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Deliverable Summary  
 

In this report we present the results after the first year in WP3 regarding Intelligent Monitoring 
and Adaptation Services, which consists of two major components: context recognition and 
configuration planning. Prototypes of these two components have been implemented, and those 
prototypes constitute the main focus of the report. Regarding the context recognition part, the 
main contribution is a novel algorithm for performing inferences in the context of missing data 
points in a time line. The capabilities of the context recognition match the relevant requirements 
from WP1. The configuration planner is inspired by partial-order task planning techniques, but 
supports both information and causal dependencies between functionalities. We also address 
integration, deployment and demonstration. 
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1 Introduction

In this document we present the results after the first year in WP3 regarding In-
telligent Monitoring and Adaptation Services, which consists of two major com-
ponents: context recognition and configuration planning. Prototypes of these two
components have been implemented, and those prototypes constitute the main
focus of the report. However, we also address integration, deployment and demo.

The report is organized as follows:

Section 2 recapitulates the tasks of WP3 as stated in the Description of Work
(DoW) that were active during the first year.

Section 2 presents the relevant concepts of Intelligent Monitoring and Adapta-
tion Services as defined in deliverable D1.3 System Reference Architecture.

Section 4 recapitulates the component’s part in the system reference architec-
ture and the use cases as presented in deliverable D1.3.

Section 5 presents the prototype of the context recognition component, and in
particular a novel technique for robust inference in the presence of gaps in
the data. It also investigates how the capabilities of the context recognition
compares to the requirements from deliverable D1.3.

Section 6 presents the prototype of the configuration planning component.

Section 7 presents the initial integration of the two components.

Section 8 presents the deployment of configurations.

Section 9 explains the parts of the context recognition and configuration plan-
ning components in the first-year demonstration (deliverable 5.2).

Section 10 concludes what has been achieved and what remains.

The following documents/deliverables are relevant for the present one. Deliv-
erable D1.3 System Reference Architecture relates the user requirements
presented in deliverable D1.1 User Requirements & Design Principles Re-
port to the three main components of the system namely: Physical environment
and Software infrastructure: (WP2: middleware, sensors, and Giraff robot); In-
telligent Monitoring and Adaptation Services (WP3: context recognition module
and configuration planner); and Data Visualization, Personalization ad Interac-
tion Services (WP4: general data store, personalization module and interaction
module). The user requirements are then translated into technical requirements
considering the results of the deliverable D1.2 Technological Components
Specification. The technical requirements are directing the architectural struc-
ture and the development of the system. As mentioned before, the present docu-
ment recapitulates the architecural decisions from D1.3 that are relevant for the
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Intelligent Monitoring and Adaptation Services, as well as reiterates some of the
conceptual definitions from that document.

Deliverable 5.2 Video-milestone 1 is a video demonstration at the Ängen
test site recorded in December 2012. It involves a scenario that illustrates many
aspects of the GiraffPlus system, including context recognition and configuration
planning.
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2 WP3 tasks and deliverables during year 1

There were four active tasks in WP3 during the first year. These tasks will con-
tinue during year 2 and 3. There was also one deliverable, of which this report is
a part. The tasks and deliverable are summarized below (complete versions are
available in Appendix A).

Task 3.1 Long-term context recognition (OrU)

Context recognition must provide two capabilities in order to guarantee that
relevant events/activities and trends are recognized in a timely fashion. First,
data received from the sensor network needs to be interpreted and represented in
symbolic form in order to allow inference mechanisms to assess whether specific
conditions hold. This equates to bringing signal-level data (e.g., the readings of a
proximity sensor, or raw physiological data) to a higher level of abstraction that
indicates crisp states of the human being and of the environment. The second step
is to actually perform inference in this information in order to obtain high-level
descriptors of the state of the human user which can support human decision
making (e.g., activities of daily living). The former problem of bridging the gap
between signal-level data and symbols will be addressed using data-driven tech-
niques like Hidden Markov Models, Neural Networks and other Machine Learning
methods. The second step will be achieved through the use of constraint-based
reasoning techniques. For instance, we want to be able to use information about
the assisted person entering the kitchen (a primitive event which can be detected
by sensors after some processing) as part of an inference that the user is having
lunch (abstract activity).

Work done during year 1: The focus has been on extending previous
techniques in order to tackle the problem of brittle inference by admitting many
interpretations of sensor timelines. The point is that with previous techniques, a
single point of missing data could invalidate an inference extending over a long
interval. Allowing timelines where such gaps are filled in can enable inferences
under such circumstances. We consider this to be a very important feature in order
to perform robust long-term monitoring in an environment where disturbances
are likely. A first propotype of the system is presented in section 5.

Task 3.2 Configuration planning for efficient activity recognition (OrU)

Given a certain set of activities and a set of available sensors and programs
for extracting information from these sensors, the sensor network needs to be
configured in such a way that it is capable of of inferring the activities from
the sensor data. Such a configuration specifies what sensors to be used, and what
programs will be used to extract information at different levels of abstraction from
them. For this purpose, we will develop configuration planning techniques, that
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can automatically find an optimal configuration for a given task (i.e. given set of
activities of interest). The configuration planner can also contribute to robustness
by automatically repairing configurations if a sensor fails or is removed.

Work done during year 1: A first prototype of a configuration planner
has been developed. It is based on flaw repair, i.e. goals and subgoals as well
as potential inteferences are considered flaws that can be repaired by extending
or constraining the configuration. This makes ithe planner suitable not only for
planning from scratch, but also for adding new goals or repairing failing parts of
a configuraion.

Task 3.3 Integration of context inference and configuration planning
(OrU)

This task will focus on the integration of configuration planning into the constraint-
based context inference framework developed in task 3.1. First, the ability to spec-
ify hierarchical decompositions will be built into the constraint reasoning system.
This will allow complementing the constraint language used for specifying cor-
relations between sensor readings and human state with relevant information on
which sensors should be activated and how they should be configured to maxi-
mize the information gathering process. Secondly, work will focus on developing
hierarchical reasoning techniques on top of the temporal inference mechanism of
the context inference and actuation infrastructure.

Work done during year 1: An initial intergration has been set up, and a
protocol has been established. We expect the protocol to be extended considerably
in the future.

Task 3.5 Deployment (OrU, CNR-ISTC, MDH)

In connection with the integration tasks of WP5, this task aims to design and
implement routines for taking a description of a configuration generated by the
configuration planner and start and connect the actual sensors, devices, inter-
faces and other programs specified in that description. In addition, failures in
components and communication as well as successful task completions should be
detected and responded to by reconfiguration.

Work done during year 1: a fairly large engineering effort has been put
into this task, in order to make the configuration planning and context recogni-
tion systems to work together with the sensor network and access and store the
relevant data.

D3.1: Context inference and configuration planning prototypes

Initial prototypes of context recognition and configuration planning systems. A
report will describe the prototypes. [month 12]
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3 Concepts

The Intelligent Monitoring and Adaptation Services consider the environment
abstractly as a collection of state variables, which at each point in time have
some values. These state variables may represent for instance:

• Aspects of the layout of the apartment (rooms, furniture, etc.)

• Position and motion of individuals in the apartment (e.g. person1 in bed-
room, on bed, not moving)

• Position and motion of various items in the apartment (e.g. book1 on table
in bedroom, giraffe robot in living room)

• Status of various items in the apartment (e.g. light on/off, machine on/off,
door open/closed)

• Various physiological parameters of the individuals in the apartment (e.g.
heart rate of person1, weight of person1)

A state variable may be static or dynamic. It may be observable directly through
sensors, or it may be indirectly derivable from other state variables (at least in
some circumstances). Some state variables may be controllable, i.e. they can be
changed in a predictable manner by the sensor network.

The context recognition system reasons about state variables and activ-
ities. An activity has an extension in time, and it typically involves changes
in state variables (e.g. eating-dinner, sleeping, food-cooking, robot-moving). The
context recognition system maintains time lines with state variables and activ-
ities. The time line is a partial mapping of state variables and time to values
and from activities and time to { on,off }. The time line is also stored in the
database for long-term access. The context recognition system utilizes context
models, including context rules for deriving activities from state variables and
other activities. These derived activities may involve actuation, e.g. in the form
of an alarm.

The sensor network1 is considered as a collection of devices (sensors and
possibly also actuators, including those mentioned in Table 9 in D1.3) which can
be configured and connected in different ways. Each sensor can potentially obtain
the values of one or more of the state variables, depending on the current state

1Work package 2 is concerned with four components: sensor networks, middleware, data
storage and Giraff robot. The physical environment of the primary user is sensed and modified
by sensor networks and actuators. The middleware abstracts the sensor network as services
that will be provided at higher layers (e.g. context recognition) in terms of topics following
a publish/subscribe pattern. The data retrieved from sensors and the events triggered by the
upper layers will be stored in a data storage system for further and future processing following
the same pattern. (From deliverable 3.1)
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and on how the sensor is configured. Sometimes, a state variable is not directly
obtainable, but it has to be derived from the data from one or more sensors in the
network. Sometimes, some other state variable may need to be changed in order to
obtain a certain state variable. An actuator can alter one or more state variables.
There are also purely computational processes (algorithms) for processing sensor
data at various levels of refinement (or producing control) as part of the sensor
network. A functionality is a program that either operates directly on a sensor
or actuator, or processes data from and/or delivers data to other functionalities.
Note that a sensor or actuator can realize several functionalities, depending on
what program is connected to it. Functionalities can communicate with each
other through their inputs (of different types and contents) and outputs. They
may also require certain state variable assignments to function properly (e.g. a
camera may require the light to be on), and/or they may modify certain state
variables (i.e. switch on the light).

A configuration of the sensor network consists of:

• What functionalities are active and how they are configured.

• How outputs and inputs of functionalities are connected to each other, by
using the subscription mechanism of the middleware.

The configuration (together with the current state) determines what state vari-
ables are monitored.

The task of the configuration planner is to configure the sensor network
in terms of subscriptions (and possibly also giving parameters to functionali-
ties) so that the state variables requested by the context recognition system
are monitored. It also directs this data to the context recognition system. The
configuration planner should also be able to adapt to changing conditions, e.g.
functionalities added, removed, or malfunctioning, or changes in certain state
variables (e.g. light =off). The configuration planner may produce configurations
that change over time, in particular when actuation (pre- and postconditions) is
involved.

The context recognition system interacts with the personalisation services
developed in WP42. There are multiple instances of the services, relating to dif-
ferent secondary users with different needs. Each of them can provide:

2The Data Visualization, Personalization and Interaction Service is the part of the archi-
tecture responsible for creating user-oriented and personalized services. More specifically, the
module provides to the different end-users suitable interaction modalities and specific intelli-
gent services. The module can be broadly described as constituted by a Front-End, i.e., an
Interaction Service in charge of providing all the human users with basic GiraffPlus interfaces
and a Back-end responsible for providing intelligent services and personalization capabilities.
The back end in turn is composed of the User Oriented Services module and Personalization
Services module. The former is responsible for providing some proactive/reasoning services to
the users, while the latter is in charge of maintaining users’ profiles so as to tailor both services
and interaction to the involved specific persons. (From deliverable 3.1.)
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• Requests for state variables and activities, including time constraints (e.g.
movement activities during night time, heart rate measurement once every
morning).

• Selections of rules in context model for deriving activities.

Given the requests from these services, the context recognition system determines
what state variables need to be monitored and requests these variables from the
configuration planning system. It then continuously receives data about these
state variables from the sensor network and/or the data storage, enters them into
the time line and derive activities from them. The activities are in turn entered
into the time line and so on.
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4 WP3 in system reference architecture

During the work on deliverable D1.3, the structure in Fig 1 for the Intelligent
Monitoring and Adaptation Services was worked out. In addition, a number of
use cases based on the user requirements established in D1.1 were elaborated.
These are presented in Fig 2, and the typical activities in the use cases labeled
“visualisation/personalization and user” are presented in Fig 3.

In the rest of this section, we recapitulate the conceptual description of Intel-
ligent Monitoring and Adaptation Services from D1.3.

 

Context recognition Configuration planning

ConfigReq
Interface

Middleware/
sensor network<<activate>>

Functionality

Middleware/
sensor network

Middleware/
sensor network

Middleware/
Data storage

Middleware/
Personalization Services

Figure 1: UML diagram of Intelligent Monitoring and Adaptation Services from
the system reference architecture document

4.1 Interfaces

Most of the communication occurs through the middleware, as described in sec-
tion 3.2.1 of deliverable 1.3. However, there are specialized protocols for commu-
nication with other components on top of that.

• Sensor network: the configuration planner can make requests for subscrip-
tions of data, and the context recognition can receive data using those
subscriptions.

• Personalization services: the context recognition can receive requests for
activities to be monitored, and requests to select specific inference rules, or
modify/create inference rules. It can also provide the personalization ser-
vices with information about what activities and inference rules are avail-
able, or selected.

• Data storage: the context recognition can store and retrieve timeline data.
As language, we will use the language JSON (JavaScript Object Notation,
see www.json.org).
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Figure 2: Use cases for Intelligent Monitoring and Adaptation Services
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 Request from 
personalization/user

Context recognition determines
what info is needed

Context recognition requests this info 
from configuration planner

Configuration planner adapts sensor network
(sets up subscriptions etc)

Context recognition receives data, builds
and stores timeline in data storage

User displays data (through visualization services)

Figure 3: Activities in use cases (“visualisation/personalization and user”) for
Intelligent Monitoring and Adaptation Services
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5 Context recognition

The aim of task 3.1 in GiraffPlus is to construct a system for inferring con-
text based on a given model of how this context correlates to sensor traces. In
particular, the system is to infer human activities from a sensor network in an
apartment. Recall that secondary users of the GiraffPlus system, could via the
Personalization Services request what activities to monitor. The context recogni-
tion recognizes those activities from the values of observable state variables and
stores the result in the data storage. It is supported by the configuration planner
(which is presented in the next section) in determining which of the available
sensors to use in order to observe the required state variables.

This and other applications benefit from the ability to specify the model based
on which context is inferred in a flexible and compact way. An easily specifiable
model would allow, for instance, to easily configure a context recognition system
to infer human activities and situations on a per-user and environment basis.
Furthermore, the system should be able to be configured by a person without
extensive knowledge of the underlying algorithm.

For this purpose we have found it useful to represent the states of the sensors
and the inferred activities as intervals on different timelines. The model that de-
scribes the causal relationships between the states of the sensors and the inferred
activities is provided as a set of quantitative Allen’s interval algebra constraints.
These constraints are posted between intervals representing sensor readings. This
approach was first described by Ullberg et al. [2009] and then subsequently ex-
tended by Pecora et al. [2012].

In addition we tackle the problem of brittle inference by admitting many
interpretations of sensor timelines, as has been reported in Ullberg et al. [2012]
(from which much the text comes). This is achieved by performing temporal
inference on multiple intervals contextually. That is to say, each sensor reading is
represented as a set of flexible temporal intervals rather than only one. In order to
assess whether temporal constraints hold among sets of intervals, we define a new
temporal constraint propagation algorithm. This algorithm constitutes the basis
of an abductive inference system which decides the overall context recognition
problem.

5.1 Context recognition modules

The context recognition system consists of several independent modules, each
handling its own specific task. The most important modules are the preprocessing,
inference and extraction modules.
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1 <?xml ve r s i on =”1.0” encoding=”UTF−8” ?>
2 <con f ig>
3
4 <preproc name=”d i s cont ” in=”l iv ingroom couch . i r ” out=”in l i v i ng room ” lim=”20”/>
5 <preproc name=”d i s cont ” in=”bedroom door . i r ” out=”in bedroom” lim=”20”/>
6 <preproc name=”d i s cont ” in=”kitchen microwave . i r ” out=”in k i t ch en ” lim=”20”/>
7 <preproc name=”d i s cont ” in=”bathroom . i r ” out=”in bathroom” lim=”20”/>
8 <preproc name=”d i s cont ” in=”bedroom door . l i g h t ” out=”bedroom l ight ” l im=”20”/>
9 <preproc name=” t t f ” in=”bed−presence ” out=”in bed ” lim=”0”/>

10 <preproc name=”d i s cont ” in=”kitchen microwave . on” out=”cooking ” lim=”20” thresh=”0.5”/>
11 <preproc name=”d i s cont ” in=”l i v ing room tv . on” out=”tv on ” lim=”20” thresh=”0.5”/>
12 <preproc name=”average ” in=”l iv ingroom couch . occupied ” out=”in couch ” lim=”0.99”/>
13
14 <r u l e out=”watching tv”>
15 <c on s t r a i n t from=”watching tv ” type=”during ” to=”tv on ” />
16 <c on s t r a i n t from=”watching tv ” type=”during ” to=”in couch ” />
17 <c on s t r a i n t from=”watching tv ” type=”conta ins ” to=”in l i v i ng room ” />
18 </ru le>
19
20 <ex t r a c t o r name=”max” in=”in l i v i ng room ” out=”in l i v i ng room ” />
21 <ex t r a c t o r name=”max” in=”in bedroom” out=”in bedroom” />
22 <ex t r a c t o r name=”max” in=”in k i t ch en ” out=”in k i t ch en ” />
23 <ex t r a c t o r name=”max” in=”in bathroom” out=”in bathroom” />
24 <ex t r a c t o r name=”max” in=”bedroom l ight ” out=”bedroom l ight ” />
25 <ex t r a c t o r name=”max” in=”tv on ” out=”tv on ” />
26 <ex t r a c t o r name=”max” in=”in couch ” out=”in couch ” />
27 <ex t r a c t o r name=”max” in=”watching tv ” out=”watching tv ” />
28 <ex t r a c t o r name=”max” in=”cooking ” out=”cooking ” />
29 <ex t r a c t o r name=”max” in=”in bed ” out=”in bed ” />
30
31 </conf ig>

Figure 4: Example of rules for preprocessing, inference and exteaction, in XML
format.

5.1.1 Preprocessing module

The preprocessing module’s responsibility is to fetch samples from the sensor net-
work and use these samples to build a higher level representation of the events
that takes place in the home. For instance, this might include taking a times-
tamped series of temperature readings and “down-sampling” these to a single or
a set of temporal intervals that represent that the temperature has been High
during the corresponding periods of time. Knowing that the temperature is High
somewhere might now be directly meaningful to the caregiver, in which case this
information is never displayed to the user but instead reasoned upon by the infer-
ence module. However, in some cases this module is able to provide meaningful
user data on its own, for instance, it can also “infer” the times in which the
person is lying in bed given a series of samples taken solely from a bed-pressure
sensor. In Figure 4, some examples of preprocessing rules are given.

The preprocessing module fetches samples from a remote database. Since this
is the only module that uses the samples directly, this feature allows the entire
context recognition system to be restarted (with modified rules for instance)
without loosing any data. In addition, fetched data is stored locally (encrypted)
in a temporary location to limit the load on the database server, requiring only
incremental retrieval of new data.

Note that preprocessing of data can also be performed by programs invoked
by the configuration planner. How to best distribute preprocessing in order to
get a flexible and efficient system is a matter of future investigation.
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5.1.2 Inference module

The inference module infers activities by performing temporal constraint propa-
gation on the domains of intervals generated by the preprocessing module. The
current constraints consists of quantified versions of the ones found in Allen’s In-
terval Algebra [Allen, 1983], however, the overall architecture supports the more
expressive INDU algebra [Pujari et al., 2000] which adds constraints on the rel-
ative duration of intervals. For instance, this module can make use of the data
coming from a temperature sensor placed on the warm-water pipe of the shower
faucet to deduce that the inhabitant is showering. However, after taking a shower
the warm-water pipe remains warm for several hours, thus it combines this data
with location data also provided by the preprocessing module to get a better es-
timate of the exact duration of the shower. In this hypothetical case, a rule could
state that an activity, Showering occurs During In Bathroom and Contains

Temperature High Shower. For more examples, see Figure 4.
The extraction module’s responsibility is to generate timelines that can be

visualized to the users. As the inference and preprocessing module generates
large amounts of hypotheses about the activities that have taken place there is
the need to provide a system to easily analyze this data. Currently this module
only supports one type of extraction method, which simply extracts the maximum
duration interval for an activity. In the system this information is readily available
which contrasts with the use of, for instance, chronicle recognition in which an
additional propagation step is required to determine the same information. (The
most common solution in that case would be to extract the earliest start-, earliest
end-time.) For examples, see Figure 4.

In the reminder of this section, we focus on context inference and in particular
in the presence of gaps in the data.

5.2 Representation

We illustrate the context recognition problem by giving a simple example of how
inference is done from Pecora et al. [2012]. In this work, intervals are generated
from rich sensory data that is provided by several sensors in a home environment.
The goal is to provide a higher-level representation of what is happening in the
world that is rich enough to reason about, but is unencumbered by unnecessary
detail. Each generated interval represents a fact that holds true during a limited
period of time, for instance that the humidity in the bathroom was high between
14:00 and 14:15.

In order to infer context, the generated set of intervals are combined with a
model consisting of rules of the form:

Cooking Equals Stove ∧Cooking During Kitchen.

Such rules define how context, in this case the activity of Cooking, can be
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Kitchen

Stove

Cooking

Figure 5: An example of a pattern in the sensory data that allows an activity to
be inferred.

inferred from intervals representing sensed data. Rules like these define abstract
patterns of constraints in Allen’s interval algebra [Allen, 1983] that should be
satisfied in order to recognize an activity. The inference itself is done by iteratively
trying to constrain a Simple Temporal Problem (STP) [Dechter et al., 1991] in
which the intervals representing sensed data and inferred activities are managed
as pairs of timepoints, representing the start and the end time of the interval in
question.

The high level Allen interval constraints are represented as simple distance
constraints between timepoints in the STP. In the example above, the two con-
straints reference 6 timepoints in the STP; the start and the end times of the
three intervals Stove, Kitchen and Cooking. A constraint such as

Cooking Equals Stove

is represented by two simple distance constraints in the STP that constrain the
start and end times of the Cooking and Stove intervals so that they can only
take on the same values. During inference, each combination of intervals that are
referenced by such a pattern must be tried or pruned away by a search procedure.
For instance the Stove might have been turned on several times in the past,
and the person has been in the Kitchen at multiple times in the past. In this
case, each combination of choices from these two groups of intervals have to
be evaluated. Each possible combination is tried by propagating a STP, and if
the STP has a consistent solution the pattern is considered satisfied, and the
Cooking activity is thus inferred.

Figure 5 shows a scenario where the Cooking activity is successfully recog-
nized.

Formally, our context recognition problem can be described as a constraint
satisfaction problem (CSP) Tsang [1993] of the form 〈V,CA〉. Here, V = {v0, . . . , vl}
is a set of variables, each representing the timeline of a sensor or of one inferred
activity. The domain of each variable, v = {i0, . . . , im}, is a set of (possibly over-
lapping) temporal intervals of the form i = [s, e], where s is the start time of the
interval and e its end time. Each interval either denotes that a sensed fact holds
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Figure 6: Primitive relations of the Allen algebra.

true, or that an activity was performed as the interval’s time-span states (not
during, but precisely starting at time s and ending at time e).

CA = {c0, . . . , cn} is a set of constraints on the variables in V of the form

cj = {(v0 R1 v1) ∧ (v0 R2 v2) ∧ . . .}

where each cj constrains the domains of two variables. v0 is a variable representing
the timeline of an inferred activity, and vi 6=0 is either a variable representing
the timeline of a sensor or of another inferred activity. Note that this implies
a dependency graph among timelines of inferred activities which has no loops,
i.e., a directed acyclic graph. The nodes at the very bottom of that graph (i.e.
those with no arcs starting from them) represent sensed variables which in the
GiraffPlus system will be observed by using sensors. These latter variables will
be constrained by the actual sensor readings up to the present point in time.

Each Ri is a quantitative binary Allen relation, i.e. a disjunction of the prim-
itive Allen relations in Figure 6. In addition, the relations may be followed by
one or more metric bounds of the form [l, u], depeding on the type of relation.
For instance, a Before [2, 4] b means that a must end between 2 and 4 time units
before b begins. The relations defines temporal relations between the variables
that should hold in order for an activity to be inferred. A solution to the prob-
lem 〈V,CA〉 is an assignment of values (i.e., sets of intervals) to variables (i.e.,
activity and sensor timelines). A solution to the context recognition problem is
the projection of a solution to the CSP on the variable representing the inferred
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Kitchen

Stove

Cooking

Kitchen

Figure 7: An example of a pattern in the sensory data that prevents an activity
from being inferred.

activity. In other words we are not interested in the interpretations of sensors
readings necessary to support inferred activities.

In the CSP, we maintain only one variable representing an activity to be
inferred. The reason has to do with constraint propagation. Let an activity to be
inferred be A. Propagating the constraints in the CSP may reduce the domain
of a sensed variable, S, which is necessary to support A. However, this reduction
only reflects the fact that some intervals in the domain of S are not relevant for
inferring A, and not that they represent incorrect knowledge about the sensor
readings. The intervals filtered out due to the requirements of A could be used
to infer another activity B. This is not possible if the CSP contains variables
representing both A and B.

5.2.1 Supporting robust inference in the presence of gaps

In prior work Ullberg et al. [2009], we found that although constraints taken from
Allen’s interval algebra are a convenient way to describe such relations, they are
also very brittle in the sense that small deviations in how the raw sensory data is
interpreted and placed on the timelines can prevent activities from being inferred.
One possible way of overcoming this is through the use of fuzzy Allen’s interval
constraints [Mansouri, 2011]. In this work, constraint violations are allowed to
some degree, thus enabling activities to be inferred with a “low likelihood” in case
the model is not fully supported by the sensor readings. This approach, however,
introduces problems when interpreting the inferred activities. Specifically, one
has to provide a threshold on the likelihood of an inferred activity in order to
determine a response to it, and this choice seems to lack rationale.

As earlier mentioned, we tackle the problem of brittle inference in the opposite
way, that is, by using non-fuzzy, quantified Allen interval constraints, but instead
admitting many interpretations of sensor timelines.

Figure 5 showed a potential scenario that could unfold where the Cooking
activity is successfully recognized. In Figure 7 the same activity cannot be rec-
ognized due to the introduced discontinuity in the Kitchen timeline. The key
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IR data:

Interpretation #1:

Interpretation #2:

1 2 3

0

Figure 8: Two timeline representations of the same sensory data.

point is that even though these two scenarios are visually similar, they are very
different from the point of view of the constraint-based inference. Clearly, the
rule is written with the scenario that unfolds in Figure 5 in mind, and small de-
viations from the optimal scenario can prevent us from recognizing the activity.
This example is inspired by a real world deployment of sensors in an apartment
and could easily arise when using a Passive Infrared (PIR) sensor for instance (a
motion sensor often used in burglar alarms). This sensor is characterized by the
fact that it emits a Boolean reading at regular intervals reflecting if movement
has been sensed or not. When forming intervals out of these readings, we must
interpret them to reflect if a person is in a room or not. This can be done, for
instance, by allowing a fixed temporal window of discontinuities among consec-
utive readings indicating that movement has been registered. This situation is
illustrated in Figure 8, which shows a set of Boolean readings indicating move-
ment, and also two timelines that have been formed out of this data but with
different thresholds of allowed discontinuity. In Interpretation #1, the transla-
tion of the discrete readings into intervals is quite strict so that discontinuities
are easily introduced, whereas Interpretation #2 is resilient enough to only create
one interval out of these readings.

The problem illustrated in Figure 7 could possibly be overcome by altering
the rule so that Cooking is required to be Overlapped-By Kitchen rather than
occur During Kitchen. This constraint would however not be satisfied if being
in the Kitchen is first sensed after the Stove is turned on.

In order to overcome this problem we use a wider range of possible intervals
as support for the constraint-based context inference procedure. For instance, we
might wish to use an interval (generated by a relaxed interpretation of the sensory
data, biased towards generating large continuous intervals rather than introducing
discontinuities) and all of its sub-intervals as support for the inference. Thus, we
would like to be able to reason on multiple interpretations of the same sensory
data, each providing additional support for inferring an activity.

In the following sections we present a geometric representation of the domains
of the variables in V . This representation allows us to define a propagation algo-
rithm which achieves arc-consistency. As we will see, arc-consistency is complete
under certain assumptions because of the tree structure mentioned above.
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Figure 9: A 2 dimensional representation of a set of enumerated intervals. The
S axis represents start times, and the E axis represent end times, and a point in
the diagram represents a single interval with corresponding start and end time.
The black area consists of impossible intervals that end before they start. The
intervals from 8 are indicated.

5.2.2 Representing multiple intervals

In order to increase the number of activities that we can successfully identify it
makes sense to perform temporal inference on batches of interpretations contex-
tually, or even more useful, on an entire spectrum of interpretations including
these. In a näıve way, the former could be accomplished by admitting several
overlapping intervals on the same timeline. For instance, by merging Interpreta-
tion #1 and #2 in Figure 8. This would however only work to a limited extent
since it would also increase the complexity of searching for matching patterns in
the data. This problem affects all approaches to context recognition which rely
on an explicit representation of each interval in memory.

A more intelligent strategy is to propagate constraints on a spectrum of in-
terpretations contextually. This requires changing the way in which we represent
sets of intervals. The most straightforward way of representing a set of intervals
would be to interpret an interval as a single point in a 2 dimensional graph as in
Figure 9. Each of the 4 points (intervals) in this figure corresponds to one of the
intervals in Figure 8. In this figure, each point’s projection onto the x-axis defines
the interval’s start-time, and its projection onto the y-axis the end time. Natu-
rally, an interval is not permitted to end before it has started, therefore no interval
is allowed to reside in the lower-right part of this figure. Interpreting intervals as
points in a 2-dimensional space was first done by Rit [1986], who described how
qualitative Allen Interval constraints could be used and propagated on such rep-
resentations3 This representation was later discussed by Pujari et al. [2000] and

3The problem identified by Rit [1986] was named Sets of Possible Occurrences (SOPOS).
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Figure 10: The set of intervals that occur During interval 0 in Figure 8.

has subsequently only been briefly mentioned in other work [Duftschmid et al.,
2002, Aigner and Miksch, 2006]. The reason for this lack of attention is most likely
because of the introduction of alternative problem formulations such as the STP,
TCSP [Dechter et al., 1991] and DTP [Stergiou and Koubarakis, 1998]. However,
in our problem the constraint networks are relatively simple compared to the ones
in most contemporary work, whereas the sets of intervals that we want to reason
about is large. Thus there is reason to believe that this representation is better
suited for our particular problem.

Representing intervals as points in a two dimensional space not only serves
as a visual aid, but more importantly, this representation can also be used to
“generalize away” the usage of enumerated sets of intervals and instead consider
groups of intervals. Figure 10 visualizes such a set of intervals. Specifically, the
gray triangular area protruding from the diagonal in this figure corresponds to
the set of all intervals that are Contained within Interval 0 in Figure 8. For
an interval to be contained within another, the requirement is that the interval
starts after and ends before the “containing” interval. These two requirements
corresponds to the bounds of the gray area in the figure. Thus, this area contains
all the intervals found in Figure 9.

By looking at Figure 8 and Figure 9 we can also notice that it might be
meaningful to reason about the set of intervals that are fully contained within
Interval 0, with the exception of the sub-intervals that are contained in the two
“gaps”, during which we received no indication of this being true. Figure 11
illustrates the mentioned set. The rationale behind this might be that we want
to be more general in our description of the state of the world and use facts
such as “The person was in the kitchen between 13:00 and 14:00” (contained in
interval 0, arbitrary picked time not illustrated in any figure) or “between 13:00
and 13:15” (contained in interval 1), but not “between 13:20 and 13:25” (if this
corresponds to the gap between Interval 1 and 2). Thus, this representation allows
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Figure 11: The set of intervals that occurs During interval 0 in Figure 9, excluding
all intervals contained within the two “gaps” in the timeline.

temporal constraints to be supported by general descriptions of the events, i.e.,
the person was mostly in the kitchen between 13:00 and 14:00, but not by more
precise queries that we have reasons to doubt, e.g., being in the kitchen between
13:20 and 13:25.

5.2.3 Constraints among multiple intervals

The representation introduced above would be useless unless it was also possible
to propagate temporal constraints on the intervals defined by these sets. For-
tunately this can be done, although under certain assumptions as we will see.
We can directly outline the admissible set of intervals B that a single interval i
allows given a constraint as illustrated in Figure 12. This figure shows one single
interval i along with the set of intervals B that satisfies the temporal constraint
i (Starts ∨ Started-By) [l, u] b, so that any interval b in B starts at least l and
at most u time units after i. Note that since this constraint does not limit the
allowed end time of any interval in B, the set of allowed intervals stretches up
towards infinity in the figure. For mixed constraints, i.e., constraints in which
one interval’s start time constrains another interval’s end time or vice-versa, the
geometric representation involves a projection onto the diagonal. An example of
this is illustrated in Figure 13, the semantics here is that the end time of an
interval i constrains the start time of another interval b. Thus, the start time of
i is projected onto the diagonal to translate it into an end-time. The diagonal
intersection is then used to constrain B in a similar way as in Figure 12.

Furthermore, Figure 14 illustrates a constraint that involves more than a
single timepoint in the STP, i.e., the start or the end time, taken from each of
the intervals. Here, the start time of i limits the possible time of occurrence of
the end time of B. The distinguishing factor here is that the start time of any b
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Figure 12: A (Starts ∨ Started-By) [l, u] constraint.
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Figure 13: An After[l, u] constraint.

is also limited to occur after the start time of i.

5.3 Algorithm

The propagation algorithm that is used to solve the context recognition problem
is basically a reimplementation of the AC-3 algorithm [Mackworth, 1977], that is
adapted to work on geometric sets of intervals. Like AC-3, the algorithm keeps a
work list containing the arcs in the constraint network that should be propagated.
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Figure 14: The Overlaps[l, u] constraint.

This set is initialized to contain all the variables in the domain. Similarly, during
propagation, arcs are removed from this list and processed. If this reduces the
domain of a variable, arcs involving this variable are reintroduced into the list.

Algorithm 1 Propagation algorithm

1: function propagate arc(A, c,B)
2: P ← ∅
3: Aconvex ← convex subsets (A)
4: for p in Aconvex do
5: I ← ∅
6: for i in p do
7: I ← I ∪ evaluate (i, c)
8: end for
9: p← convex hull (I)

10: P ← P ∪ p
11: end for
12: B ← B ∩ P
13: end function

Algorithm 1 shows how we propagate one arc, A
c←− B, in the constraint

network, i.e., how the algorithm removes values from the domain of a variable
B with the help of the constraint c and the values in the domain of variable
A. Traditionally, this is done by checking each value in the domain of B and
searching for a variable in the domain of A that satisfies the constraint. If one
exists, the value in B is kept, otherwise it is filtered. In our case, this is not
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possible since we do not maintain an explicit representations of the intervals in
the domains of the variables. Instead, given A and c, we calculate all possible
values of B. This is done by calculating the Minkowski Sum [de Berg et al., 1997]
of the interval A and (dynamically) each convex set of intervals that are formed
by evaluating the constraint on the vertex intervals in A. We will refer to this
set as the convolution of A given c, and we will use it to geometrically intersect
the previous domain of B in order to remove inconsistent values. This is done as
shown in Algorithm 1.

Algorithm 1 calculates A
c←− B and takes as an argument two variables, A

and B, and a constraint c. It starts by initializing a new empty set of polygons
(line 2) that will be used to store the convolution of A.

The next step in the algorithm is to calculate a convex decomposition Aconvex

of the polygons defining the set of intervals in A with the function convex subsets
(line 3). This function takes as input a set of possibly non-convex polygons and
returns a larger (or equally sized) set of convex polygons that defines the same
regions (line 4). This kind of decomposition is handled using an algorithm such
as the one by Keil [1985]. Note that optimal decomposition of a simple polygon
can be done in O (r2n2) time [Keil, 1985], where n is the total number of vertices
and r is the number of notches (reflex angles). Note also that we can do this in
O (nlog(n)) time [Hertel and Mehlhorn, 1985] with a guarantee that we do not
get more than four times more convex pieces than the optimum.

The convolution itself is driven by solving a small STP containing two intervals
(i.e., four timepoints). In the STP, these timepoints are initially constrained to
each other with simple distance constraints reflecting the Allen interval constraint
defined by c. Furthermore, one pair of timepoints are constrained to the start
and end time of interval i respectively. The STP is then propagated with the
Floyd–Warshall all pairs shortest path algorithm [Floyd, 1962], which reduces
the temporal domain of the remaining pair of timepoints.

At this stage, the mutual temporal relationship between the second pair of
timepoints in the STP reflects the set of intervals that are admissible given the
constraint c and the interval i. This corresponds to the situation illustrated in Fig-
ures 12–14. In these figures, the pair of timepoints that are initially constrained
represent the start and end time of i, and after propagation the remaining tem-
poral flexibility in the second pair defines area B. The admissible region for B
according to the interval i and the constraint c is then extracted by analyzing
the remaining temporal flexibility of the second pair of timepoints. Each such
convolution of a single interval i generates four new intervals (i.e., the vertices
of the admissible area of B in Figure 14). This process is done for each interval
representing a vertex of A, and for each convex sub-polygon of A a set of intervals
I is formed. This situation is shown in Figure 15.

Redundant (interior) intervals are then removed from each I by taking the
set’s convex hull. This creates a (convex) polygon p (line 9) that defines the
convolution of the convex subset of A, Aconvex, with respect to the constraint
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Figure 16: The convex hull of the individual convolutions shown in Figure 15.

c such as the one illustrated in Figure 16. The convex hull is retrieved with a
Graham scan [Graham, 1972] which has a complexity of O (nlog (n)) where n is
the number of intervals (vertices) in I.

Finally, all such convex polygons form one set of polygons P that completely
define the admissible values of B with respect to A and the constraint c. This
set is then used to intersect the previous domain of B (line 12), which effectively
removes values from B that cannot be satisfied with respect to A and the con-
straint c. Like the union, the intersection is calculated with a clipping algorithm
such as the one outlined by Greiner and Hormann [1998], which has a complex-
ity of O (mn), where m and n are the number of vertices (i.e., intervals) in two
polygons. However, in practice, this can usually be done much faster if some sort
of partitioning scheme is used.

Finally, just like in AC-3, when the domain of one variable is reduced, all of
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its outgoing arcs are reasserted in the work list. Furthermore, when the work list
becomes empty the constraint network has been fully propagated. The algorithm
outlined here provides the necessary functionality to propagate Allen’s interval
constraints in a network where the domains of the variables are sets of temporal
intervals defined by polygons.

5.4 Example and experiment

In this section we present a concrete example of context recognition in an apart-
ment which is based on data collected during an experiment. Although this ex-
periment was done before the GiraffPlus first system integration, the sensors and
the inference rule are very similar to those employed during the integration demo
done at the end of 2012, corresponding to deliverable 5.2.

We also compare the performance and quality of the inference of the geometric
approach against the results that can be obtained using the chronicle recognition
system suggested by Dousson and Maigat [2007]. The data used for this evaluation
was collected in the home of a researcher during a two-week long period with the
help of a few wireless sensors. The sensors provide samples measuring movement,
humidity, illumination and the usage of furniture such as the couch and the bed.

In the chronicle recognition approach originally described by Dousson and
Maigat [2007], patterns of sensor events (chronicles) are recognized. In our ap-
proach, as well as other constraint based approaches to context recognition [Pec-
ora et al., 2012], sensor readings and inferred activities are represented as inter-
vals, i.e., pairs of timepoints. Nevertheless, the chronicle recognition technique
can be easily extended to deal with intervals. Such an extension is what we are
comparing against — which effectively makes chronicle recognition functionally
identical to the approach described by Pecora et al. [2012].

The scenario used for this evaluation consisted of inferring an activity Watch-
ingTV from two sensors whose data is taken to reflect if someone is InLivin-
groom and InCouch. Thus, the requirement for inferring WatchingTV is

WatchingTV Contains InCouch ∧WatchingTV During InLivingroom.

Finally, any interval in the domain of the InLivingroom variable is required to
have a duration of at least 5 minutes.

The data used to construct the InCouch timeline consisted of 120,581 sam-
ples from a pressure sensor mounted underneath a couch, and the InLivingroom
timeline was constructed from 50,133 samples from a PIR sensor.

In the experiment we used a simple discretization method to generate inter-
vals out of the raw data coming from a sensor. The discretization method used
consisted of finding all intervals in which the mean of the samples is above a
predefined threshold. Specifically, given a set of samples s0, . . . , sn for a sensor
s, the samples’ respective time t0, . . . , tn and a threshold T , we formed a set Is
containing all the intervals [ti, tj] where
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Figure 17: Comparison of the sets of intervals in the domain of WatchingTV
that were recognized with the chronicle recognition system and the geometric
approach. The green areas show the set of possible intervals obtained by the
geometric approach and the red and blue dots show the earliest start-/latest end-
time and earliest start-/earliest end-time solutions of the chronicle recognition
approach.

j∑
x=i

si (tx − tx−1)

tj − ti
≥ T.

Furthermore, any interval that could be fully contained in another was discarded.
When applied to the samples, the discretization method generated 3,186 inter-

vals for the InLivingroom variable and 4,764 intervals for the InCouch variable.
In the case of the chronicle recognition, we inferred activities from these sets of
intervals as they were. However, when inferring from these sets with the geomet-
ric approach, we used the convex hull of each cluster of overlapping intervals in
Is. The idea is that the convex hull provides us with a more general description of
the data that does not contain unnecessary detail, a description that is difficult
to obtain for an approach that uses enumerated sets of intervals as input. The
sets created for the InLivingroom and InCouch variable consisted of 1,036
intervals in 175 polygons and 170 intervals in 26 polygons respectively.

During inference, the geometric approach took 2.6 s to finish propagating its
network. In the chronicle recognition system, the corresponding operation took
154.4 s (average of 10 runs). After propagation, the domain WatchingTV, was
defined by 1,086 intervals in 174 polygons. In contrast, the chronicle recognition
system recognized the pattern 101,615 times (each one using a unique combina-
tion of intervals in the input data as support).

Clearly, the chronicle recognition system is not conceived to deal with input
data representing alternative views of the sensor readings, and forcing it to do so

30



obviously affects performance heavily. However, this comparison is intended to
show the difference in the quality of the inference. Figure 17 shows the solutions
to the context recognition problem obtained with the geometric approach and the
chronicle recognition system. In this figure, the filled areas show the possible in-
tervals in the domain of the WatchingTV variable inferred using the geometric
approach. The dots that are farthest from the diagonal show 799 unique “earli-
est start time, latest end time” solutions obtained by the chronicle recognition
system. I.e., since a solution to the STP contains flexibility in the timepoints, we
have extracted the earliest possible start time and the latest possible end time
of each interval recognized by the chronicle recognition system4. Similarly, 1,675
earliest start/end time solutions were extracted and are represented by the dots
in the figure closest to the diagonal. Overall, the dots represent two sets of unique
solutions obtainable with the chronicle recognition approach. We can further in-
terpret the result of the chronicle recognition system to encompass a continuum
of intervals between the two sets of dots. These intervals would be most likely
supported by the input data. Note, though, that our approach, which can reason
in terms of implicitly defined sets of intervals, achieves a result that is by far
more informative. The geometric approach provides a result that is comparable
to the chronicle recognition system’s result, but is less brittle. Furthermore, note
that there are two distinct sets of intervals (slightly to the right of the middle in
the figure) that the geometric approach recognizes but the chronicle recognition
fails to find.

As the propagated domain of the activity variable is represented in a two-
dimensional space, one cannot directly use the domain of the activity variable
to visualize the occurrences of events on a “traditional” timeline. This difficulty
is, however, not exclusive to the geometrical approach. Note in fact that, since
patterns matched with Allen interval constraints often contain residual flexibility,
one timeline only offers a partial representation of the state of the world. The
typical solution to this is to extract the earliest start-/ earliest end-time solution
and take this to represent the precise occurrence of activities. This can of course
be done also with the two-dimensional results of the our approach, however note
that we would be discarding much more information: not only it is necessary to
choose the bounds of intervals to represent on the timeline, but also the intervals
themselves.

4Note that these solutions are however not guaranteed to be a valid in the general case.
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5.5 Requirements

We have gone through the requirements for the Intelligent Monitoring and Adap-
tation Services according to D1.3 System Reference Architecture in order
to ensire that the capabilities of the context recognition system matches those
requirements. In the following we present each requirement and indicates if and
how it could be fullfilled. Our conclusion is that the capabilities of the context
recognition system under development should be adequate.

Serial/Ref and De-
scriptor

Requirement Statement Context inference

1.a.7 Determining
whether the person
suffers from incon-
tinence

GiraffPlus shall help in un-
derstanding whether the el-
derly person suffers from
incontinence over different
day periods for a variable
amount of time

Incontinence sensor

1.a.10 Monitoring
sleep activity

GiraffPlus shall monitor
sleep activities over dif-
ferent day periods for a
variable amount of time

Bed sensor + motion sensor

1.c.1 Detecting the
position

GiraffPlus shall detect the
position of the elderly per-
son inside the house over
different day periods for a
variable amount of time

Activities for each position,
based on motion sensors

1.c.2 Monitoring
the movement

GiraffPlus shall monitor the
movement inside the house
over different day periods
for a variable amount of
time

Motion sensors

1.c.3 Detecting the
absence of move-
ment

GiraffPlus shall detect the
absence of movement of in-
side the house over differ-
ent day periods for a vari-
able amount of time

Motion sensors, take the
complement (i.e. no move-
ment in a room by move-
ment sensor giving 0, for en-
tire home take conjunction
of those).

1.c.4 Temporal
monitoring of the
position

GiraffPlus shall temporally
monitor the elderly person’s
position inside the house

Same as 1.c.1 Detecting the
position
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Serial/Ref and Descriptor Requirement Statement Context inference
1.c.6 Monitoring of night ac-
tivities

GiraffPlus shall monitor the
night activities of the el-
derly person inside the
house over different day pe-
riods for a variable amount
of time

Multiple activities including
1.c.4, 1.c.14, 1.c.16

1.c.7 Monitoring cooking
ability

GiraffPlus shall monitor the
cooking activities of the
elderly person inside the
house for a variable amount
of time

Electrical socket sensor of
stove, microwave, door sen-
sor of fridge, motion in
kitchen

1.c.8 Monitoring the time
spent for preparing lunch

GiraffPlus shall monitor the
time spent by the elderly
person for preparing lunch
for a variable amount of
time

Fridge, motion in kitchen,
with time constraints

1.c.9 Monitoring the time
spent in different home
places

GiraffPlus shall monitor the
time spent by the elderly
person in different places in-
side the home for a variable
amount of time

Same as 1.c.1 Detecting the
position

1.c.10 Monitoring the use of
refrigerator at home

GiraffPlus shall monitor the
frequency with which the
refrigerator is opened by the
elderly person over different
day periods for a variable
amount of time

Fridge door sensor

1.c.11 Monitoring the social
interactions activity

GiraffPlus shall monitor the
frequency of the social in-
teractions of the elderly per-
son over different day peri-
ods for a variable amount of
time

This particular requirement
demands more elaboration
if it should be recognized as
an activity.
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Serial/Ref and Descriptor Requirement Statement Context inference
1.c.12 Detecting decline in
mobility

GiraffPlus shall help moni-
toring a decline in the mo-
bility of the elderly person
for a variable amount of
time

Statistics of 1.c.2 Monitor-
ing the movement

1.c.13 Detecting absence of
the elderly person

GiraffPlus shall detect the
absence of the elderly per-
son in the house during un-
usual period for a variable
amount of time

Based on 1.c.3 Detecting
the absence of motion with
time constaints, and/or on
main door opening, and/or
GPS

1.c.14 Monitoring the use of
home appliances

GiraffPlus shall monitor the
use of home appliances by
the elderly person over dif-
ferent day periods for a vari-
able amount of time

Socket sensor and/or appli-
ance door sensor

1.c.15 Detecting Falls GiraffPlus shall detect
whether the elderly person
falls inside the house for a
variable amount of time

Fall sensor (or absence
of motion with time con-
straints.)

1.c.16 Monitoring the time
spent in bed

GiraffPlus shall be able to
monitor how much time the
elderly person spends in bed
over different day periods
for a variable amount of
time

Bed occupancy sensor

1.c.17 Monitoring person
balance

GiraffPlus shall help mon-
itoring the elderly person’s
ability to maintain balance
for a variable amount of
time

Possibly by balance sensor
under development
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6 Configuration Planner

The purpose of the configuration planner in the GiraffPlus project is to provide
the context recognition with the data it needs for recognizing the activities re-
quested by the (mainly secondary) users. The data comes from observable state
variables. The inclusion of the configuration planner allows us to separate the
descriptions of sensors and preprocessing of sensor data from the more abstract
descriptions of activities, which in turn allows the GiraffPlus system to use the
same activity descriptions and perform the same inferences in different apart-
ments with different sets of sensors available, or in the same apartment as sensors
are added, removed, or fail. In addition, the GiraffPlus system can automatically
adapt to varying sensors, without the need for user intervention. Likewise, the
configuration planner helps to separate the description of actuation devices from
the more abstract representation of enactment of the context recognition (al-
though actuation is less frequent than sensing in the context of the GiraffPlus
project).

A central concept in configuration planning is a configuration, which infor-
mally is a set of selected sensors, actuators and computational processes that
exchange information in order to solve a task. This task may be to observe one
or more state variables, and/or to change some state variables. Some task may
also require several steps, in particular if actuation is involved.

The configuration planner is capable of finding configurations that contain
consistent causal and information links between sensors, actuators and programs.
In this way, given a world representation and a goal, a configuration planner can
deliver fully admissible configurations that satisfy the goal. The world represen-
tation contains a finite list of available functionality instances, and a set of state
variable assignments in its starting state. The goal should be specified in terms
of state variables (to observe), or state variable value assignments (to change).
Functionality instances represent sensors, programs and potentially actuators.

The approach we present here is inspired by the work of Lundh et al. [2008].
However, whereas that earlier approach used a combination of two different plan-
ners to handle causal and information dependencies, the approach proposed here
handle both these aspects in a single algorithm. In addition, this approach is in-
tended to facilitate easy monitoring and repair of configurations, as well as easy
incorporation of new goals into an existing configuration.

6.1 Representation

6.1.1 State Variables and States

For referring to state variables, we use a minimalist language with the following
format:

< entity > . < property > . < format >
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A state variable assignment is written in the following manner:

< entity > . < property > . < format >=< entity >

For instance:
livingroom.temperature.celcius

bedroom.temperature.fahrenheit = 70

Also static information such as the location of sensors can be encoded as state
variables:

sensor0.location.rooms = kitchen
sensor0.location.position = microwavedoor
microwavedoor.location.rooms = kitchen
sensor1.location.rooms = balcony
sensor1.location.position = balconydoor
balconydoor.location.rooms = balcony

A complete assignment of values to state variables is called a state, and states
may change over time.

6.1.2 Functionalities

Functionalities are programs, possibly embedded in sensor and/or actuation hard-
ware, that when a condition is met, and when provided certain information as
input, can produce another information output and/or have a certain effect.

In GiraffPlus, most functionalities correspond to sensors and programs that
aggregate sensor information to allow different levels of abstraction. The func-
tionalities can be associated with conditions such as permissions from the users
to run a particular monitoring tool, conditions related to the interpretation of
a sensor reading, or just what is required to run a program. As an example, in
order to consider a pressure sensor as both a bed occupancy sensor and a (partial)
bedroom occupancy sensor, then that sensor must be in the bed, and the bed
must be in the bedroom.

A functionality has the general form:

name: < string >
input: < state variables >
output: < state variables >
precond: < logical combination of state variable assignments >
effects: < conjunction of state variable assignments >

For instance, consider a functionality that is a thermostat that sets the tem-
perature of the livingroom to 70 degrees, and that needs the current temperature
of the livingroom (in Fahrenheit). A simple way to describe such a functionality
can be:
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name: thermostat livingroom
input: livingroom.temperature.fahrenheit
output: −
precond: −
effects: livingroom.temperature.fahrenheit = 70

Note how the input is a state variable that will be observed, whereas the effect
is a state variable assignment, representing a change in the world state.

Or consider again the bed pressure sensor, which can be used as a partial
bedroom occupancy sensor:

name: partial occupancy bedroom
input: −
output: bedroom.occupied–partial.bool
precond: sensor0.bedoccupancy.bool = 1

and sensor0.location.room = bedroom
effects: −

A functionality schema is a parameterized representation of a set of func-
tionalities. In the following example, the parameters are room and temp, and
by setting them to livingroom and 70, the functionality thermostat 70 above is
obtained (but with the name thermostat(livingroom,70)):

name: thermostat
param: ?room, ?temp
input: ?room.temperature.fahrenheit
output: −
precond: −
effects: ?room.temperature.fahrenheit = ?temp

6.1.3 Satisfying causal requirements (preconditions)

The causal requirements of a functionality instance are specified in the precon-
ditions (precond). In a functionality instance, the causal requirements of the
functionality need to hold when the instance starts being executed. The effects of
the functionality instance are expected to hold after the execution is completed.
Hence, a precondition of a functionality can only be satisfied by either the effect
of a different functionality instance, or by the initial state. The initial state is the
assignment of values for the state variables before any functionalities have been
executed.

To satisfy a causal requirement with the effect of another functionality, the ef-
fect should operate over the same entity, property and units of the causal require-
ment. In such a situation, there is a causal link between the two functionalities.
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For example, given the precondition:

livingroom.temperature.fahrenheit = 70

a functionality instance with an effect of changing the temperature of the livin-
groom to 70 degrees Fahrenheit is needed. (It is advisable not to mix formats for
the same entity-property pair in the preconditions and effects of functionalities.)

Note that the state may have changed after one or more functionalities have
been executed. This can lead to unintended interferences between functionalities,
for instance if one functionality negates a precondition of a later functionality.
Care must be taken to avoid such interferences. In this way, causal link are differ-
ent from information links, which cannot interfere with other information links
as they don’t share any state.

6.1.4 Satisfying information requirements (information inputs)

Information requirements means that each input of a functionality must be con-
nected to a matching output of another functionality. This represents a flow of
data from the output of the latter functionality to the input of the former func-
tionality. For instance, the functionality thermostat(livingroom,70) cannot work
by itself. It needs to have some other functionality instance providing data for
the state variable:

livingroom.temperature.fahrenheit

That information can be satisfiable by a functionality instance that has a match-
ing output, such as:

livingroom.temperature.fahrenheit

which can for example come from a functiality instance thermometer(livingroom),
instantied from:

name: thermometer
param: ?room
input:
output: ?room.temperature.fahrenheit
precond: −
effects: −

By linking the output of thermometer to the corresponding input of thermostat,
the information requirements of thermostat can be satisfied. Note that this re-
quires the two functionality instances to execute simultaneously. The link itself
can be performed as e.g. a subscription from the functionality with the input to
the functionality with the output.
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6.1.5 Configurations

A configuration is a set of connections between a subset F of all available func-
tionality instances in the world F , in such a way that a goal is satisfied. In this
work, we will use the definition of configuration in Equation 1.

c = 〈F, TC, IL,CL〉 (1)

Here, F is the set of functionality instances used in the configuration, and
TC is a set of time constraints for each functionality: whether it is before, after,
or at the same time as other functionality instances. IL is the set of information
links, and CL is the set of causal links. Note that not all functionalities need to
be executed at the same time.

A causal link between two functionality instances implies a sequential execu-
tion constraint between these functionalities, in which the functionality instance
requiring an effect comes after the functionality that causes the effect.

An information link implies simultaneous execution of the two functionalities.
For a configuration to be fully admissible, all causal and information require-

ments should be satisfied in a way that no time constraints are violated, and in
a way that no effect of any functionality instance violates a causal link.

To satisfy information admissibility (admissibility on information require-
ments) in a configuration, all inputs in each functionality instance should be
linked to the output of another functionality. To satisfy causal admissibility (ad-
missibility on causal requirements), all preconditions in a functionality instance
should be satisfied before its execution. The set of links should be acyclic. When
both information and causal admissibility are satisfied in a configuration, and no
conflicts are present, we can say that such configuration is fully admissible, and
consider it a candidate configuration for satisfying the goal.

6.1.6 Configuration planning problem

A configuration planning problem consists of a goal, an initial state and a set of
functionality instances.

The goal is given in the form of a set of information and/or causal requirements
that need to be satisfied. The planner then converts these elements into a partial
configuration that contains a stub functionality instance with the same causal
and information requirements as the goal contains. By representing the goal as a
functionality, it is also possible to use the same algorithm to take goals that are
partial configurations that need to be fully satisfied. It also makes the planner
able to repair failed configurations from their point of failure. The initial state is
also transformed into a functionality, with the state variables of the initial state
as effects.
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6.2 Algorithm

Algorithm refalg for configuration planning searches in the space of partial con-
figurations. It is based on flaw repairing. In each expansion, a child represents the
repair of a flaw in the parent configuration. There are two types of flaws: missing
inputs, and missing preconditions.

For resolution mechanisms in conflicts between effects and existing causal
links, one can either:

1. Move the execution time of the threatening functionality to a time strictly
before the functionality instance that is the origin of the threatened causal
link (promotion),

2. Move the execution time of the functionality instance with the threatening
condition to be at a time later or equal to the time of the functionality
instance that receives the threatened causal link (demotion),

The same algorithm can be adapted to adding new goals to an existing con-
figuration. In such a case, the input includes the existing configuration including
links and time constraints in addition to the initial state functionality fi and the
goal functionality fg. The new goals are added to fg, and will constitute flaws
when the algorithm starts.

This algorithm also makes it possible to remove a failing functionality instance
from the current configuration (as well as any other functionality that supports it
by causal or information links, and are not needed for anything else). The removal
of f and causal and information links that f supported will then constitute flaws
in the remaining configuration plan, and the algorithm can attempt to repair
them.

One of the challenges of the configuration planning problem, is that the search
may have a high branching factor. In order to reduce the branching factor, dis-
carding no-good configurations early, and obtain the configurations with the
higher chances to be repaired in case of a failure, our planner presently guides
the search with a histogram-based heuristic chain. Other kinds of heuristics will
also be investigated during year two and three.

The heuristic chain tries to first satisfy the partial configurations with the
higher chances to be satisfied, starting with the most failure-prone unsatisfied
requirement in that functionality. The most failure prone requirement is the one
that has the least amount of support in the histogram of outputs and effects i.e.
in the case of a causal requirement, the precondition with the smaller number
of effects that can satisfy it from the available functionalities, and in the case of
an information requirement, the input with the smaller number of information
outputs that can satisfy it. The partial configuration with the higher chances to
be satisfied depends on the heuristic score of the configuration given a certain
function. Our current function provides a score for a configuration, in which if
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Algorithm 2 Configuration planner

Input: a set of functionality instances F , an initial state functionality fi and a
goal functionality fg.
Output: a configuration C.

1. Let C = 〈∅, ∅, ∅〉.

2. If there are no more flaws, return the current configuration C

3. Select a flaw g of some functionality instance f (backtrack point)

4. If g is a precondition flaw of f :

(a) Select an existing functionality instance f ′, or add to C a new one f ′

from those available in F , with g as effect (backtrack point)

(b) Add a causal link from f ′ to f labeled with g to C.

(c) Constrain f ′ to come before f in C and, if f ′ is new, to come after fi
and before fg, and check temporal consistency

(d) If the new causal link (from step b) is threatened by an effect of any
other functionality instance, use resolution mechanisms to remedy this
and check temporal consistency (backtrack point). Repeat until no
such threat remains.

(e) If f ′ is new and has any effect that threatens any other causal link, use
resolution mechanisms to remedy this and check temporal consistency
(backtrack point). Repeat until no such threat remains.

5. If g is an input flaw of f :

(a) Select an existing functionality instance f ′, or add a new one f ′ to C,
with g as output (backtrack point)

(b) Add an information link to C from f ′ to f labeled with g.

(c) If f ′ is new and has any effect that threatens any existing causal link,
use resolution mechanisms to remedy this and check temporal consis-
tency (backtrack point). Repeat until no such threat remains.

(d) Constrain f ′ and f to be at the same time in C and check temporal
consistency.

6. Goto 2.
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an unsatisfied requirement has a zero frequency in the histogram, the score of
that configuration is exactly zero, and the partial configuration can be discarded
from the search stack. The number of ways in which each unsatisfied require-
ment can be satisfied is aggregated and normalized by the number of unsatisfied
requirements. Since our configuration planner is expected to be able to handle
goal preferences in the next version, we allow this function to depend on the type
of performance expected for the functionality. For instance, if the goal prefer-
ence is the configuration with the fastest execution times, the number of causal
links should be minimized, and configurations containing functionalities with the
smallest execution time can be favored. Similar functions can be applied for any
other particular preference.

The term heuristic chain is used to the act of combining a heuristic for choos-
ing the next node to satisfy, and another one to choose the next link to satisfy. It
is similar to combining variable ordering (choosing the next node to satisfy) and
value ordering (choosing the next unsatisfied link to satisfy) in constraint satisfac-
tion problems. Using histograms as a heuristic for value ordering is natural in the
context of our problem [Liu and Havens, 2004], and especially for obtaining con-
figurations that can easily be repaired, because the availability of “spare parts”
is considered while planning. Using a function based on histograms for selecting
the next configuration to satisfy allows this trait to be even more emphasized
while planning. Combinations of heuristics can also be performed, in which sev-
eral heuristics are used for pruning, and one for ordering the pruned search stack.
Also, combinations of heuristics have successfully been applied for speeding up
planning. For example, in the FastDownward planning system [Helmert, 2006],
having several options for combining different search algorithms and also differ-
ent heuristics is one of the features that allow the algorithm to succeed. There is
ongoing work to make the configuration planner combine heuristics not only for
pruning, but for using different heuristics as evaluation criteria.

6.3 Configuration planning example

The following is a short example intended to illustrate how the configuration
planner works. It is not selected from the requirements, but it has been chosen
because it illustrates both causal and information (sub)goals in a simple way. The
caregiver and the user decided that in order to have a better sleep, the user needs
a higher bedroom temperature. A request is sent to the planner to satisfy the
goal bedroom.temperature.fahrenheit = 75. Among the functionalities that
we have in the world, there are:

Thermometer

(gives the temperature of a room with a therometer in Celsius)

Param: ?room

Precond: ?room.has-thermometer.bool = True
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Outputs: ?room.temperature.celsius

Thermostat

(changes the temperature of a room to a value,

both provided as parameters, operates over

Fahrenheits. The range of temperatures goes

between 68 and 86 Fahrenheit)

Param: ?temp={integers between 68-86},

?room={rooms taken from the rooms defined as state variables}

Input: ?room.temperature.fahrenheit

Precond: ?room.has-thermostat.bool = True

Effect: ?room.temperature.fahrenheit = ?temp

C-F-Converter

(converts the temperature of something from Celsius to Fahrenheit)

Param: ?entity={*}

Input: ?entity.temperature.celsius

Effect: ?entity.temperature.fahrenheit

There are also the following initial and goal functionalities, generated from
the current state and the requested goal:

Initial

Effect: bedroom.has-thermometer.bool = True,

bedroom.has-thermostat.bool=True,

...

Goal

Precond: bedroom.temperature.fahrenheit = 75

Instances of these functionalities constitute the initial configuration which is given
as input to the planner.

The precondition of Goal constitutes a causal flaw. It can be resolved by
adding a functionality instance Thermostat with ?room=bedroom and ?temp = 75.
A causal link labeled bedroom.temperature.fahrenheit = 75 from this func-
tionality to Goal is also added, and temporal consistency is check (this is done
each time a temporal constraint is added).5

Now there are two new flaws: bedroom.has-thermostat.bool=1 (causal)
and bedroom.temperature.fahrenheit (information). The first of the flaws can
be resolved with a causal link to Init. The second one can be resolved by adding

5If there had been more ways to control the temperature in the bedroom, the planner
would have created a partial configuration for each such way, and addressed them in an order
determined by the histogram-based heuristic. However, in this particular example we only
consider one way to resolve each flaw.)
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a functionality instance Converter with ?entity = bedroom and an informa-
tion link from this instance to the Thermostat instance. In GiraffPlus, this link
would imply that the latter instance would subscribe to a topic of the former.
Temporally, it implies that the two instances must run at the same time.

However, the new instance requires an input bedroom.temperature.celsius,
and this becomes a new flaw in the partial configuration. The new flaw can be
resolved by adding an instance Thermometer with ?room = bedroom, and adding
an information link from the output of this new instance to the input of the
Thermostat instance.

The two flaws from the Thermostat functionality instance have been elimi-
nated, but a new one appears: bedroom.has-thermometer.bool = True. Fortu-
nately, this flaw is easy resolved by a causal link from the Init functionality.

At this stage there are no flaws remaining, and the current configuration is
admissible as well as temporally consistent. The planner returns this configura-
tion.

6.4 Configuration Planning vs Partial-Ordered Task Plan-
ning

Our approach is similar to partial-ordered planning (more particularly POP
[Weld, 1994]), but with important differences that emerge from the interaction
of information and causal requirements. In this section, we will explain the dif-
ferences.

POP is a regression planner that operates on the space of partially-ordered
plans. A partially-ordered plan consists of a set of steps, a set of ordering con-
straints between the steps, and a set of causal links also between the steps. Each
plan step is a Strips operator, with instantiated variables. A causal link Si

c→ Sj

state that Si achieves precondition c for Sj. Planning in POP starts with an ini-
tial plan that should be refined until a solution plan is obtained. The initial plan
contains a start state and a goal state as its only two steps. The start step has
no preconditions, and has the initial state of the world as its effects. The finish
step contains no effects, and has the goals as preconditions.

In our configuration planner, a configuration contains a set of functional-
ity instances, ordering constraints between the functionality instances, a set of
causal links and a set of information links between the functionality instances.
The causal links are treated in the same way as in POP (i.e. threats are re-
solved by promotion or demotion). However, functionality instances differ from
steps (Strips operators) in the fact that they can have information inputs and
outputs. The presence of an information link between an output and an input
does not explicitly imply a change in the world state: sending information doesn’t
erase other information. Therefore, there cannot be conflicts between information
links. What an information link does imply, is an execution time constraint of
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simultaneousness between the functionality instances that generate the input and
the output involved on the link.

In our configuration planner, since a functionality instance could at the same
time satisfy an information requirement for one instance, and a causal require-
ment for another instance, the mechanisms for finding conflicts have to consider
not only sequential but also simultaneous execution. Fully admissible configura-
tion plans, just as POP solution plans, may still remain partially-ordered, allow-
ing configuration plans to be as flexible as possible. When a configuration plan is
chosen for execution, a scheduler can choose to assign execution times that are
consistent with the constraints between the functionality instances.

6.4.1 Properties

POP is complete and optimal as long as its search strategy is complete and
optimal (note that POP is not restricted to any particular search strategy). The
same can be applied to this approach of configuration planning, since it shares
the same features of POP that allow this statement to hold. However, it has the
same drawbacks: the branching factor can be high, especially considering conflict
resolution. The use of the heuristic chain for search stack ordering and pruning
is intended to reduce branching factor and to achieve optimality. However, as
information links cannot by themselves lead to conflicts (only causal links can do
that) we consider the branching factor a lesser problem in configuration planning
than in partial-order task planning. As a matter of fact, the information links
can be efficiently managed by the kind of regressive search performed by our
configuration planner.

6.5 Implementation

We have implemented our own configuration planning framework in Java. This
framework is intended to facilitate testing and comparisons of different configu-
ration planning approaches. It contains two basic packages:

• One package that contains classes for functionalities, states, and configura-
tion plans.

• One package that contains classes for performing search. This package sup-
ports implementing and testing alternative search strategies.

6.6 Ongoing work

The next version of our configuration planner will be able to plan with partially-
ordered preferences. Preferences are desirable because they can support resource
handling (whether using the expensive test stripes or not, depending on whether
we prefer a quick test or if we can wait until the stripes are fetched), they can
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allow the planner to get more “preferable” configurations , and because they can
also be used to express richer goals for the whole system (a functionality can
express its requirements in terms of preferences, e.g. a service could prefer to use
the information gathered by the pressure sensor in the bed, than the information
gathered by the movement sensor in the bedroom, in order to determine the
amount of sleep that a person had).

The mathematical framework that we are using to represent partially-ordered
preferences is the semiring-based soft constraints framework Bistarelli et al. [1999].
This will have a significant effect on the definitions of a functionality, a configu-
ration, causal and information links, and admissibility.
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7 Integration of Configuration Planner and Con-

text Recognition

The interaction of configuration planning and context recognition is performed
with Java remote method invocation (RMI). RMI allows the context recognition
to call methods and retrieve data from the configuration planner.

The most basic form of interaction is that the context recognition requests a
state variable, such as couch.occupied.boolean, from the configuration planner.
The latter responds directly with the corresponding sensor name, which can be
uses to access data from the sensor in the data storage.

During a transition period there is the need to still allow sensors to be ref-
erenced directly, i.e. by using the database name of sensors in the configuration
file that describes the rules that are used by the configuration file. In order to
facilitate this transition goals to the configuration planner are prepended with
an @ character, while direct sensor references are written without the prepended
character.

The following preprocessing statement contains a request for the configuration
planner to resolve the database name for a couch occupied variable:

<preproc name="average" in="@couch.occupied.boolean" out="in couch"

lim="0.99"/>

The same direct reference looks like this:
<preproc name="average" in="sensors.livingroom couch.couch occupied"

out="in couch" lim="0.99"/>

In general, when the context recognition needs to monitor some activity, a
set of information goals is generated by selecting the state variables to monitor,
according to the inference rules considered in each case. These goals are transfered
to the configuraion planner by RMIs.

The configuration planner should choose a configuration after it finishes plan-
ning. The configuration planner currently guides the search with a histogram-
based heuristic chain, in which it tries to satisfy the configurations with the
higher chances to be satisfied, starting with the most failure-prone unsatisfied
link in that functionality. This heuristic leads to choosing the plans with the
higher chances to be repaired in case of a failure, given the current conditions
of the world representation. The first configuration found is the safest configura-
tion, in which repairs are easier to perform. Unless anything is specified as a goal
preference (ongoing work), the safest configuration are chosen by default.

After the configuration is chosen, the configuration planner should execute it.
Execution of a configuration implies setting subscriptions of functionality inputs
to the proper functionality outputs, allowing the execution of a functionality to
satisfy a causal requirement, and combining these two actions with the execution
constraints of the configuration. After all subscriptions are set for information
links, and all causal requirements are sequentially satisfied for causal links, the

47



outputs of information goals are directed to the output topic of each goal. Fi-
nally, the conguration planner returns the database key for accessing the resulting
data. If the data comes directly from a sensor, then the sensor name is returned.
Otherwise, the topic for the output of the relevant functionality is returned.

If no acceptable configuration was found, the configuration planner returns a
message ”error: no configuration was found” message on the output topic of the
failed goal.

We expect this protocol to develop further as we continue to develop the
interaction between context recognition and configuration planning. Therefore,
the protocol has been designed to be easily extendible.
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8 Deployment

In this section we describe the flow of data from the sensors, through the con-
text recognition, and finally to the database. We also describe how the context
recognition module support the context recognition in accessing sensor data.

Currently the working context recognition system, including the custom made
sensors utilizes both the MQTT middleware (see mqtt.org) and a REST API
(HTTP) to retrieve sensor data from the database. In addition, the ORU-specific
PEIS middleware middleware (similar to MQTT) is currently used for internal
communication in the CR system but will be phased out.

The sensors currently used for context recognition in the test apartment in
Ängen are the custom ones provided by ORU and the ones provided by Tun-
stall. The data from the custom sensors are recieved by a USB-“basestation”
running on a Linux machine in the apartment. This data is then re-interpreted
at different levels and finally published on MQTT. In this chain the data con-
sists of “unit-less” AD-readings, which are eventually transformed into a more
meaningful representation, depending the type of sensor and by applying different
thresholds. For instance, temperature can be represented in degrees Celsius, or
occupancy for determining when someone is sitting on a couch can be specified
as a weight threshold for a pressure sensor.

The Tunstall sensors only provide boolean readings, such as motion from a
pir sensor, stats of an electical appliance, or bed occupancy. Thus, these sensors
provide similar functionality in most cases, but their configuration are mostly
done physically on the sensor itself. These sensors are connected to a gateway
running on a windows computer in the apartment and publish their data directly
into MQTT in the same topic format as the one utilized by the custom sensors,
an example of the data format of is included in Figure 18.

As mentioned, the MQTT middleware works like a distributed database, re-
laying data to all connected listeners. This means that it is possible to connect
to MQTT to get a current view of the ongoing events in the apartment, i.e. by
being notified of a change rather than having to query for the state. However, the
most important listener is the database listener running on the database server.
This listener stores the published data persistently in the database and makes it
available to other components over the REST protocol.

The database is accessed by the context recognition system which infers activ-
ities form the data contained therein. This can be done in two ways. The context
recognition can run in an off-line mode, and in this mode a particular window of
time is provided to the CR system. The data contained in the window of time
is then fetched from the database over the REST protocol and is preprocessed
to generate the higher level descriptions of sensory events. In the other case, the
context recognition system is supplied with a start date, from which it then con-
tinuously downloads all following samples. This is currently done approximately
each third second, but this frequency can be adjusted accordingly to how crucial
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1 {
2 ”home” : ”angen” ,
3 ”room” : ”bathroom” ,
4
5 ” category ” : ”xbee” ,
6 ” i n t e r v a l ” : ”3” ,
7 ”onchange” : ”no” ,
8 ” type ” : ” i r ” ,
9 ” un i t ” : ” boolean ” ,

10 ” s e n s o r i d ” : ”bathroom . motion” ,
11
12 ” time ” : ” 2 0 1 3 . 0 1 . 1 5 . 1 3 . 2 3 . 2 4 . 7 5 8 ” ,
13 ” value ” : ” f a l s e ”
14
15 ” l a s t t i m e ” : ” 2 0 1 3 . 0 1 . 1 5 . 1 3 . 2 3 . 2 1 . 8 3 1 ” ,
16 ” l a s t v a l u e ” : ” f a l s e ” ,
17 }

Figure 18: Example of a JSON entry describing one received sample.

it is to detect an activity on time. Regardless of the polling frequency, the final
result should be the same. Furthermore, downloaded data is stored locally and
encrypted on the computer running the context recognition in order to minimize
retransmissions of the same data. For privacy reasons the encryption key can be
set to the same as the key used to access past data from the database, thus this
imposes no overhead in terms of security.

As mentioned, the downloaded data is used to form higher level descriptions
of the sensory events in the apartment by the preprocessing component. This
can include, for instance, generating a set of intervals that define when a person
is lying in bed from the discrete samples coming from a bed pressure sensor.
These sets of intervals are maintained locally and are available to the actual
context recognition engine which reads these, applies the temporal constraints
accordingly to the domain description and generates new higher level defining
activities which are grounded in the sets of preprocessed intervals.

Finally, a timeline extraction component is continuously monitoring the set
of activities for changes. When a change is detected one descriptive timeline
is extracted from the multiple possibilities defined by the sets of intervals and
published back into MQTT. Due to the fact that the extracted timelines does
not have a “natural identity” (i.e. it is difficult to associate one instance of a
performed activity with another one extracted a few seconds after in the presence
of additional data) the interval data sent over MQTT invalidates past contents
of the database for a defined period of time. An example of a JSON entry sent
over MQTT is included in Figure 19
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1 ” act iv i ty name ” : ” a c t i n b e d ” ,
2 ” updat e s t a r t ” : ” 2 0 1 2 . 1 2 . 1 9 . 1 4 . 0 0 . 0 0 . 0 0 0 ” ,
3 ” update end ” : ” 2 0 1 2 . 1 2 . 1 9 . 1 5 . 0 0 . 0 0 . 0 0 0 ” .
4 ”home” : ”angen” ,
5 ”room” : ”bedroom” ,
6
7 ” i n t e r v a l s ” : [
8 {
9 ” s t a r t ” : ” 2 0 1 2 . 1 2 . 1 9 . 1 4 . 1 6 . 2 9 . 0 0 0 ”

10 ”end” : ” 2 0 1 2 . 1 2 . 1 9 . 1 4 . 4 7 . 4 5 . 0 0 0 ” ,
11 } ,
12
13 {
14 ” s t a r t ” : ” 2 0 1 2 . 1 2 . 1 9 . 1 4 . 5 2 . 3 2 . 0 0 0 ”
15 ”end” : ” 2 0 1 2 . 1 2 . 1 9 . 1 5 . 0 0 . 0 0 . 0 0 0 ” ,
16 }
17
18 ]

Figure 19: Example of a JSON entry describing a set of extracted intervals.

As previously mentioned, the configuration planner allows us to separate the
descriptions of sensors and preprocessing of sensor data from the more abstract
descriptions of activities, which in turn allows the GiraffPlus system to use the
same activity descriptions and perform the same inferences in different apart-
ments with different sets of sensors available, or in the same apartment as sensors
are added, removed, or fail. In the current version of the GiraffPlus system, the
main role of the configuration planner is to match the state variables requested
by the context recognition to the available sensors, as is described in section 7.
In addition, the configuration planner has the capability to add functionalities
that perform processing of sensor data such as transformations and thresholds.
These functionalites are presently implemented as Python scripts and utilize the
MQTT middleware for accessing data from the sensors and storing in the data
storage. They are invoked from the configuration planner as Linux processes.
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9 Demonstration

In order to assess the functionality of the current versions of the context recog-
nition and configuration planning systems we exposed them to a series of tests
performed in Ängen, which is an apartment at a residence for elderly in Örebro
which has been used as a first test site. During these tests we performed activ-
ities in the monitored environment that were thought to be typical for elderly
people, and which were included in deliverable D1.1 User Requirements & Design
Principles Report. Data from these test are also included in the video demonstra-
tion (Deliverable 5.2 Video-milestone 1). In short, the tests consisted of a subject
moving around in the apartment in order to verify that the localization of the in-
habitant is working correctly (e.g. that the passive infrared sensors were working
as intended). Additionally, we monitored Sleeping, Showering, Cooking and
WatchingTV activities. The demo consisted of performing a 7 day scenario in
the apartment following a pre-written script. Due to practical limitations the 7
day script was performed at a more rapid pace (e.g. instead of lying in bed for 9
hours sleeping the same activity was reduced to a few minutes). Figure 20 shows
parts of the timelines generated during the demonstration.

The sensors that were employed in this demo were the custom sensors made
by ORU and the Tunstall sensors. The data from these sensors were continuously
sent to and stored in a database at XLab. The storage system had been tried
extensively prior to this demo, at the time of writing the database contained
approximately 8 million samples collected from the Ängen apartment. The work
of setting up the network and integrating the sensors were part of WP2 and WP6.

During the demo the context recognition and configuration planning systems
were started on a computer in the Ängen apartment, and although the recognition
was performed at the site this was purely a matter of convenience at the time.
Since the context recognition’s sole source of samples is the database there are no
physical limitations on where the software is actually run, in fact, each module
of the context recognition system can in principle be run at different locations.
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Figure 20: Part of timelines generated during demonstration)
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10 Conclusions

In this report, which constitutes deliverable 3.1 of WP3 about Intelligent Mon-
itoring and Adaptation Services, we have presented prototypes of the context
recognition and configuration planning components. These prototypes have been
used in the M12 demonstration of WP5.

A prototype of the context recognition module has been developed in task
3.1 Long-term context recognition, and we asses that its capabilities matches
the requirements. During the first year, focus has been on the context inference
level, and in particular to make inference more robust in case of missing data.
During years two and three, we in addition intend to develop methods for data
interpretation in order to go from continuous signals to abstract state variables,
to merge data from several (redundant) sources including physiological sensors,
to handle context-dependency (e.g. time of the day) in data interpretation and
inferences, and to handle uncertainty.

A prototype of the configuration planner has been developed in task 3.2
Configuration planning for efficient activity recognition. An approach
inspired by partial-order planning has been used, as we consider this suitable
for information goals and it facilitates adding goals incrementally as well as re-
planning in case a device malfunctions. During years two and three, we intend to
explore efficient heuristics for the planner, and we intend to include preferences in
order to handle conflicting objectives. In addition, we will explore the dynamics
of configuration planning, including arrival of new goals and completion of old
goals, and monitoring and repair of configurations.

An early integration of context recognition and configuration planning has
been developed in task 3.3 Integration of context inference and configu-
ration planning. This integration consists of a protocol which allows the context
recognition component to request goals in terms of state variables from the con-
figuration planner. A richer integration which supports e.g. alternative ways do
recognize activities and preferences on those will be developed during years two
and three. Finally, methods for deploying a configuration have been developed
in task 3.5 Deployment; future work includes monitoring of configurations to
detect e.g. malfunctioning devices.
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A Tasks of WP3 accordining to DoW

Task 3.1 Long-term context recognition (OrU)

Context recognition must provide two capabilities in order to guarantee that
relevant events/activities and trends are recognized in a timely fashion. First,
data received from the sensor network needs to be interpreted and represented in
symbolic form in order to allow inference mechanisms to assess whether specific
conditions hold. This equates to bringing signal-level data (e.g., the readings of a
proximity sensor, or raw physiological data) to a higher level of abstraction that
indicates crisp states of the human being and of the environment. The second step
is to actually perform inference in this information in order to obtain high-level
descriptors of the state of the human user which can support human decision
making (e.g., activities of daily living). The former problem of bridging the gap
between signal-level data and symbols will be addressed using data-driven tech-
niques like Hidden Markov Models, Neural Networks and other Machine Learning
methods. The second step will be achieved through the use of constraint-based
reasoning techniques. For instance, we want to be able to use information about
the assisted person entering the kitchen (a primitive event which can be detected
by sensors after some processing) as part of an inference that the user is hav-
ing lunch (abstract activity). The benefit of using constraint-based techniques is
twofold: first, it has been shown that these techniques scale well to long temporal
horizons (i.e., the context recognition system can operate continuously, automati-
cally inferring when “older” events should be discarded and dynamically adapting
its search procedure to large amounts of data); a second benefit is that planning
can be directly integrated in to the inference procedure, which entails that cer-
tain system’s events such as reminders and warnings can be directly modeled
into the specification of behavioural patterns, and their execution state can be
monitored (e.g., recognizing if a person has not understood a warning and re-
acting to this contingency). A particular challenge that we will address is that
particular correlations of physiological/environmental sensor readings should be
defined in a redundant manner, i.e., there may be several partially overlapping
criteria that indicate the same high-level state. For instance, the way in which
blood sugar level should correlate to meal assumption is strongly dependent on
the time of day, on the person, and on other physiological factors. More in gen-
eral, context recognition will work under different conditions in different homes,
or even in the same home at different points in time, as the set of available sen-
sors and their deployment may vary from case to case. A second challenge that
we will address is to combine data-driven methods for activity recognition as a
“pre-processing” step for the symbolic reasoning layer. This will add significant
capabilities to the system in terms of real-world deployability. To this end, we
will employ probabilistic reasoning techniques at the symbolic level in order to
heed against sensory uncertainty. Techniques we will investigate include Bayesian
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networks, which have been shown to integrate well with general constraint rea-
soning infrastructures. Also, in order to enhance the system’s ability to recognize
context under different conditions and evolving personal habits and behaviours,
constraint-based context inference will be supported by selected machine learning
techniques for activity recognition (e.g., [Wu et al., 2007, Patterson et al., 2005]).
This will endow the system with sufficient self-learning capabilities for deploy-
ment in different contexts with different users. These techniques will also be used
to develop simple self-adaptation to evolving personal habits of the users. Thus
while constraint-based probabilistic contextual models will provide flexible and
easily customizable models for context recognition and automated trend analysis,
learning techniques employed on specific elements of these models will provide
adaptation to small changes in behavior over time. Overall, this task will con-
tribute important scientific contributions, including hybrid methods for context
recognition and a more general suite of techniques which are not relegated to
activity recognition, rather extend contextual inference to other aspects of hu-
man monitoring. The activity recognition system will issue tasks in terms of what
primitive events to observe to the configuration planner (task 3.2). It will also
be connected to the user interface in WP4. An important part of this task is the
design and implementation of a contextual model in a representation. Parts of
this contextual model will also be accessible by the various users of the Giraff+
system through the user interfaces developed in WP 4. A first prototype is deliv-
ered in M12 (D3.1), a second in M18 to be used at test sites (D3.2), a third with
uncertainty management in M30 (D3.3), and a final in M36 (D3.4).

Task 3.2 Configuration planning for efficient activity recognition (OrU)

Given a certain set of activities and a set of available sensors and programs for
extracting information from these sensors, the sensor network needs to be config-
ured in such a way that it is capable of of inferring the activities from the sensor
data. Such a configuration specifies what sensors to be used, and what programs
will be used to extract information at different levels of abstraction from them.
For this purpose, we will develop configuration planning techniques [Lundh et al.,
2008], that can automatically find an optimal configuration for a given task (i.e.
given set of activities of interest). This configuration must be based on “primitive
events” from the perspective of activity recognition, and there might be several
ways to detect these “primitive events”. Hence, the problem of configuration plan-
ning includes inferring what primitive events are necessary and/or sufficient for
recognizing the given activities. Configuration planning would permit to add or
remove sensors from a site: the configuration planner would then find a new con-
figuration based on the new set of sensors. Likewise, if the current configuration
does not perform its tasks satisfactorily (e.g. because a sensor malfunctions), a
configuration planner could find a better one. This task includes handling such
cases. In addition, the configuration planner should ensure that the sensor system
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is used in an efficient manner and that sensors that are not needed are switched
off. The configuration planner will take tasks as input from the context recogni-
tion module (task 3.1). It might also take tasks related to services requested by
the user from the Client-side UI (WP 4). A first prototype is delivered in M12
(D3.1), a second in M18 at test sites (D3.2), a third with dynamic and multiple
objectives and changing devices in M30 (D3.3), and a final in M36 (D3.4).

Task 3.3 Integration of context inference and configuration planning
(OrU)

This task will focus on the integration of configuration planning into the constraint-
based context inference framework developed in task 3.1. Specifically, work will
proceed in two stages. First, the ability to specify hierarchical decompositions
will be built into the constraint reasoning system. This will allow complementing
the constraint language used for specifying correlations between sensor readings
and human state with relevant information on which sensors should be activated
and how they should be configured to maximize the information gathering pro-
cess. Secondly, work will focus on developing hierarchical reasoning techniques on
top of the temporal inference mechanism of the context inference and actuation
infrastructure. This will result in a hybrid planning algorithm which can reason
upon quantified temporal relationships while searching for appropriate configura-
tions of sensors. The algorithm will employ multi-objective optimization criteria,
whereby temporal constraint satisfability (which is the basis for context inference)
will be enforced while (1) maximizing the likelihood of inferred context based on
given measures of uncertainty (developed in task 2.1), and (2) optimizing the
cost of sensing and acting in the environment (which is the main optimization
criteria for configuration planning). A first prototype of the resulting system will
be available in month 12. It will be integrated into the test sites by month 18
(see WP5), and further refined during the rest of the project to take into ac-
count the requirements stemming from evaluations with users. A third prototype
is delivered in M30 (D3.3), and a final in M36. (D3.4).

Task 3.5 Deployment (OrU, CNR-ISTC, MDH)

In connection with the integration tasks of WP5, this task aims to design and
implement routines for taking a description of a configuration generated by the
configuration planner and start and connect the actual sensors, devices, inter-
faces and other programs specified in that description. In addition, failures in
components and communication as well as successful task completions should be
detected and responded to by reconfiguration.
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