, and Jeff Loucks. "The nature of goal-directed action 

representations in infancy." Advances in child development and behavior 43 (2011): 351-387. 

59. Baranes, Adrien, and P-Y. Oudeyer. "Intrinsically motivated goal exploration for active motor learning in 

robots: A case study." Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference 

on. IEEE, 2010. 

60. Simons, Daniel J., and Christopher F. Chabris. "Gorillas in our midst: Sustained inattentional blindness for 

dynamic events." Perception-London 28.9 (1999): 1059-1074. 

61. Clark, Andy. "Whatever next? Predictive brains, situated agents, and the future of cognitive science." 

Behav. Brain Sci (2012): 1-86. 

62. Oudeyer, P-Y., Frédéric Kaplan, and Verena Vanessa Hafner. "Intrinsic motivation systems for autonomous 

mental development." Evolutionary Computation, IEEE Transactions on 11.2 (2007): 265-286. 

63. Schmidhuber, Jürgen. "Formal theory of creativity, fun, and intrinsic motivation (1990–2010)." 

Autonomous Mental Development, IEEE Transactions on 2.3 (2010): 230-247.  

64. Klyubin, Alexander S., Daniel Polani, and Chrystopher L. Nehaniv. "Empowerment: A universal agent-

centric measure of control." Evolutionary Computation, 2005. The 2005 IEEE Congress on. Vol. 1. IEEE, 

2005. 

65. Ay, N., Bertschinger, N., Der, R., Güttler, F., & Olbrich, E. (2008). Predictive information and explorative 

behavior of autonomous robots. The European Physical Journal B, 63(3), 329-339. 

66. Bongard, Josh, Victor Zykov, and Hod Lipson. "Resilient machines through continuous self-modeling." 

Science 314.5802 (2006): 1118-1121. 

67. Pigliucci, Massimo. "Is evolvability evolvable?." Nature Reviews Genetics 9.1 (2008): 75-82. 

68. Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief nets." 

Neural computation 18.7 (2006): 1527-1554. 

69. Bowers, K. S., Regehr, G., Balthazard, C., & Parker, K. (1990). Intuition in the context of discovery. Cognitive 

Psychology, 22, 72–110. 

70. Novick, L. R. (2003). On the nature of insight solutions: Evidence from skill differences in anagram 

solution. QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY SECTION A-HUMAN 

EXPERIMENTAL PSYCHOLOGY, 56, 351–382. 

71. Simonton, D. K. (1988). Scientific genius: A psychology of science. New York, NY, USA: Cambridge 

University Press. 

72. Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., & Reber, P. I. 

(2004). Neural activity when people solve verbal problems with insight. PLOS BIOLOGY, 2, 500–510. 

73. Fink, A., & Benedek, M. (2012). EEG alpha power and creative ideation. Neuroscience & Biobehavioral 

Reviews. 

74. Maier, N. R. F. (1930). Reasoning in humans. I. On direction. Journal of Comparative Psychology, 10, 115–

143. 

75. Scheerer, M. (1963). Problem-Solving. Scientific American, 208, 118–128. 

76. Burnham, C., & Davis, K. (1969). The nine-dot problem: Beyond perceptual organization. Psychonomic 

Science, 17, 321–323. 

77. Chronicle, E. P., Ormerod, T. C., & MacGregor, J. N. (2001). When insight just won’t come: The failure of 

visual cues in the nine-dot problem. The Quarterly Journal of Experimental Psychology, 54, 903–919. 

78. Kershaw, T. C., & Ohlsson, S. (2004). Multiple Causes of Difficulty in Insight: The Case of the Nine-Dot 

Problem. Journal of Experimental Psychology: Learning, Memory, & Cognition, 30, 3–13. 

79. Lung, C.-T., & Dominowski, R. L. (1985). Effects of strategy instructions and practice on nine-dot problem 

solving. Journal of Experimental Psychology: Learning, Memory, & Cognition, 11, 804–811. 

80. MacGregor, J. N., Ormerod, T. C., & Chronicle, E. P. (2001). Information processing and insight: A process 

model of performance on the nine-dot and related problems. Journal of Experimental Psychology: 

Learning, Memory, & Cognition, 27, 176–201. 



  

 
INSIGHT 

FP7-ICT-2011-C 

Project n. 308943   

   

 

 
Deliverable No. 1.1 Revision n. 4 Page | 28 

 

81. Öllinger, M., Jones, G., & Knoblich, G. (2013). The dynamics of search, impasse, and representational 

change provide a coherent explanation of difficulty in the nine-dot problem. Psychological Research, 

1–10. 

82. Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice Hall. 

83. Kaplan, C. A., & Simon, H. A. (1990). In search of insight. Cognitive Psychology, 22, 374–419. 

84. Wagner, U., Gais, S., Haider, H., Verleger, R., & Born, J. (2004). Sleep inspires insight. Nature, 427, 352–355.  

85. Kounios, J., & Beeman, M. (2014). The Cognitive Neuroscience of Insight. Annual Review of Psychology, 65, 

7193. 

86. Benfrey O.T. (1958) August Kekule and the birth of the structural theory of organic chemistry in 1858. J. 

Chem. Educ.35, 21-23.  

87. Ramón y Cajal, S. (1989) Recollections of My Life. MIT Press, Cambridge, Ma.   

88. Bickerton, D. (2009). Adam’s Tounge. How Humans Made Language, How Language Made Humans. Hill 

and Wang, New York. 

89. Martin et al. ...  

90. Miles and Wong... 

91. Buzsáki, G. (2010) Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362-385. 

92. y Cajal (1932) ....  

93. Komlósi et al. (2012)  ...  

94. Verhoog et al. 2013....  

95. Lewis, 2010 

96. Jerne, N.K. (1985) The generative grammar of the immune system. Science 229,1057-1059. 

97. De Boer, R.J. & Perelson, A.S. (1993) How diverse should the immune system be? 252, 171-175. 

98.Toussaint, M., The evolution of genetic representations and modular adaptation, in Dept. of Computer 

Science. 2003, Ruhr University of Bochum: ND 04, 44780 Bochum---Germany. p. 117. 

99. Parter, M., N. Kashtan, and U. Alon, Facilitated Variation: How Evolution Learns from Past Environments to 

Generalize to New Environments. PLoS Computational Biology, 2008. 4(11): p. e1000206. 

 

 

NOT YET CITED 

Chittka L, Rossiter SJ, Skorupski P, Fernando C. (2012) What is comparable in comparative cognition? Philos 

Trans R Soc Lond B Biol Sci. 367, 2677-2685. 

Fernando, C., Symbol Manipulation and Rule Learning in Spiking Neuronal Networks. Journal of Theoretical 

Biology, 2011. 275: p. 29-41. 

Hebb, D.O., The Organization of Behaviour: A Neuropsychological Theory. 1949: John Wiley & Sons. 378. 

Molnár G, Oláh S, Komlósi G, Füle M, Szabadics J, Varga C, Barzó P, Tamás G. (2008) Complex events initiated 

by individual spikes in the human cerebral cortex. PLoS Biol. 6(9), e222. 

Muruzábal, J. and C. Cotta, A study on the evolution of Bayesian network graph structures. StudFuzz, 2007. 

213: p. 193-213. 

 



  

 
INSIGHT 

FP7-ICT-2011-C 

Project n. 308943   

   

 

 
Deliverable No. 1.1 Revision n. 4 Page | 29 

 

 

3 The evolutionary basis of neuronal learning 

3.1 Introduction 

The mechanism through which a brain solves problems remains elusive. On the one hand, 

associations build up by reinforcing synapses that spike synchronously given stimuli. Without 

doubt, this predisposes a response to a similar stimulus, emphasizing the role of learning on 

creativity. On the other hand, given the multifactorial space of possibilities, most random variants 

of a learnt pattern are extremely unlikely to produce a sequence of spikes that approach a better 

solution. 

This bears some analogies with neutral evolution. Imagine a population that stands at a fitness 

peak. Suddenly, the optimum fitness value is displaced by, say, ecological factors and the 

population is left at a neutral, sub-optimal plateau. It will be unlikely that only due to random 

mutations the population will approach the fitness peak. 

In both problems the concept of selection applies. In evolution, selection needs no introduction, 

and understanding how the interplay between selection and mutations leads to adaptation is one 

of the central goals of population genetics(Crow & Kimura 1970; Fisher 1958). In neuroscience, the 

concept of selection is less widespread and less accepted, although not at all absent. Edelman 

proposed a selectionist framework to brain function(Edelman 1987; Fernando et al. 2012). He noted 

that selection is essentially analogous to the preferential reinforcement and stabilization of some 

synaptic patters over others by neurotransmitter rewarding mechanisms (e.g. dopamine). 

Edelman’s idea, neural Darwinism, is not incorrect. However, it is incomplete if we want to make 

something of that analogy(Fernando et al. 2012). Neural Darwinism lacks two critical components: 

the mechanisms for generating the variation over which this selective mechanisms acts, and an 

interpretation of heredity in terms of neurophysiology. This is at the essence of Crick’s criticism, 

that is, the lack of a unit of selection. 

The mechanisms for generating variability are relatively simple to rationalize, and there are many 

models in the literature that take this aspect as modelling objective in terms of stochastic processes 

and by drawing analogies with statistical mechanics(Ullman et al. 2012). But it is less obvious, of 

deeper implications and of far-reaching consequences to realise that a mechanism of  “neural 

heredity”, or anything analogous to it can and in fact does exist. 

In this work we investigate how reinforcement learning and hill-climbing (i.e. selection) work 

together to drive the system to the optimum. This is a first formalization of the analogy between 

neurodynamics and evolution. We will show that for eyes educated on evolutionary biology, the 

equations that describe the whole process are astonishingly similar to the mutation-selection 

equations, albeit with a twist. That is, the mutation rates are not constant. Rather, they are functions 

that depend on the state of the population in a peculiar way. The relevance of this difference is that 

such a “learnable” mutation rate is able to learn the local properties of the fitness landscape, and 

direct bias mutations towards the direction of fitness increase. In this way, the joint action of 

selection and learning facilitate reaching the fitness peak. 



  

 
INSIGHT 

FP7-ICT-2011-C 

Project n. 308943   

   

 

 
Deliverable No. 1.1 Revision n. 4 Page | 30 

 

We will study how different neural architectures facilitate or compromise evolution, and show 

(somewhat expected) that higher connectedness results in better adaptation. However, by 

imposing a certain cost per connection we are able to trade-off the benefits that a highly 

connected brain brings by the elevated metabolic, physiologic and anatomic costs that this might 

have associated. 

After analysing this first level of the analogy, we will incorporate a pioneering construct. That is, 

mechanisms of synaptic plasticity that affect the neural network topology. This is a crucial factor 

since it models the mechanisms behind specific neural architectures, and relates these architectures 

to the specifics of the process that are being solved. 

At the end, we discuss the opposite direction: the “learning basis of genetic systems”. Although this 

can sound preposterous, we will show that this is essentially analogous to the problem of 

evolvability in quantitative genetics systems (Jones et al. 2007). 

3.2 Analogy between neutral evolution and neurodynamics 

A simple stochastic model of neuron is the Boltzmann machine (MacKay 2003), where spiking of a 

neuron i follows an update rule of the form 

 

 

where  is the “energy” or current of the input neurons, and  are the weights 

determining the associations amongst neurons, that is, the network. These weights change 

according to the correlation amongst spikes by a reinforcement model such as Hebb’s rule(MacKay 

2003): 

 

 where λ is the learning rate. Alternatively, any other suitable weight reinforcement mechanism can 

be assumed (e.g. Oja’s rule, which has normalised 

weights; see Box 1). Note that in this formulas the 

representation of the state of the neurons is X=1 if the 

neuron fires and X=–1 if it doesn’t. This choice ensures 

that the weights associate all neurons that spike, and all 

neurons that do not, and at the same time dissociates 

spiking from non-spiking neurons. The update rule above 

defines a transition matrix for a Markov chain describing 

the stochastic change in time of spiking frequency. 

However, the trajectories that this system can take are directed only by the topology of the 

network as well as random events. 

 Retaking the analogy with evolution, we can interpret that if , where  are allele 

frequencies at locus i, a Markov chain that describes the probabilistic changes in a similar way as 

above would represent a neutral process. This choice for X ensures that X=–1 when p=0 and that 

Box 1: Oja’s rule. Hebb’s rule is problematic 
because it allows weight to increase 
unboundedly. A bounded version, known as 
Oja’s rule is a simple variant where weights are 
normalized: 
 
where , and the normalization condition is 
required, namely, , for . In most examples of 
this article, and unless otherwise stated, we 

employ a Euclidian norm, =2. 
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X=1 when p=1. In particular, the conditional probability  is precisely the 

substitution rate of allele y for allele x. For diallelic loci, that conditional probability is precisely the 

mutation rate. Clearly, in population genetics or molecular evolution these rates are typically 

assumed to be state-independent, reflecting, for example, substitutions due to copying errors of 

the polymerases that replicate the genetic material, or other sources of errors that do not depend 

on the genetic states of the population. 

 For neuronal dynamics this update rule, which replaces the mutation rate, still describes a 

process that is selection-free. However, unlike in population genetics model, the update is state-

dependent and directional. These two properties of the update rule, together with the 

reinforcement rule, constitute one of the underlying processes of learning and memory. But, by 

making use of the evolution analogy, despite the plastic directionality of these “mutation rates”, 

there is no selective process assumed on these models of learning. 

3.3 Neural Darwinism revamped 

The previous analogy shows that the selection component is lacking in the Boltzmann machine 

model. If we want to take seriously the Neural Darwinism idea, we must consider selection. In fact, 

having noted that the update rule is analogous to a mutation rate, what we lack is incorporating 

the update due to selection. The marginal probability  is analogous to the frequency 

of allele ‘1’. Therefore the change in time of  is given by 

 

 

 

 

where  is the fitness, and   the mean fitness. The function  is 

dependent on the state of the system, and follows directly from the update rule. Written in such a 

form, the dynamics seem identical to a selection-mutation equation. However, as stated above the 

update rules M are state-dependent, and due to the reinforcement of the weights, it is also 

changing in time. 

Beyond the cosmetic similarity between the replicator equation and neural dynamics, the 

underlying difference is that the update rule is able to learn the local properties of the fitness 

landscape. By doing so, hill-climbing towards a fitness peak is facilitated by generating mutations 

that are preferentially directed towards the optimum. 
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In Fig. 1 the dynamics of the neuronal replicators is compared to that of a simpler standard 

selection-mutation equation. In this case we employ Oja’s rule (normalized weights; Box 1), and a 

directional selection landscape, . In general, we assume that <<. For our 

examples we will keep all factors equal (initial condition and directional adaptive landscape). Two 

interesting results are conspicuous. First, an equilibrium point between mutation and selection 

exists. This equilibrium is determined by the properties of the fitness landscape and the learning 

rule. However, unlike in population genetics, the mutation rate is adaptive and cannot be tuned 

independently. Curiously, the equilibrium point is independent of the learning rate λ (in as long as 

this is much smaller than selection). Second, mutation rates that have been learnt in a previous run 

provide the fastest speed of convergence to equilibrium. 

 We find that the initial conditions (of both weights and allele frequencies) do not affect the 

equilibrium state of the system. However, we suspect that this can change under a more complex 

fitness landscape (we discuss this below). 

 Paradoxically, we find that mutation rates decrease with the strength of selection, s, and 

with number of loci, n (Fig. 2). More specifically, we can show that fully connected networks 

converge to per-locus mutation rates of , where  (note that this implies 

). This is in sharp contrast to polygenic systems under mutation-selection balance, where 

the genetic load increases linearly with the number of loci(Crow & Kimura 1970). For neuronal 

replicators the load in equilibrium is . Hence for large n the load will decrease quickly 

with the number of loci, becoming vanishing as . Thus, neuronal population become very well 

adapted with many loci. Notice that this asymptotic result depends neither on the learning rate nor 

on the strength of selection. 
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Figure 1. (A) Example of selection-learning dynamics (black lines) compared to standard 

mutation-selection with naïve mutation rates (M~1/2; blue) and learnt mutation rates 

(red). (B) Evolution of the mutation rates in time. n=5, s=1, =0.01, =2. Initial conditions 

for allele frequencies and for initial weights are randomly sampled from a uniform 

distribution U[0,0.1]. The learning network is fully connected. 
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3.4 Topologies of the neuronal networks 

By relaxing the assumption of full connectedness, the equilibrium mutation rates and spiking 

probabilities become spread to an extent determined by the connectivity patterns of the 

underlying network . Figure 3A presents some examples of the outcome of evolution using 

topologies drawn randomly from the Erdős-Renyi model (Erdös & Rényi 1959; Erdős & Rényi 1960) 

with various degrees. Poorly connected nodes maintain high polymorphisms and high mutation 

rates, whereas highly connected nodes have frequencies close to fixation and small mutation rates. 

As a general trend we find that the mean and variance of the mutation rates decrease with the 

degree of the network and the specifics of the topology don’t seem to be highly relevant (Fig. 3B). 

For instance in Fig. 4 we plot the mean mutation rates from networks with topologies according to 

Erdős-Rényi, Barabási-Albert (scale free) and small world topologies. The only parameter that 

seems to matter is the degree of the networks (Durrett 2007). 

 

           
Figure 2. Dependency of the learnt mutation rates on (A) initial conditions of weights and allele 

frequency, drawn uniformly: p0~U[0,0.1], 0~U[0,0.1] (blue crosses), p0~U[0.9, 1], 0~U[0,0.1] (red targets), 

p0~U[0,1], 0~U[0,0.1] (purple rings), p0~U[0,1], 0~U[0,1] (green dots). (B) Equilibrium mutation rate, 

strength of selection s and the number of loci; n= 2 (dotted), 4 (dashed), 6 (dot-dashed), 8 (solid), 10 

(thick). Otherwise as in Fig. 1. 
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Figure 4. Evolution and learning under differently connected networks. (A) Allele frequencies, (B) 

genetic variance. Topologies are drawn randomly from an Erdős-Renyi model with degree of 10 (black), 50 

(red) and 100 (blue). n=30, s=1, =0.01. Initial conditions for allele frequencies and weights drawn from 

U[0,1]. 

 

 

 

        
 

Figure 3. Dependency of mutation rates on the connectedness of a network. (A) Individual mutation 

rates vs. a node’s degree, and (B) mean and spread of mutation rates as a function of the degree of the 

network for distinct topologies: Erdős-Renyi random graphs (gray, bullets), Barabási-Albert scale free 

networks (orange, diamonds), Watts-Strogatz small-world networks (green, squares). Each point contains 

30 replicas with randomised topologies. The small-world networks cluster has 180 replicas including a 

range of rewiring probabilities between 0.05 and 0.5 (all have the same degree = 2n=60). Otherwise as 

Fig. 3. 
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3.5  Asymmetric landscapes 

In the landscape of directional selection studied above there is a single peak where the alleles X=1 

are all equally favoured. We first relax such a degree of symmetry by allowing each locus or neuron 

to have a different weight s on fitness. The interplay between asymmetric landscapes and network 

learning topologies is non-trivial to anticipate. In flatter regions of the fitness landscape there is 

less to learn. Also, from mutation-selection models we know that weaker selection allows more 

variability to be maintained. Do we expect that larger node connectedness will compensate this 

load, and enhance learning on the flatter regions of the fitness landscape? Or, given that selection 

is weak, there is no way out from staying poorly adapted because the landscape is “non-learnable” 

along some directions?  

Mean fitness is defined as . We allow negative selective values so that the 

fitness peak is not necessarily a (1,1…,1), but that it can be arbitrarily at any corner of the n alleles 

hypercube. As with the symmetric landscapes, we find that the learnt mutation rates provide the 

quickest response to selection (data not shown). The Hebbian weights, in this case, can evolve to 

be negative, even if the initial weights are positive. (For some reason that we still do not 

understand, if initial weights are allowed to be negative, the system evolves to a suboptimal 

solution). Unlike in the case of a symmetric landscape, the weights are not all equal. Instead, we 

find that there is a strong correlation between the weights and the selective value.  

In Fig. 5A we present the outcome of a model run. The first row of the array shows the 

selective values (which are sorted increasingly), and the rest of the matrix shows the weights in 

equilibrium (diagonals are zero as we don’t allow self-connections). The figure clearly shows that 

the system learns to discriminate the gradient of the landscape and thus directs mutations  

accordingly. In this textbook example the outcome is very satisfactory. However, some times the 

weights evolve towards an anti-correlation, although still a very strong one.  
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Figure 5.  Outcome of evolution and learning under an asymmetric landscape. (A) Hebbian weights 

of a sample run. (B) Correlation between equilibrium Hebbian weights and selective values for 1000 

different runs with randomly chosen selective values. The selective values are chosen independently from 

a U[-1,1] and then normalized with an Euclidean norm. The inset shows the distribution of the absolute 

value of the correlations. n=10, =0.01, p0~U[0.4,0.6], 0~U[0,0.1] 
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This is summarized in Fig. 5B, for 1000 random choices of vectors of selective value. In most of the 

cases the learning of the landscape is optimal. Figure 5B implies that the average of the absolute 

value of the correlation, i.e. can be used as a measure of  the discriminating capacity of the 

network. 

 We now turn to study the effect of network topologies. We will employ the absolute 

correlation average  as an additional tool to evaluate how distinct topologies allow adaptation. 

For the moments we will focus only on Erdős-Rényi graphs with varying degrees of connectivity. 

 Figure 6A presents the absolute correlation averaged over several replicas, for various 

numbers of loci and different network connectivities. First, we find that the correlation is higher for 

larger number of loci. This makes sense when we think that more neurons are better at 

discriminating and learning patterns. Second, we note that the correlations initially decrease with 

the degree, but once the network becomes populated, there is an abrupt increase in the 

correlation. In other words, the most discriminating networks are those of low degree, or of high 

degree, but those with intermediate degrees are less able to learn the asymmetries of the adaptive 

landscape. In Fig. 6B we find that low degree networks have mutation rates that are spread, 

whereas networks with high degree have a bimodal distribution: one peak (the highest) close to 

zero, and one smaller peak close to one. The latter probably correspond to those weights that 

result anti-correlated with the selective values.  

3.6  Future directions 

A. Complex landscapes 

The next relevant extension will be to study the performance of the neurodynamics under more 

complex adaptive landscapes. By complexity we refer to including non-additive fitness effects 

(epistasis, in population genetics) that make the landscape rough. These kinds of landscapes are 

“hard” in that there are many local peaks or solutions, and a simple hill-climbing algorithm can get 
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Figure 6. (A) Absolute correlation n=30 (black), 15 (blue), 10 (red). (B) Distribution of mutation rates for 

networks with different degrees: 15 (black), 20 (gray), 25 (blue), 30 (purple), 35 (orange), 40 (red), 45 (thick 

red); n=10. Topologies randomly drawn from Erdős-Rényi graphs. Otherwise as Fig.5. 
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stuck in one of such landscapes. In this case, one of the many interesting questions is whether 

learning on one peak will help to climb other peaks. Another relevant question is whether learning 

mechanisms can help overcome local peaks and make it easier to find global solutions (Ullman et 

al. 2012). 

B. Synaptic plasticity 

Although the advances above are novel and very encouraging, these neurodynamical aspects are 

describing the simpler level of learning, which is reinforcement learning. The next step is to 

consider the evolution not only of the allele frequencies (analogous to neuron spiking), but how 

the connections amongst the neurons are established (Fernando et al. 2010). That is, synaptic 

plasticity. This describes another type of learning, which, although it is not independent from the 

previous one, it incorporates mechanisms for long-term memory. To achieve this we will employ 

the same system described above, but where we will allow that, with certain probability, the 

network can add or remove nodes. Then, we will study the evolution of this system. In other words, 

we will study how changes to the network topologies that are themselves neutral, are fixed in the 

population due to the advantage that they give in finding the solution of the neuron spiking 

probabilities (and weights) in a given fitness landscape. Technically, this is known as “invasion 

analysis”. With this model we will then study what are the kinds of topologies that evolve to 

facilitate learning. 

 However, above we reported that highly connected networks are best in finding the 

solutions. But, establishing neural connections in the brain is energetically costly, and spatially 

constrained. Therefore we will add a fitness cost,   where  is the cost of each 

connection in the network, and  is the network’s degree. This factor does not make any difference 

for the calculations above, since evolution occurred only given a common network topology (we 

varied topologies, but not across runs). However, a mixed population where there is more than one 

topology will provide another factor that is expected to optimize connectivity given the constraints 

of numbers of connections. 

C. Relationship to evolvability  

Evolvability is understood as the potential of a population to respond to selection. How fast the 

response to selection is depends on the amount of genetic (or heritable) variation that can be 

produced. This can be given by standing variation, cryptic variation (due to epistasis, for example), 

or due to mutational variance. Although high mutation rates will provide source “material” to 

respond to selection, these will also create load that keeps the population maladapted. However, 

the optimal scenario is achieved if mutation rates can be increased as selection is started, and 

tuned down once the population approaches adaptation. 

 As we saw above, this is precisely what happens with the neurodynamics we have described. 

Of course, genetic systems do not have a learning mechanism as the brain does. Nevertheless, 

these are totally analogous. We want to bring the analogy further and interpret that the input 

current E as a quantitative trait, with the weights w taking the role of additive effects. 
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 A previous model in quantitative genetics has taken an approach very similar to ours (Jones 

et al. 2007). They did not apply a learning mechanism, but they considered modifier alleles for the 

mutational effects which are selected indirectly increasing the mutation rate in the direction of the 

highest increase in fitness. Thus, there seems to be a niche in order to apply what we have learnt in 

neurodynamics back to evolutionary biology. 
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4 Parallel search for RNA cloverleaves and active sites with shared server 

architecture: an analogy to mental search for form and structure 

 

4.1  Introduction 

Human cognition, while on the surface level seems to be a serial process, runs in fact, for a large 

extent, in parallel under the hood (e.g. visual parsing, grammar parsing [4], [8], etc.). Some think 

that learning, theory formation, and hypothesis-generation are all parallel processes of which we 

can only observe the serial output on the behavioural level. As a matter of fact, a parallel 

architecture is a necessary pillar of Darwinian search: a population of ideas entertained in the brain 

might be subject to the same dynamics as a population of species undergoing selection and 

evolution. This line of thought was proposed by many, most recently by Fernando and colleagues, 

as the Neuronal Replicator Hypothesis [3, 1]. According to the NRH, Darwinian dynamics of 

neurons, groups of neurons, connective topology, spike paths or spike patterns (responsible for 

cognitive processes) are perfect candidate units of selection and evolution in the brain. Darwinian 

search is known to be a very effective optimization algorithm for rugged, hierarchical fitness 

landscapes with many local suboptimal solutions, i.e. for complex problems. 

Insight learning is a prime candidate for a heavily parallelized cognitive process that could benefit 

from evolutionary search. Though there are algorithmic models that can be used for some extent 

(see Tenenbaum [5]), insight learning in general is more complex and less understood. It is a special 

form of learning where theory generation is nontrivial, involves lots of trial and error, the learner 

usually sticks with suboptimal solutions for an indefinite time (impasse), and the impasse is 

overcome with a sudden insight that must be the result of low-level cognitive processes.A low-level 

process that could explain the sudden insight is recombination of candidate solutions and/or 

frames in the evolutionary approach. 

There is an obvious algorithmic analogy between insight learning (theory acquisition) via parallel 

processing in the brain and evolutionary search over structure and sequence of polynucleotides, for 

example. Stochastic search processes were already suggested by Tenenbaum (MCMC [7]) to 

approximate more abstract “ideal learning” in a Bayesian framework. Lower-level stochastic models 

might be able to bridge the gap between high-level abstractions (modelling theory learning in 

adults and children) and low-level neuronal components of the system. 

Also, there is an important question: is the observed serial nature of the output the result of the 

modality of the way it was externalized (e.g. speech) or is it serial because the cognitive process 

itself becomes serialized before any utterance is made? For example, Zylberberg and colleagues [8] 

have argued that surface-level serialization in human brain (the psychological refractory period) 

could be the result of a decision bottleneck when recombining parallel solutions, something that 

provides the high level of flexibility of the human brain. Clearly, there is a very important aspect of 

such considerations: while parallelism seems to find a solution faster than a serial method for most 

cognitive tasks, there are obvious costs for maintaining such parallel architectures and – more 
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importantly – costs of evaluating, comparing and recombining results of parallel searches through 

a bottleneck “router” that might also bound the efficiency of any parallel subsystems. Accordingly, 

if the limiting number of shared bottlenecks is increased, the efficiency of parallelism can be 

restored. 

A simple model is presented here, simulating parallel, shared, stochastic evolutionary search. 

Individual solutions to a problem (represented as RNA sequences) are maintained and evaluated in 

parallel over a shared architecture of fitness evaluators (“servers”) and those with higher fitness 

after evaluation have higher chance to replicate and become dominant in the population than 

inferior sequences with low fitness. Such shared architecture is called “processor sharing” in 

queuing theory: any waiting process (sequence in this case) can enter any of the shared processors 

(servers); a server usually chooses randomly from the processes wating. 

If parallelism and Darwinian search is indeed exploited in the brain, the model presented here 

could serve as an analogy: it provides a computational example that contains all the necessary 

components of Darwinian dynamics (cf. [2]) that can be compared to components of cognitive 

processes and that of the neuronal structures: 

 Population: the model has a population of individuals performing search in parallel. The 

brain contains millions of neurons and many cognitive functions are known to be 

performed in parallel, e.g. visual or auditory processing. 

 Variation: since mutations can happen, the population is likely to be diverse, on which 

selection can act. 

 Competition: slots in the population can be redistributed among individuals according to 

their fitness, as after replication, offspring is generated at the expense of other, existing 

individuals. The NRH assumes that units of selections (neuronal connectivity or activity 

patterns) exist in the brain competing with each other for resources (e.g. space in the 

memory). 

 Shared architecture: shared servers could account for both increased parallel efficiency 

(any server can be accessed by any individual) or severe serial bottlenecks (if there are many 

fewer servers to share than individuals, queues are formed). 

 Recombination: a population of individuals could recombine to produce offspring that 

share features of their parents (will be implemented in the near future). 
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Figure 7. Analogy between finding structure in data according to Tenenbaum (right) and Darwinian 

search for tRNA (left). The model on the right panel (modified from [5]) performs a search based on a 

dataset to find the best form that describes the data (a hierarchical tree in this case) and the best structure 

that instanciates the form, i.e. the tree that is parameterized optimally to account for the data. In case of 

search for RNA functionality (left panel), first the appropriate structural form has to be found (three loops in 

the cloverleaf, larger coloured blobs) and only if the appropriate structural form is encountered will parallel 

search go on to fine-tune the active site-sequence in each loop (the three triplets emphasized with deeper 

colors). 

 

 

A hierarchical fitness landscape is used, where sequences first have to find a given structure (loops 

of the canonical tRNA structure) and only if the structure is already found will they further adapt to 

find the optimal active site triplet for each loop. This hierarchy is in coherence with Tenenbaum’s 

assumption [5]: during the structuring of a discovery process (i.e. a child learns or a scientist 

develops a new theory) the higher level feature of the theory (the structural form) is explored and 

discovered before fine-tuning it and finding the best fitting instance of the given form. The relation 

of the two models is illustrated by  

 

 

Figure 7. 
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The hierarchy in the fitness landscape dramatically changes the performance of different 

optimization processes. As there is no selection for the active site until the structural loop has been 

found, an individual can be stuck in a local optimum (a found loop is better than if there is no loop 

at all) but since the correct active site is to be found, most mutations would ruin the structure. This 

makes the search for the second adaptation (finding the active site) a notoriously hard problem; it 

is assumed that parallel searchers without redistribution (a population of independent SHC-s) 

cannot solve it easily. 

The major questions asked and intended to be answered in this report are: 

 Does the parallel architecture perform better than a serial one? 

 Does the parallel architecture with shared evaluation perform better than independent 

evaluators? 

 

4.2  Methods 

The model consists of a population of RNA sequences undergoing exploratory stochastic search in 

a mutation-selection regime. Sequences are folded into their minimum free energy structures 

(folding done by the ViennaRNA Package version 2.0 [6]) by a limited number of “servers” that are 

shared within the population. Folding takes time (more complex structures having more paired 

bases require more time) and when folded, the 2D structure is assessed for fitness and the 

sequence can replicate according to the assigned fitness by the server. The main focus of the 

experiment is to monitor when the population achieves certain milestones of adaptations while under 

selection on a fixed fitness landscape. 

 

4.2.1 Fitness landscape 

A smooth but hierarchical fitness landscape with a single peak is assumed. The target optimal 

structure that must be reached is the canonical 76 nt tRNA: during evolution, the population has to 

acquire the three structural tRNA loops Furthermore, for each loop, when it is stably found, 

evolution has to finetune the active site of it (active sites are arbitrarily fixed triplets, one for each 

loop, at fixed positions). A population of independent hill climbers is expected to easily find the 

optimum – the question is: would the parallel architecture with shared servers provide any 

advantage compared to a (parallel) population of independent hill climbers? 

Addition and deletion is allowed during mutation (sequences can grow up to length 100 or shorten 

to 50), thus Hamming distance-comparison of structure (or sequence) is not available. The distance 

of the ith sequence from the optimal structure and active sites is defined as: 

min( , )
(1 (1 )(1 ))

9

ST AS
i

L D D
D

L
   

, 

where DST is the tree-edit distance of the secondary structure compared to the standard 76-nt 

tRNA secondary structure (truncated at a maximum distance of L = 100); and DAS is the Hamming 

distance of the three active sites (9 nucleotides in total at fixed positions) compared to the 

corresponding triplets of an arbitrarily chosen tRNA sequence. Note, that the jth active site is only 
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checked for DAS.j, if the corresponding jth loop+stem structure is at the right position. Thus if only 

the third loop+stem is at the right place and it has an active site with one mutation, the Hamming 

distance from the target will be DAS = DAS.1 + DAS.2 + DAS.3 = 3 + 3 + 1. 

The fitness of the ith sequence is a function of Di: 

0max(1 , ),e

i iw D w 
 

where e  (0,2] and w0 = 0.01 is the baseline fitness. By increasing e, the fitness function becomes 

more tolerant toward mutations (see Figure 8). 

 

 

 

Figure 8. Fitness functions for different exponent values (e) depending on the distance D measured from 

the target structure and sequence. 

The initial population is randomly chosen from low-fitnessed sequences, usually having a uniform fitness of 

w0. A single optimal RNA sequence is arbitrarily chosen as target, adopting the standard tRNA secondary 

structure (the cloverleaf). In summary, the fitness landscape is smooth and single-peaked. Though it is also 

hierarchical: at a coarse level, structural elements must be found and, as a second stage for each structural 

element (i.e. only when a loop has been found), finetuning is done on the sequence level. 

 

 

4.2.2  Parallel architecture with shared servers 

The parallel search is simulated by implementing fitness-evaluation as a time-dependent, 

asynchronous process. The number of "free" individuals at time t is Nt  Nmax and the system has a 

fixed number of S slots ("servers") to evaluate S sequences in parallel (sequences allocated to 

servers are not free). Any sequence can enter any server when available. The total population size is 

thus maximized in Nmax + S. 

A server can be empty or occupied by an RNA sequence. At each time step, 0  s  min(Nt, S) 

number of sequences of the population is randomly allocated (regardless of their fitness) to the s 

empty servers. Sequence i at a server spends ti time steps to be folded, ti equalling the number of 

base pairings in the 2D structure, i.e. the evaluation time increases with structural complexity. After 
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ti time steps, Di and wi are calculated and assigned, and the sequence is replicated and added to 

the population with its potential offspring. 

With a certain probability (proportional to fitness), sequence i is replicated (with possible 

mutations), and a single offspring sequence is generated with mutation. If the population is smaller 

than Nmax, parent and offspring (if exists) replace randomly chosen members of the population, so 

that the population cannot grow over Nmax. Due to the asynchronous nature of fitness evaluation 

and offspring production, accumulation of sequences over the initial population size N cannot be 

avoided. Accordingly, after some time, total sequence count in the system will be close to Nmax + S, 

therefore the rate of parallelism (R = S/N) cannot be higher than ½. 

 

4.3  Results 

Results clearly show that the population can converge on the target sequence. Interestingly, the 

structure can tolerate as high as 14 neutral mutations (DST = 14) while the active sites remain un-

mutated with DAS being 0. Majority of neutral structural mutations are accumulated at the right 

flanking region, because 1) addition can remain neutral at the right end (left additions would shift 

loop positions) and 2) changes made to the flanks are less probable to alter the optimal minimum-

free-energy structure. However, no addition/deletion is welcome in the left flanking region, in the 

loops and stems, and between the loops, as such mutations would cause a shift in one or more of 

the loops’ positions, effectively setting DAS = DAS.max = 9 and thus D to its maximum 1 (with w = w0). 

A fitness close but not exactly 1 is more probably due to structure being shifted, than because of 

mutation in the active site: any mutation has a higher probability to hit the structure (usually 76 

possible positions) while the chance to mutate the active site is much less (9 positions only). 

Since absolute positions of loops are checked from left to right in the dot-bracket structure 

representation, the leftmost loop (L1) is usually found first, and is maintained at higher abundance, 

as any other loop can be freely appear/disappear without affecting the first loop. If, however, the 

first loop shifts, it will probably ruin any other loop being downstream. 

 

Characteristic results for R = 1/3 server ratio and shared servers 

Starting from Ninit = 200 randomly chosen 76-nt RNA sequences, with S = 100 slots to evaluate 

fitness and  = sub + ins + del = 0.002 + 0.002 + 0.002 = 0.006. Fitness function exponent is 

e = 0.5, number of time steps is 100 000. 

 
Figure 9. Number of individuals with given structural loops and active sites in the population. Note 

that an active site (a 3nt-long subsequence) is only registered if the loop that contains it is at already the 
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right position in the structure. Due to the artefact of reading positions from the left, the leftmost loop (L1) is 

usually found first and is maintained at higher abundance, as any other loop can be freely appear/disappear 

without affecting the first loop. If, however, the first loop shifts, it will probably ruin any other loop 

downstream. Vertical lines indicate the first point when the given loop/active site is stable appearing (i.e. its 

abundance never drops to zero anymore). Note that even if all three loops are present in the population it 

does not mean that all three are present in the same individual. The next figure informs about that 

 

 

 
Figure 10. Relative frequency of loop classes. {1, 0, 1} for example means that the first and last loops exist 

at the right places (with correct stem lengths) but the second loop is missing or shifted to wrong positions in 

the structure. Existence of active sites is not shown here. 

 

 

 

Figure 11. Relative frequency of fitness classes. Red indicates best class containing the optimal structure. 

 

 

 

 
Figure 12. Fitness statistics. Maximum (green), mean (cyan) and minimum fitness (purple) and relative 

frequency of the best sequence of w = 1 (red). 
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Averaged results for increasing server ratio and shared servers 

In this experiment, the number of servers was increased from S = 1 to 200, all other parameters are 

the same as in the previous experiment (initial population size N = 200, e = 0.5). Each figure is an 

average of 100 independent simulations. The larger S gets, the more evaluations happen during 

a simulation, thus the population converges faster on the optimal structure. The found loops and 

the relative frequency of 3-looped structures increases in the population, until they dominate over 

2-looped suboptimal structures. If the target sequence is found (i.e. loops with stems are found 

and active sites are aligned correctly, i.e. fitness is w = wmax = 1), it remains and cannot be lost from 

the population. With a less strict fitness landscape (e > 0.5, figures not included), this is not the 

case, and the target - once found - cannot spread as effectively, thus inferior competitors can 

exclude it from the population. Nevertheless, the target sequence can be easily found in those 

cases again. 

 

 

 

 

 
Figure 13. Server number S = 1 (R = 1/201). Loop and active site counts (top), relative frequencies of loop 

classes (middle) and min-max-mean fitness (bottom). 
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Figure 14. Server number S = 50 (R = 50/250). Loop and active site counts (top), relative frequencies of 

loop classes (middle) and min-max-mean fitness (bottom). 
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Figure 15. Server number S = 100 (R = 1/3). Loop and active site counts (top), relative frequencies of loop 

classes (middle) and min-max-mean fitness (bottom). 
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Figure 16. Server number S = 150 (R = 150/350). Loop and active site counts (top), relative frequencies of 

loop classes (middle) and min-max-mean fitness (bottom). 
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Figure 17. Server number S = 200 (R = ½). Loop and active site counts (top), relative frequencies of loop 

classes (middle) and min-max-mean fitness (bottom). 
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Figure 18. Averaged loop class frequencies for increasing server ratio with finer S-resolution. Each 

figure is an average of 100 independent simulations. Results indicate that loops are found earlier if more 

servers are available, i.e. when parallelism is more prominent. 

 

 

 

 

Figure 19. First arrival times of found loops (blue) and active sites (red) depending on the number of servers.  

 

While initial population size is constant N = 200, as the server number increases over the range 

S = 1..200, the total population size increases from Nmax = 201...400. Accordingly, the rate of 

parallelism increases from R = 1/201 to R = 200/400 = ½. Dots indicate the results of 100 

independent simulation, continuous lines denote the average of these simulations (blue for loop 

structure, red for active sites). Note, that the number of a found loop (#i) does not necessarily 

equal to its position in the structure (Li, counting from the left; see  

 

Table 1 for more details). Since each simulation was run for a maximum of 200 000 time steps, 

longer first-arrival-times were not recorded. Accordingly, the Nmax = 201 average value for the third 

found loop (#3) should be above the hard limit, the observed plateau is just an artefact. 

 

 

A 

B 

  

Figure 20. Superimposed average first arrival times (solid) and their differences (dashed). 

  

 

 

The number of cases of all simulations where the first found loop is L1 has the highest probability 

(314 cases, see  
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Table 1.). This is expected because of 1) the artificial sequence effect (i.e. leftmost loops are more 

stable against frameshift mutations than downstream loops); and 2) the first loop L1 is the shortest 

(16 bases) compared to L2 and L3 (both being 17 bases long). Interestingly though, the second 

most common loop that is first found is not L2 but the rightmost L3 (with a total of 244 cases), 

which contradicts our expectation (L2 with 176 cases) predicted by the sequence effect. To fully 

explore the underlying causes of this distribution, an even more artificial experiment has to be run 

where each loop would have the same length and each flanking and joining non-loop region 

would also have identical lengths. 

 

 

Table 1. Number of simulations where the first found loop was Li (L1 being leftmost in the sequence, L3 

rightmost). “none” indicates that no loop was found during the 200 000 time steps, a combined Li & Lj means 

that the loops i and j were found simultaneously. 

 

S L1 L2 L3 none L1 & L2 L1 & L3 total 

1 20 9 16 55 0 0 100 

10 42 24 26 8 0 0 100 

30 43 28 29 0 0 0 100 

50 50 26 24 0 0 0 100 

70 36 29 34 0 0 1 100 

100 39 22 39 0 0 0 100 

150 43 28 39 0 0 0 100 

200 41 20 37 0 2 0 100 

total 314 176 244 63 2 1  

 

 

4.4. Independent stochastic hill climbers – servers are not shared 

A parallel architecture with dedicated (i.e. not shared) servers provide an appropriate comparison 

against previous results. The model of non-shared-servers consists of Nmax = S = 1...400 

independent stochastic hill climbers (SHC), 100 iterations for each server number. A single SHC 

equals to a “population” of a single sequence with a single server that evaluates the offspring and 

keeps it if it is better than the parent or (with a low probability of σ = 0.01) keeps it even if it is 

inferior. Individuals cannot share servers, each server is asigned to a single SHC lineage. 

Note that a population of N independent SHC-s are not equivalent to a population of N replicators 

with a single server within the shared architecture: while any population of independent SHC-s 

always has a parallelism ratio of R = 1, individuals cannot share their servers. Thus while server 

numbers are the same for both architectures (i.e. S = 20 means in both cases that there are 20 

servers performing parallel evaluation), the population sizes are not the same: in the shared 

architecture (due to the asynchronous evaluation of sequences), it cannot be avoided that while a 
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sequence is assigned to a server and waits for evaluation another sequence, just evaluated, adds an 

extra offspring to the population. Therefore in case of shared servers, the population number 

increases over time and will converge to Nmax = N + S, and parallelism cannot increase above 

R = ½ (when N = S). Since sequences cannot be assigned freely to any server in case of SHC-s, the 

ratio of parallelism is always 1, and only the absolute population size and number of parallel 

threads are comparable. This allows us to identify the difference between the two architectures 

(shared and not shared servers). 

First arrival times (Figure 21 and  

Figure 22) indicate that the finding of the structural loops might be faster than for the shared 

architecture (dues to the gradient hill climbing required by the smooth fitness landscape for the 

structure), though the appropriate active site is found less efficiently (and time scales linearly with 

population size). This is because the fitness landscape becomes rugged when the structure is 

found: sequences could easily get trapped in local optima where from the correct active site is less 

probable to be found via mutations than to destruct the loop structure. Contrary to the SHC-s, the 

distributed population and shared architecture allows for a buffering effect: even if the structure is 

ruined, there is a population which probably stores at least one good individual that can be further 

replicated. 

 

 

 

Figure 21. First arrival times of found loops (blue) and active sites (red) depending on the number of 

servers in case of independent stochastic hill climbers. Results for higher population numbers are still 

under analysis. 
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Figure 22. Superimposed average first arrival times (solid) and their differences (dashed) in case of 

independent stochastic hill climbers. Results for higher population numbers are still under analysis. 
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4.5 Conclusion and outlook 

Parallel search scales better with parallelism (i.e. with number of servers per individuals) then linear: 

the time required for finding the first loop (#1, irregardless of which loop it is exactly in the 

structure) decreases faster than linear with increasing parallelism. This was expected and found for 

the SHC model as well. 

Times required to find further loops/active sites (higher numbered #-s) are closer to the linear. This 

is expected (and found) for the SHC model as well. 

Active sites are quickly found after the structure is found in case of the shared architecture. This is 

not expected for the SHC model, and results indicate that indeed independent SHC-s struggle 

finding the active site after the loop structure is found. This is because the shared parallel 

architecture allows both for redistribution of population slots to allow faster evolution and for 

buffering: even if a mutation (while searching for the correct active site) ruins an already found 

loop, the population might contain copies of the original parent that can be restored. 

Further research should clarify why the second loop (L2) is found usually at last instead of the 

rightmost L3. For this, a special RNA target is going to be chosen where each loop, flanking and 

linking regions has equal lengths, to rule out any effect that might come from the fact that L1 is the 

shortest in the standard tRNA. 

Recombination is known to have a highly beneficial effect on search times. At the moment the 

shared architecture lacks this important component of true Darwinian evolution: individuals cannot 

recombine to produce better fit offspring. It is expected that allowing recombination of successful 

molecules would further decrease search times and would make the fine tuning of the active sites a 

much easier task. Finally, a bona fide evolutionary approach will be worked out for the Tenenbaum 

problem.  
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