SEVENTH FRAMEWORK
PROGRAMME

Project Acronym: Giraff+

Project Title: Combining social interaction and long term
monitoring for promoting independent living

Grant agreement no.: 288173

Starting date: 1st January 2012

Ending date: 31st December 2014

GIRAFF

D3.3 Fully functional reasoning infrastructure

WP related to the Deliverable: 3
Nature:
Dissemination Level : PU
Version: V0.4
Author(s):
Lars Karlsson, Amy Loutfi
Project Participant(s) Contributing: ORU
Contractual Date of Delivery: 20140630
Actual Date of Delivery: 20140721

GiraffPlus D3.3 Fully functional reasoning infrastructure

Document History

Version Date Type of editing Editorial
0.1 13/06/14 Table of Contents ORU
0.2 29/06/14 First complete draft ORU
0.3 16/07/14 Second expanded draft for internal review ORU
0.4 21/07/14 Final version ORU

Deliverable Summary

This deliverable contains material that supports the delivery of the fully functional reasoning
infrastructure. The latest version of the context recognition module is now operational in the test
sites, and an alarm function has been added to it. There has also been an initial small-scale user
evaluation of the context recognition, and an engineering tool for validating queries has been
developed. There is a second version of the configuration planner which supports reasoning about
preferences in order to find configurations that are more adapted to the needs of users.

The context recognition and the configuration planner are now integrated through the context
recognition preprocessing module: the latter is configured by means of an XML file which describes
what sensors to use and how to preprocess that sensor data before the context inference is
applied. The configuration planner, given a description of what activities needs monitoring, then
produces a new XML files in order to enforce a reconfiguration. This also makes the deployment of
a configuration straightforward, as everything is handled inside the preprocessing module.

Finally, we have developed a collection of statistics for long-term trend analysis. These statistics
will be integrated with the DVPIS (developed in WP4).

Version Final 21/07/2014 2

GiraffPlus

D3.3 Fully functional reasoning infrastructure

Contents

1

Introduction

1.1 Scope of the document
1.2 Deliverable structure,
1.3 Deviations with respect totheplan

Long-term context recognition

2.1 Preprocessing module 0.
2.2 Inference module L.
2.3 Extraction Module o oo
24 Alarm Checker L
2.5 Query Tool for Context Recognition
2.6 Context-recognition initial evaluation

Configuration planning for efficient activity recognition

3.1 Firstversion.

3.2 Second version
3.2.1 Preferences
3.2.2 Multiple-objective optimality criteria
3.2.3 Algorithm Lo

Integration of context inference and configuration planning
Long-Term Trend Analysis

Deployment

A Example of preprocessing XML file

Pseudocode for configuration planning algorithm

Version Final 21/07/2014

17

18

19

22

23

GiraffPlus D3.3 Fully functional reasoning infrastructure

1 Introduction

1.1 Scope of the document

The following document constitutes deliverable 3.3 in the GiraffPlus project. It
presents the progress done since the previous deliverable, 3.2 from month 18.

1.2 Deliverable structure

The deliverable is structured according to the five tasks comprising Work pack-
age 3:

1. Long-term context recognition where during the past year the focus has
been on preprocessing of sensor data, on providing an engineering interface
for validating queries, and on-site testing with a secondary user.

2. Configuration planning for efficient activity recognition where the focus
has been on developing a new planner which can take into account multiple
categories of preferences.

3. Integration of context inference and configuration planning where there
is a completely new integration utilizing the preprocessing module of the
context recognition.

4. Long-term trend analysis which started from month 18, and for which
some statistics have been developed which are to be integrated into the
DVPIS developed in WP4.

5. Deployment where the deployment of configurations generated by the plan-
ner has been made easier by taking advantage of the context recognition
preprocessing module.

1.3 Deviations with respect to the plan

The initial plan intended for the long term trend analysis to be integrated with
the context recognition. After first implementation and understanding of how
the long term trend analysis was to be used, it is instead being integrated with
the DVPIS. This provides an easier possibility to visualise trends and concep-
tually makes sense with respect to the function of the DVPIS as a visualisation
tool.

Besides that, the work in WP3 progresses according to plan.

2 Long-term context recognition

The context recognition and its main components have been deployed at the
first round of testsites, and since M18, the main efforts in this task has been
focussing on improving the operation of the context recognition module and the
eventual integration with other components in the system, like the configuration
planner (as will be described later). In short, the main improvements during
this reporting period are:

Version Final 21/07/2014 4

GiraffPlus D3.3 Fully functional reasoning infrastructure

¢ Developing better support for generating multiple time lines from sensor
data - this task involves using more expressive rules to trigger events and
alarms which can now depend on multiple sensor modalities simultane-
ously. This is described in section 2.1

¢ Adding an alarm service that is raised based on the output from the
context recognition. This is described in section 2.4.

¢ Developing an engineering tool for validating context recognition queries.

e Applying and testing the context recognition in the GiraffPlus system
and in particular on the test sites. In section 2.6, we describe an initial
evaluation with a secondary user. This is an important step considering
the user focus of the project. As this evaluation concerns a very specific
part of the GiraffPlus system, it is done here in WP3 and not WP6.

Recall that in GiraffPlus context recognition is the key enabler to automated
behavior monitoring over time. As such, the monitoring solutions developped
in this project must possess two key qualities: (requirement 1) the ability to
selectively focus on different aspects of daily life depending on circumstances
that are assessed by a physician or family member; and (requirement 2) the
ability to trace these aspects over medium to long periods of time. Interesting
health-affecting behaviors can be: decrease of physical activity, irregularity in
sleep, changes in cooking and eating habits and so on.

WP3 presents a context recognition system that addresses the two require-
ments above. The system infers and records the activities and status of elderly
over extended periods of time. The specific way in which behaviors are rec-
ognized are specified through temporal models, which can be defined, added or
removed dynamically to a list of behaviors of interest. Caregivers, medical ex-
perts and family members (henceforth, secondary users) can search and inspect
the recorded information through a versatile user interface which supports real
time viewing of what is happening in the elderly person’s home. The interface
also aggregates and provides tools to analyze data extending over long periods
of time. The models used for behavior tracking are specified in the form of qual-
itative relations among sensor readings. During this reporting period, we have
assessed through preliminary evaluations with secondary users that these qual-
itative relations are intuitive for secondary users. The specification syntax used
currently is based on XML. A primary goal for exploitation after the project will
be to asses whether a more user-friendly input method (e.g., graphical) should
be developed to enable secondary users to input these relations directly without
training.

In addition to providing behavioral traces for secondary users, the context
recognition infrastructure also synthesizes appropriate action plans to aid the
primary user when certain conditions hold on the recognized behaviors. Such
enactments manifest themselves as proactive alerts, e.g. if the user is recognized
as having altered sleep patterns over several days, appropriate physiological and
activity-related information is presented to the caregivers.

It is important to restate here that the context recognition engine used
in the GiraffPlus system is mostly related to temporal constraint-based ap-
proaches such as SAM [6] and constraint-based chronicle recognition [3]. These
approaches employ temporal reasoning techniques to perform on-line recognition

Version Final 21/07/2014 5

GiraffPlus D3.3 Fully functional reasoning infrastructure

of temporal patterns of sensory events. An approach based on evidence theory
augmented with temporal features presented by [4] underscores the advantage
of explicitly accounting for activity durations. GiraffPlus introduces a key nov-
elty in temporal constraint-based context recognition, namely the ability to take
temporal uncertainty in the sensor readings into account. This capability is an
important enabler of configurable (requirement 1) and continuous (require-
ment 2) recognition, as this allows us to interpret the output in time of sensors
in ways that fit high-level, user-defined models of behavior, and possesses the
necessary good performance to be used on-line.

In summary, GiraffPlus extends the state-of-the-art in context recognition in
terms of (1) models of human behaviors that are instantiated on-line, (2) gener-
alization of activity recognition to context recognition by taking multiple sources
of physiological and environmental data into account, and (3) applicability to
real world scenarios.

In the GiraffPlus system, the context recognition is implemented as a REST
service that runs as a servlet on a central Tomcat server. Queries to this service
are done with a lightweight API which is embedded in several services that run
on the client computer or on the central server. All computations are done on the
central server when querying an activity. This architecture has the advantage
of;

¢ Reducing bandwidth (since it does not need to transfer raw samples across
the network).

¢ Allowing for a more strict access control to sensor data.

¢ Enabling system updates without requiring changes to client software.

The context recognition service has an inference procedure that is divided
into three distinct steps: preprocessing, inference and extraction. The respon-
sibilities of these are described in the following sections. We also describe the
alarm service, the query validation tool, and an initial test-site evaluation of the
context recognition.

2.1 Preprocessing module

On the server the client sends a query to the context recognition engine by
providing it with an XML-document describing how sensor data and activities
correlate. The preprocessing module’s responsibility is to fetch samples from
the database and use these samples to build a higher level representation of
the events that takes place in the home. This is done by using an appropriate
preprocessor for the data. For instance, a time line that declares if a person is
at a location or not, based upon PIR-motion sensors, can be constructed either
by looking at individual sensors or by using sensors at other locations as well as
terminal conditions. In the former case a temporal threshold parameter needs to
be provided to determine the temporal extent to which a person is considered to
be in a room, for this to work a continuous sequence of repeated motion readings
needs to be generated by the user, and the query is parameterized with with a
maximum allowed temporal discontinuity between these. In the latter case the
person is considered to be at a location until he is sensed somewhere else.

Version Final 21/07/2014 6

GiraffPlus D3.3 Fully functional reasoning infrastructure

Since month 18, the major contribution in developing the context recognition
system has been towards solving the problem of how to go from sensor readings
to sets of temporal intervals, which are then used by the inference algorithm
described in the next section. For this purpose, we have developed a library
of procedures for generating the inputs of the inference algorithm. Among
these, there are primitives to pre-compute sets of intervals not just from one
sensor trace but many. An example of where this is useful is to determine
room occupancy: the presence of the user in room X is determined by the PIR
sensor in room X being "on”, AND the PIR sensors in other rooms being ”off”.
This allows to make a more precise determination of when the user should be
considered as being in a room, and makes this information more robust with
relation to the (imprecise) placement of the sensors in the primary user’s home.
In addition, it is possible to provide different semantics to different sensors, e.g.,
once the user is in room X, a triggering of other indicators of presence in another
room is necessary to discontinue the presence of the user in room X (intuitively,
because a user may go to a room and then stop moving, which should not mean
that the user is no longer in the room).

The library of pre-processors specifically caters to the diverse conditions and
environments in which the GiraffPlus system is deployed (e.g., making use of all
multiple PIR sensors for determining presence of the user in a room will make
this sensor reading robust to sensors that are moved as a result of dusting, or
that have broken over time.)

We are presently working on going from the hard-coded procedures and ad-
hoc semantics for obtaining accurate interpretations of sensor readings, towards
a more systematic approach in the form of a well-founded ”timeline logic”. This
will increase the versatility and expressiveness of the rule specification language,
e.g., by allowing the negation, disjunction and conjunction of sensor traces.

As will be shown in section 4, the configuration planner realizes a config-
uration by updating the XML-document for the preprocessing module of the
context recognition.

A complete example of an XML file with preprocessing (as well as inference
and extraction) can be found in appendix A.

2.2 Inference module

The symbolic models underlying the inference are grounded on a constraint-
based representation. The key advantage of doing so lies in the widely recognized
capability of this paradigm to support search and incremental constraint solv-
ing capabilities, and the relative efficiency of the resulting applications. The
user-supplied rules used by the inference module define how sensor readings
correlate to context that can be inferred. These correlations are expressed as
temporal constraints in Allen’s Interval Algebra [1] with metric bounds, how-
ever, the overall architecture supports the more expressive INDU algebra (7]
which adds constraints on the relative duration of intervals. Activities are in-
ferred by performing temporal constraint propagation on the domains ationof
intervals generated by the preprocessing module and the output is a domain of
intervals that are admissible with respect to the rules. The propagation and
inference algorithm is described in detail in deliverable 3.1. and in [9)].

Version Final 21/07/2014 7

GiraffPlus D3.3 Fully functional reasoning infrastructure

2.3 Extraction Module

The extraction module’s responsibility is to generate time lines that can be
used by other software components (e.g., the visualization software or the alarm
system). As the inference and preprocessing module generates large amounts of
hypotheses about the activities that have taken place there is the need to provide
a system to easily analyze this data. Presently, this module only supports one
type of extraction method, which extracts the maximum duration interval for
an activity.

2.4 Alarm Checker

This system regularly queries the context recognition module for user-defined
alarm conditions. If an alarm condition is detected the system will send a
Pushover notification to alert relatives and caregivers.

The Pushover Client runs on Android and iOS devices and presents short
messages to the user. There are different levels of urgency to these messages
which controls if the receiver is alerted with a sound during night or not for
instance.

A screen shot from the Pushover client is shown in Figure 1.

iraffPlus Alerts

@ All Notifications [}

GiraffPlus Alerts 9

GiraffPlus Message

Trigger [awake]’ wa

4-02-20 07:49:43.000 - 07:50:41,000])

GiraffPlus Message
vake]” was triggered for fawa

ke [2014-02-20 07:49:43.000 - 07:50:41.000]}

©13:022FN

Figure 1: Screenshot of the pushover client when an alarm is set to trigger for
an awake activity

This alarm feature via pushovers is an additional feature beyond the original
scope of the project. It was decided to use this type of service in order to enhance
the currently possibilities to provide alarms to users. Deliverable 4.2 also details
other means of generating alarms via the visualization tool. The alarm checker
is mentioned here as it relates directly to the context which is inferred by the
context recognition.

Version Final 21/07/2014 8

GiraffPlus D3.3 Fully functional reasoning infrastructure

R Teals
Query BSbe | Query Seirisds Hradds Hasilfe4a

inad i Lnad Temptats ‘% Gel Acthitien

el pchenal o ot dos-" rube s, i’

ik LERES S - o T =" e Sed” il =" LS Red
15 sEcléad o " L | ool

17 <extractor name="max" in="_awake" out="awake" /=
18

19
20 </rulesd

4] Il [vl

=

Jul 13, 2014 jul 14, 2014 =

9 Query awake

Figure 2: Screenshot of the Query Tool

2.5 Query Tool for Context Recognition

In order to deploy the Context Recognition as described in D3.1, a number of
tools were created within the scope of this workpackage. It became apparent
after the first round of test site installations, that tools for monitoring and ver-
ifying rules were required for the engineers. Such tools should be differentiated
from the DVPIS which is really aimed at visualization for end users. Rather, the
tools developed in WP3 are there for the developers of the context recognition
and are designed to be used together with other project members. Therefore,
we will summarize the main features of the tool and describe how it operates.

One of the novelties of the context recognition algorithms developed in Gi-
raffPlus is the possibility to re-query the data online using different activities of
interest which emerge at a later stage in time. This is highly useful as knowl-
edge that is acquired during the deployment of a system can be used to re-assess
data. Also, this is useful from the point of view of creating an adaptive system
w.r.t. end users whose physical or cognitive health may degrade or improve
over time. A challenge however, with such a system is that it is important to
be able to check and validate queries. At this point in the project, the language
of the queries are still rather technical, in the sense that the one performing
the query must have some basic knowledge of how to form requests using the
proper Allen’s interval logic. Clearly a direction for the future is to develop a
proper querying language that is intuitive for all users. For now, the following
querying tool is intended for internal use to verify the results of the Context
Recognition algorithm. The main panel of the query tool/rule editor looks as
shown in Figure 2.

Load : This allows the GP technician to load rules. Rules are contained in .cr
files and once loaded appear in the main window. The rules, as explained
before, are written in XML and contain a preprocessing part and a rule
expressed with constraints that are mapped to activities. In the figure
above, the rule awake has two contraints mapped to two temporal con-
cepts. The first, states that there should be movement in the hall after it
has been detected that the person has arisen from the bed. In this tem-

Version Final 21/07/2014 9

GiraffPlus D3.3 Fully functional reasoning infrastructure

plate only one activity, awake, can be detected. However, it is possible to
load templates where many activities can be detected. The list of relevant
activities of course depend on the end users profile.

Validate : Checks that rules are syntactically correct. In other words, it verifies
that the rule file follows the predefined language. For example it will put
constraints on the language by requiring that e.g. variable and references
to the sensor names are correctly defined. This means that it not only
has to be present but also provided by a preprocessor <preproc>. This
function also checks the correct embedding of the XML tags (well formed
and schema).

Query Sensors : A function that retrieves the names of all sensors given a
specific test site. This facilitates defining the rules. Get Activities: Scans
the document and extracts the names of the possible activities that are
defined in the main panel and lists them in text bar at the bottom of the
screen. The activity list can be edited after if the user does not want to
query for all listed activities.

Query : Sends the query to the Context Recognition Server. The results for a
query are then presented in timelines (similar to how they are presented
in DVPIS).

A download of the query tool can be found here:
https : //dl.dropbozusercontent.com /u/636027/querytooly.0.7.jar

2.6 Context-recognition initial evaluation

During the first half of 2014, we have made an initial effort to evaluate whether
the context recognition service can infer time lines that gives a realistic and
useful picture of the old persons’ activities. Since it is difficult to collect ground
truth of performed activities (due to the fact that the elderly can’t realistically
be asked to annotate everything they are doing) an evaluation was done to-
gether with a local caregiver with insights into a test subject’s daily life and
medical history. The goal was to assess how well the system could infer med-
ically meaningful information about the users daily life. We intend to extend
this evaluation to involve other test sites and other secondary users.

The apartment in this case study is inhabited by an 82 year old man (born
1931) which has been living alone since his wife passed away two years ago. At
around the same time the man had a stroke and spends most of his time inside,
the exceptions are when he goes outside to do shopping or to visit any of his
three sons with his mobility scooter. The man receives help from home care four
times a day that ensures that he is feeling well and that he takes his medication.
The man’s sons live nearby and visits him often, and his grandchildren use the
telepresence robot to visit him remotely.

The man’s apartment is depicted in Fig. 3. Before deploying the system
in the home the inhabitant was interviewed. The answers given during the
interview was used to determine a good sensor placement that would allow the
system to capture as meaningful traces of his daily activities. This resulted
in the fact that the laundry room and the study were not instrumented at all
since the inhabitant almost never used these, and the living room was sparsely

Version Final 21/07/2014 10

GiraffPlus D3.3 Fully functional reasoning infrastructure

Laundry Room

TV Room ..., " Veranda
LT
Motion sensor &
Bedroom Electrical usage @

Pressure sensor @
Door sensor ¥

Batiroon Living Room

Figure 3: The layout of the second test site in Sweden. This is not an exact
depiction but captures the general layout of the large home.
Enitorl TR e R w B

in_tv_rooml

18.(Tuesday) 19.(ec
i i 00,00 12,00 00:
. P \

e} 12.00
L L L

in_tv_room2

Figure 4: A pair of time lines showing when the elderly man visits the TV room,
constructed using different methods of preprocessing the sensor data.

instrumented since it was only used when the man had visits. Conversely,
the TV-room, the kitchen, the bathroom and the bedroom were considered
important and therefore equipped with more sensors.

The session with the caregiver resulted in several queries to the context
recognition system using a horizon of two weeks!. In the beginning of the
session the caregiver claimed that the man had stated that he spends much of
his time in front of the TV. The caregiver wanted to know how often and when
the person was watching the TV since this behavior can influence his health.
Consequently, a query was made to see how much time the user spent in front
of the TV using the motion sensor in the TV room?. The time lines resulting
from this query are shown in Fig. 4.

The topmost time line, in.tv.rooml, in Fig. 4 shows the result of the first
query. Given the fragmented nature of the time line (containing many short
intervals) it appeared as if the person was mostly sitting still in the TV room,
or at least not moving enough to trigger the motion sensor frequently enough to
generate continuous intervals on the time line. In order to address this problem,

1A more limited timespan was chosen for the graphics used in this report so that details
are visible.

2The motion sensor was used instead of the electrical usage sensor connected to the TV
since the former appeared to be in an always on state. We suspect this happens because the
TV consumes enough electricity in standby mode to be considered on.

Version Final 21/07/2014 11

GiraffPlus D3.3 Fully functional reasoning infrastructure

<rules home="testsite_se_2">

<preproc name="TunstallPIRSimple" in="PIR - TV Room"
out="_in_tv_rooml" args=""/>
<preproc name="TunstallPIRSimple"
in="PIR - TV Room, PIR - Bedroom, PIR - Kitchen"
out="_in_tv_room2" args=""/>

<extractor name="max" in="_in_tv_rooml" out="in_tv_rooml" />
<extractor name="max" in="_in_tv_room2" out="in_tv_room2" />

</rules>

Figure 5: A rule that infers when the person has been in the TV room using
two different methods.

another query was made using data from other motion sensors in the apartment
as well, the output of this query is shown bottommost in Fig. 4 as in_tv_room2.
Here, the data from the additional sensors were used as terminal conditions
for ending the activity (the motion sensor placed in the hall adjacent to the
TV-room was particularly important). The time line for in_tv_room?2 is clearly
more continuous than in_tv_rooml but still contains some discontinuity. This is
probably due to a bad placement of the motion sensor in the hall, allowing the
user to be detected even though he is in the TV-room. At some occasions this
can also be due to the fact that he had had visitors, e.g. home care or relatives, as
they move around the apartment they constantly end the in_tv_rooml activity.

One responsibility of the context recognition module within GiraffPlus is
to provide time lines containing performed activities to a statistics extraction
module, the result of the second query forms a much better basis for assessing
time spent in front of the TV during the day and can be used over longer
horizons to detect changes in behavior and anomalies. The rules created to
detect when the person is in the TV-room is shown in Figure 5.

Even though these queries did not produce optimal visual results, the care-
giver had gotten a better understanding of the persons habits, and it can clearly
be seen that the person spends many hours a day in front of the TV. Also, the
caregiver noted that the man’s TV-watching habits were not isolated to day-
time. After having inspected the man’s TV-watching habits, the caregiver was
interested in the evening and night time activities of the man since he could be
seen to watch TV late at night at some occasions e.g. on Sunday the 16th. In
addition, discussions with the person had revealed that he sometimes went up
during the night to read the newspaper in the kitchen.

As the evaluation session continued the caregiver wanted to see when the
person went up at night to look at the TV or to read the newspaper so rules
were constructed to filter out these events. In addition to processing the sen-
sory data, a rule that filters out events where the person had left the bed and
went to either of these locations were constructed using the language of Allen’s
Interval Algebra. Activity intervals awake_in_kitchen and awake_in tv_room
were inferred on a time line so that each filtered interval occurred AFTER in_bed
and DURING presence at the respective locations; in_kitchen and in_tv_room.

Version Final 21/07/2014 12

GiraffPlus D3.3 Fully functional reasoning infrastructure

i da 16, (Sunda 17.(Monda 18.(Tuesda, 19.(wiec
onltor) % 1ZIOO O(SOIOO i (()0100 L O(TOIOO W (OOZ
TR L . L L I . L I

awake_in_tv_roo [}] [

1200 12:00 1200
T A P Y T MY

awake_in_kitchel

Figure 6: A pair of time lines showing when the old person visits the kitchen
and the TV-room after having left his bed.

<rules home="testsite_se_2">

<preproc name="TunstallTrueFalse" in="Bed - Bedroom" out="_in_bed"/>
<preproc name="TunstallPIRSimple" in="PIR - Kitchen" out="_in_kitchen"/>

<rule out="_awake_in_kitchen">

<constraint from="_awake_in_kitchen" type="during"
to="_in_kitchen"/>

<constraint from="_awake_in_kitchen" type="after"
args="[0,1000]" to="_in_bed"/>

</rule>

<extractor name="max" in="_awake_in_kitchen" out="awake_in_kitchen"/>

Figure 7: A fraction of a rule that is used to determine which rooms the elderly
visits when he leaves his bed.

The output of this query is shown in Fig. 6.

It can be seen that the user typically visits both the TV room and the
kitchen when he leaves his bed. Also, this behavior seems to be a part of
a habit since it occurs so often. A fraction of the rule document created to
detect when the person leaves his bed to visit the TV-room and the kitchen is
shown in Figure 7. There are two preprocessors that take sensor data (via the
database) from two specific sensors (a bed pressure sensor and a PIR sensor
in the kitchen) convert them into Boolean values, and store the results in two
state variables _in_bed and _in_kitchen. Then there is a rule for inferring the
activity _awake_in_kitchen from these two state variables. This activity has
multiple interpretations (i.e. sets of intervals). Finally, there is an extraction
method which selects the interpretations with the maximal intervals and stores
the result as the activity awake_in_kitchen (without initial underscore). It is
the latter that is the end result of the context recognition process.

To obtain a verification of the inferences produced by the system, the results
were discussed by the elderly man. He confirmed the inferences with his own
recollection of his activities. During this discussion the man expressed discom-
fort about the system knowing how often he had been awake during the night.
Despite being well informed of the system’s capabilities, he expressed that he
was less comfortable with an aggregation of long term data about his habits
than with alternative technologies such as observing him visually from time to
time through a video camera.

Version Final 21/07/2014 13

GiraffPlus D3.3 Fully functional reasoning infrastructure

3 Configuration planning for efficient activity
recognition

Recall that the purpose of the configuration planner in the GiraffPlus system
is to provide automatic configuration of sensor data retrieval and processing
for different activities in different apartments with different available sensors
(or just differently labeled sensors) at different times. The goal is to provide
the data needed for inferring the requested activity. One advantage is that the
inference rules of the context recognition can be decoupled form the specific set
of available sensors and the specific labels those sensors have been given in a
specific apartment.

Between month 18 and month 30, the main focus on the configuration plan-
ning task has been towards developing a second version of the planner which can
take preferences between configurations into account. These preferences should
be used to select between different alternative configurations for the same task
according to different criteria. These criteria may take into account e.g. that
different sensors can provide data of different quality for the same observable
variable or may consume different amounts of energy, or the same sensor may
perform differently under different environmental conditions, that processing
functionalities may perform differently depending on the source of their input,
or that primary or secondary users prefer certain sensors/processing under cer-
tain conditions. For instance, whether a person is in the living room can be
determined with higher reliability by combing data from both motion detection
(PIR) and a pressure sensor in the sofa, than by just using data from one of these
sources. Thus, configurations which rely on both sensors might be preferred to
configurations than rely on only one of them. However, the configuration plan-
ner should also be able to propose the less preferred configurations in situations
when only one type of sensor is available.

The extension to preferences presents two major challenges: (1) how to rep-
resent, compute and aggregate preferences, and (2) how to optimize according to
multiple preference categories. In the following, we first briefly describe the first
version of the planner, and then the novel contributions of the second version.

3.1 First version

The first version of the planner was inspired by causal-links planning. It took
as input (1) a set of available functionalities (sensors, actuators, programs) with
their information inputs and outputs and causal preconditions and effects (2)
the present causal state and (3) a set of information and/or causal goals. It
worked by improving a partial configuration by repeatedly selecting an unsat-
isfied goal/precondition/input and then selecting a functionality that hand an
effect /output could satisfy it. A causal/information link was also created be-
tween the effect/output and the goal/precondition/input. Causal links implied
sequential execution and information links implied concurrent execution of the
connected functionalities. This went on until an admissible configuration (i.e.
one with no unsatisfied preconditions/inputs) that also satisfied the goals was
found.

The algorithm started with an empty configuration and the initial state
and goals, and then expanded from there, maintaining a search front of partial

Version Final 21/07/2014 14

GiraffPlus D3.3 Fully functional reasoning infrastructure

configurations and a set of found solutions. We investigated empirically different
heuristics inspired by heuristics used for constraint satisfaction. These heuristics
were used to (1) select which unsatisfied goal/precondition/input to first work
on in a partial configuration and (2) select which partial configuration in the
search front to improve (see Deliverable 3.2) An article about the planner and
the empirical investigation is currently under a second round of reviewing for
Journal of Ambient Intelligence and Smart Environments.

3.2 Second version

Since autumn 2013, the work on task 3.2 has focused on developing a configura-
tion planner which can take into account preferences. A configuration planning
problem often has more than one solution (configuration). In the first version of
the planner, the only criteria for choosing between alternative solutions were the
number of functionalities and links. This second version is intended to provide a
framework for specifying preferences between configurations. This will make it
possible to obtain configurations that are more tailored to the needs of primary
and secondary users, as well as take into account the strengths and weaknesses
of the available sensors, actuators and programs. For an overview of the re-
lated topic of task planning with preferences, see [2]. In this section, we present
the underlying representation of preferences, the multi-objective criteria used
by the planner, the new algorithm, and the current status of the experimental
evaluation.

3.2.1 Preferences

There can be a number of categories of preferences, e.g. reliability or cost. Each
category of preferences takes a value from a c-semiring with values, for instance
the range 0..1. A semiring is an algebraic structure containing a set A, and two
binary operations corresponding to addition and multiplication.

X = (A, +, %)

In X, the addition operation + is commutative with identity element 0 and
closed, the multiplication operation X is associative, closed, distributes over +,
and has 1 as the unit element and 0 as the absorbing element. When a semiring
has idempotency (for all a € A: a+ a = a), a commutative x operation, and
1 as the absorbing element in +, then such semirring is a c-semiring in which
{0,1} C A.

S=(4,+,x%,0,1)

The preferences introduced into the second version of the planner are used
as follows:

¢ Preference values can be specified for outputs (sources) and causal effects.
The planner selects solutions with more preferred outputs and causal ef-
fects.

e Lower limits for preference values can be specified for satisfying precon-
ditions, inputs (sinks) and goals. The planner eliminates solutions where
a precondition/input/goal is satisfied with an effect/output which has a
preference value below the given limit.

Version Final 21/07/2014 15

GiraffPlus D3.3 Fully functional reasoning infrastructure

Values/limits can be given for each category separately. In addition, the values
can be conditional on the current state.

The following is a simple example of two functionalities, one of which is a
sofa occupancy sensor and one which determines the presence of a person in
the livng room using the information output (source) of the first one as input

(req):

sofa_occupancy_sensor {
source { sofa.occupancy.bool { reliability 0.8 }}

3

check_in_livingroom_1 {
req { sofa.occupancy.bool {} }
source { livingroom.presence.bool { reliability 0.2 } }

3

Note that although the sofa occupancy sensor is typically preferred (0.8 for
reliability in the first functionality) for determining whether somebody sits in
the sofa, it is typically not preferred for determining presence in a room (only
0.2 for reliability in the second functionality).

For a given configuration x, an aggregated value (typically with the x op-
eration) for each preference category can be computed. We denote his value
fi(x) for the ith preference category. Together, these values form a vector

(f1(2);eos ().

3.2.2 Multiple-objective optimality criteria

As there are multiple category values (f1(z),..., fn(z)) for each configuration x
and each of those values should be maximized, configuration planning with pref-
erences becomes a multi-objective optimization problem. In order to determine
when a configuration is preferred relative to another one, one needs to define a
dominance relation in which weak preference is denoted >; strict preference >
is defined as x > y iff ¢ > y and not x = y; and finally indifference = is defined

as x =2 y iff x = y and « = y. In the current implementation, two different
dominance relations over configurations ¢ € C are used:

e The Pareto dominance relation »=p: x =p y iff f;(x) > fi(y) for each
preference category i.

e The Lorenz dominance relation =: let (fi,,...., fi,) be the category func-
tions sorted in increasing order. We define the generalized Lorenz vector
as L(z) = (l1,...,1,) where l; = S _, fir(x), 1 < j < n. x =, yiff
L(z) =p L(y) [5].

With these criteria, one can identify solutions that are optimal relative to multi-
ple objectives (i.e. preference categories), which means they are not dominated
by any other solution. For »p, these are the solutions that cannot be improved
relative to some preference category without worsening some other preference
category. The Lorenz dominance relation is similar, but also tends to favor more
balanced solutions.

Version Final 21/07/2014 16

GiraffPlus D3.3 Fully functional reasoning infrastructure

3.2.3 Algorithm

Much of the algorithm is the same as in version 1, although it has been com-
pletely reimplemented in order to make it more efficient. The major additions
are that:

1. Preference values/limits can be added to the elements of a functionality
and a goal.

2. Aggregate preference values for the different categories are computed for
configurations (both partial and complete).

3. The set of solutions only contains non-dominated (Pareto or Lorenz) so-
lutions.

4. The search front is pruned of non-dominating partial solutions.

We present pseudocode for the algorithm in appendix B.

We are now performing a thorough experimental evaluation of our algorithm
configuration planning with preferences, by automatically generating artificial
test domains with specific properties such as the average number of requirements
and sources for functionalities. This allows us to in particular test the scalability
of the algorithm under different kinds of domains, including domains that have
different properties than GiraffPlus. We also intend to perform online testing
of the configuration planner in the GiraffPlus system.

4 Integration of context inference and configu-
ration planning

In the first version of the integration, the context recognition service and the
configuration planning service were two processes that exchanged information
through a socket. The configuration planner was responsible for setting up sub-
scriptions and starting different programs for data processing. The first inte-
grated system was described in an article presented at the Ambient Intelligence
conference (8].

In the new integration, we take advantage of the preprocessing module,
which can request data from the storage, preprocess this data in various ways
and then make it available to the inference module. As mentioned before, the
configuration of the preprocessing module is specified in an XML file. An ex-
ample is provided in appendix A. Hence, the new version of the configuration
planner has been given the capability to output configurations as XML-files.
In that way, the integration has been significantly simplified, and it is easy to
run the system both with or without configuration planning (the latter can be
useful for instance for testing).

In addition, the configuration planner can now take activities, and not just
observable state variables, as goals. It then uses a table that has been extracted
from the context inference rules which maps activities to sets of state variables,
as well as a table that maps state variables to specific sensors available in the
apartment.

A configuration is encoded as an XML file as follows:

Version Final 21/07/2014 17

GiraffPlus D3.3 Fully functional reasoning infrastructure

Lal

0IHE | ATRER L DR T
JRRERE IR I
JUNN I

=3

o

0 50 100 150 700 750 300 30

Figure 8: Time line line divided into epochs, with activities.

e Sensors are connected to state variables by means of preprocessors. These
preprocessors may may either just copy the data or perform some kind of
initial processing.

e Processing functionalities are preprocessors that read from state variables
and produce further state variables.

e Channels between functionalities are represented as intermediary state
variables.

5 Long-Term Trend Analysis

This task started after month 18. In this section, we present the work done
so far for developing suitable statistics for activity time-lines. We believe that
such statistics can be useful for secondary users that are looking for long-term
changes in activity pattern, such as a person going to bed later, or spending
more time in front of the TV.

As an example, figure 8 shows a randomly generated time line with three
different activities (a, b ¢). The time line is divided into 15 epochs of 24 time
units each, delimited by thin vertical lines. An epoch may e.g. be a day, and
the time unit would then be hours in this figure.

Figure 9 shows a statistic - sum of durations in each epoch - for each one
of the activities. This is computed by splitting the time line into epochs so
that each epoch contains a set of intervals. Then the duration of the intervals
is summed up for each epoch. Figure 9 also includes a linear trend line for
each activity, in order to indicate the long-term change. This may otherwise be
difficult to see if the statistic varies a lot between epochs.

Version Final 21/07/2014 18

GiraffPlus D3.3 Fully functional reasoning infrastructure

B
=35
24
E3
=3
2.3
e
0
5
.
=
24
E3
a
32
T
o
5
= 4 1
e §
'03 4
£
32 4
w
ml 4
:] :
0 2 4 6 8 10 12 14

Figure 9: Statistics (sum of durations) for activities from figure 1. The x axis
is marked with the epoch. Linear trends are also included.

Figure 10 shows three different statistics for a single activity. Again, the
statistics are computed epoch-wise, and a linear trend line is included.

Figure 11 shows a scatter plot of two epoch statistics. These kinds of plots
are used to test for correlations between different activities. In this case, the
correlation is weak, as indicated by the red regression line and the large distance
between the line and many of the points. An R? value could easily be computed
in order to put a number on the degree of correlation.

The above is based on applying standard statistical techniques to timelines,
but could still be very useful for a secondary user who wants to detect long-term
changes in activities. Thus, the aim is to provide an interface as part of the
DVPIS (see deliverable 4.2) for generating graphs like those in figures 9 to 11
for selected activities, statistics, epochs and time periods according to the needs
of the secondary users. This can be seen as a complement to the long-time
summary reporting in the current version of the DVPIS.

The above graphs were computed and generated using Python with SciPy, a
collection of Python modules for scientific computing which provides functions
similar to those of MatLab. The currently available statistics are: sum or
average duration, number of occurrences, earliest or average start time, latest
or average end time. More statistics can easily be added, but these should be
selected in a dialogue with secondary users.

6 Deployment
When the configuration planner has generated a new configuration for a given

goal (set of activities), it can now be deployed simply by updating the prepro-
cessing XML file. The preprocessing module then automatically reconfigures

Version Final 21/07/2014 19

GiraffPlus D3.3 Fully functional reasoning infrastructure

2

L]

&

6 " i —_

4 l e = |

5 s
0

1] 2 4 & a 10 12

20

ot s

a (min start)

15

[} .

0 2
30
=25

320
o

14
@ 1.5
@

4 -] 8 10 12 14
E 1.0

® 0.5 1

a imax end)

0.0

0 6 8 10 1 14

Figure 10: Three different statistics for a single activity.

7
& L] -
5 . L]
4 - -
5
E | & [
=] L] -
1
0F ° . B
-1 L L L L L L
-1 0 1 2 3 4 5 6

a (sum dur)

Figure 11: Scatter plot of statistics for two different activities. Each point
represents a value for activity a (x axis) and activity b (y axis) in a given epoch.
A regression line (red) is also included.

Version Final 21/07/2014 20

GiraffPlus D3.3 Fully functional reasoning infrastructure

itself, and will request sensor data from the data base and execute the different
functionalities/preprocessors specified in the XML file. See section 4 for details.

References

[1] J.F. Allen. Towards a general theory of action and time. Artificial Intelli-
gence, 23(2):123-154, 1984.

[2] Jorge A. Baier and Sheila A. MclIlraith. Planning with preferences. AT
Magazine, 29(4):25-36, 2008.

[3] Christophe Dousson and Pierre Le Maigat. Chronicle recognition improve-
ment using temporal focusing and hierarchization. In Proceedings of the
20th international joint conference on Artifical intelligence, IJCAT'07, pages
324-329, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[4] S. Mckeever, J. Ye, L. Coyle, C. Bleakley, and S. Dobson. Activity recogni-
tion using temporal evidence theory. Ambient Intelligence and Smart Envi-
ronments, 2(3):253-269, 2010.

[5] Réka Nagy, Mihai Alexandru Suciu, and D. Dumitrescu. Exploring lorenz
dominance. In 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2012, Timisoara, Romania,
September 26-29, 2012, pages 254-259. IEEE Computer Society, 2012.

[6] F. Pecora, M. Cirillo, F. Dell’Osa, J. Ullberg, and A. Saffiotti. A constraint-
based approach for proactive, context-aware human support. Journal of
Ambient Intelligence and Smart Environments, 4(4):347-367, 2012.

[7] Arun K. Pujari, G Vijaya Kumari, and Abdul Sattar. Indu: An interval
duration network. In Proceedings of Sixteenth Australian joint conference
on Al pages 291-303. Springer Verlag, 2000.

[8] Lia Susana d.C. Silva-Lopez, Jonas Ullberg, and Lars Karlsson. On combin-
ing a context recognition system and a configuration planner for personalised
ambient assisted living. In JuanCarlos Augusto, Reiner Wichert, Rem Col-
lier, David Keyson, AlbertAli Salah, and Ah-Hwee Tan, editors, Ambient
Intelligence, volume 8309 of Lecture Notes in Computer Science, pages 255—
260. Springer International Publishing, 2013.

[9] Jonas Ullberg and Federico Pecora. Propagating constraints on sets of in-
tervals. In ICAPS Workshop on Planning and Scheduling with Timelines
(PSTL), 2012.

Version Final 21/07/2014 21

GiraffPlus D3.3 Fully functional reasoning infrastructure

A Example of preprocessing XML file

The following XML file has been used for the second Swedish test site, and it
consists of three parts. First, there are four preprocessors which take sensor
data from the DB, for instance for ’Bed - Bedroom @ testsite_se_2’, con-
vert them to boolean values and store the result in time lines for state variables
or activities such as _in_bed. Note that there might be multiple time lines for
each state variables/activity, representing different interpretations due to the
inherent uncertainty in the sensor data.

There is also a single rule for inferring the activity _watching_tv from two
state variables _tv_on and _in_tv_room.

Finally, there are four extractors that selects the time lines with the maximal
extent for each activity. These represent the end result of the context recognition
process.

<rules xsi:noNamespaceSchemalocation=’rule_schema.xsd’
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance’>

<preproc name=’TunstallTrueFalse’ in=’Bed - Bedroom Q@ testsite_se_2’
out=’_in_bed’ args=’’/>

<preproc name=’TunstallPIRSimple’ in=’PIR - TV Room Q@ testsite_se_2’

out=’_motion_bed’ args=’’/>

<preproc name=’TunstallTrueFalse’ in=’TV - TV Room @ testsite_se_2’
out=’_tv_on’ args=’’/>

<preproc name=’TunstallPIRSimple’ in=’PIR - TV Room Q@ testsite_se_2’
out=’_in_tv_room’ args=’’/>

<rule out="_watching_tv">

<constraint from="_watching_tv" type="during" args=""
to="_tv_on" />

<constraint from="_watching_tv" type="during" args=""

to="_in_tv_room" />
</rule>

<extractor name=’max’ in=’_in_bed’ out=’in_bed’ />
<extractor name=’max’ in=’_motion_bed’ out=’motion_bed’ />

<extractor name=’max’ in=’_tv_on’ out=’tv_on’ />

<extractor name=’max’ in=’_watching_tv’ out=’watching_tv’ />

</rules>

Version Final 21/07/2014 22

GiraffPlus D3.3 Fully functional reasoning infrastructure

B Pseudocode for configuration planning algo-
rithm

In order to find solutions to configuration planning with partially-ordered prefer-
ences (C3PR) problems, algorithm 1 is here proposed. The algorithm searches
the space of partial solutions, and is based on partial order planning. Algo-
rithm 1 takes a C3PR problem consisting of a problem instance (goal, available
functionalities, and domains of preference categories), a search heurstic and a
dominance operator and returns a set of solutions.

The algorithm searches among configurations (F;, Lk;, Lk., Ex, Pcat) where
F; is a set of functionality instances, Lk; and Lk. are information and causal
links between those instances, Ex are execution ordering constraints between the
instances, and Pcat is a vector with values for the different preference categories.

The solution to a C3PR problem is a set of dominating FAC, which hints at
the importance of the dominance operator. Currently this algorithm supports
solving C3PRp (Pareto) and C3PR (Lorenz). Each dominance operator has its
advantages. Solutions to C3PR are subsets of C3PRp, and our hypothesis is
that being all other elements the same in a C3PR, problem, a Lorenz Dominance
operator will return a set of FAC that is at most as big as the Pareto set. To
implement Lorenz dominance, we strictly followed the method proposed by Nagy
et al in [5].

In order to compactly represent the domains U,y of the preference cate-
gories in the implementation used for testing the algorithm, a semiring relating
the semirings of the preferences was constructed.

For solving the C3PR problem given, the algorithm starts by using one
heuristic focused on finding a first fully admissible configuration (FAC), and
then switches to using preferences for scoring and comparing configurations.
The algorithm keeps a search array with partial configurations, and an array of
dominant fully admissible configurations (FAC). The array of dominant configu-
rations contains the set of FACs that do not dominate each other, yet dominate
every other FAC.

Once the first FAC has been found, a one-time event (algorithm 2) is trig-
gered in which the heuristic value is recalculated into a preference-based score
for every element in the search array. For every FAC found (including the first
one) a pruning is triggered both in the search and in the dominant FAC array.
All configurations dominated by the most recently found FAC are removed from
both the search array and the array of dominant FAC.

Version Final 21/07/2014 23

GiraffPlus D3.3 Fully functional reasoning infrastructure

Algorithm 1 Algorithm for solving C3PR problems

Input: C3PR problem Pg3pg, first heur. Hy, dominance heur. Hy.
Output: Solution to C3PR problem Sp.., .

1.

9.

Let the goal functionality instance be f, = (77, ,7¢,,(,0), with the goal
sentences as requirements.

Let the first configuration be C; = (F;,0,0, Ex, Pcat), in which F; con-
tains only f,.

. Let the search front array S contain only N; = (C;, h;), in which h; is

the heuristic score of configuration C; according to Hy. S will be sorted
according to the heuristic values.

Let the solution array Sp,,,, be empty.

. If search front S is empty, quit and return Sp.,, .

Get and remove the first node N, from search front S.

If an effect of any f, € F, of configuration C, in node N, threatens any
link returned by Lk, of C. :

(a
(b
(c
(d
f

If no unsatisfied requirements in C:

generate child partial configurations from conflict resolution.
check children for consistency.
send all consistent children to S.

)
)
)
) Goto b

(a) For each effect triggering a conditional preference in any f, € F, of
configuration C:
i. Create a child configuration Cj;

ii. Create an assignment in Lk, of C, relating the triggering effect
and the condition for the conditional preference.

iii. Add a sequential execution constraint to Ex of C,; reflecting the
assignment.

iv. If consistent, calculate heuristic value and add to S.
v. After the last child was checked, go to 5.
(b) If no conditional preferences are triggered:
i. Call proc(Nz, S, Spgapr, Ha)
ii. Goto 5.

Select unsat req r, of some f, € F, of configuration C, in node N,

(Continued.)

Version Final 21/07/2014 24

GiraffPlus D3.3 Fully functional reasoning infrastructure

Algorithm 1 Continued: Algorithm for solving C3PR problems

10. If r, is a causal requirement of f,:

(a) Create a child configuration Cy

(b) Instantiate a f’ with r,; as effect, and add f’ to F,1 if not already
included.

(c) Create an assignment in Lk, of Cy relating f’, fz1 and 741.

(d) Counstrain f’ in C,1 to come before f,1, after the initial conditions,
and before f,.

(e) Check C,; for consistency.
(f) If consistent, calculate heuristic value and send to S.

(g) Go to 10a until all possible ways to satisfy r, are checked.
11. If g, is an information requirement of f,:

(a) Create a child configuration Cy

(b) Instantiate a f’ with 7,1 as output, and add f’ to F,; if not already
included.

(c) Create an assignment in Lk; of C,; relating f/, f.1 and .

(d) Counstrain f’ in C,; to simult. with f,1, after the initial conditions,
and before or simult. with f,.

(e) Check C,; for consistency.
(f) If consistent, calculate heuristic value and send to S.

(g) Go to 1la until all possible ways to satisfy r, are checked.
12. Go to 5.

Version Final 21/07/2014 25

GiraffPlus D3.3 Fully functional reasoning infrastructure

Algorithm 2 Procedure proc(N,,S,Spospy, Ha)

Input: Search node N, Ordered Array S, Array C3PR Sp.,.,, dominance
heur. H; (monotonically decreasing)

1. If Speypy is empty:
(a) Recalculate heuristic value for N, using Hy.

(b) Add N, t0 Spypp-

(c) Recalculate heuristic value for all elements in S using H,, pruning
away those dominated by N,.

(d) Sort S.
2. If Sp.,pp is not empty:

(a) Prune from S all nodes dominated by heuristic value of N,.
(b) Discard N, if dominated by any element in Sp.,, ..

(¢) Prune from Sp,,,, all nodes dominated by heuristic value of N,.

3. Go to 6.

Version Final 21/07/2014 26

