

D2.3 Third Prototype of sensors, Giraff platform and network
system report

WP related to the Deliverable: 2

Nature: P

Dissemination Level : PU

Version: 2

Author(s): Filippo Palumbo (CNR-ISTI), Davide La Rosa
(CNR-ISTI), Francesco Potortì (CNR-ISTI), Erina
Ferro (CNR-ISTI), Michele Girolami (CNR-ISTI),
Ales Stimec (XLAB), Maria Lindén (MDH),
Gregory Koshmak (MDH), Eleni Odontidou
(Giraff), Javier Gonzalez (UMA), Cipriano
Galindo (UMA)

Project Participant(s) Contributing: CNR-ISTI, XLAB, MDH, Giraff, UMA

Contractual Date of Delivery: 20140701

Actual Date of Delivery: 20140701

Project Acronym: GiraffPlus
Project Title: Combining social interaction and
long term monitoring for promoting independent
living
Grant agreement no.: 288173
Starting date: 1st January 2012
Ending date: 31st December 2014

GiraffPlus D2.3

Version Final 15th of July 2014 2

Document History

Version Date Type of editing Editorial

0.0 13/06/14 Table of Content and Initial Draft CNR-ISTI

0.1 26/06/14 First round of contribution integrated CNR-ISTI
0.2 06/07/14 Addition of CNR-ISTI and UMA contribution CNR-ISTI
1.0 09/07/14 Complete version before internal review CNR-ISTI
1.1 14/07/14 Revised version after internal review CNR-ISTI
Final 15/07/14 Final version of the document CNR-ISTI

Disclaimer:

No confidential material is included therein.

Deliverable Summary

This document reports on the third prototype of the system that is currently deployed in all test sites.

The third prototype at month 30 provides the final version of the network system and the second and final
version of the Giraff platform. A middleware solution helps to integrate the software components
developed by the WP3 and WP4 and enhanced Giraff platform with safer and semi-autonomous mobility
features.

The prototype includes the Giraff robot, the Look4Myhealth kit, the monitoring sensors from Tunstall,
additional environmental sensors, a physiological sensor for pulse oximetry measurements based on
Android, the context recognition and configuration planning modules, and the remote storage and
repository to collect user data.

Additionally a new wearable sensor containing an inertial system is also introduced. It can be carried out by
the primary user and used to give additional information regarding the user activities.

The final version of the middleware is presented and the semi-autonomy features for the Giraff robot are
described.

GiraffPlus D2.3

Version Final 15th of July 2014 3

Table of Content

1 INTRODUCTION ... 6

1.1 SCOPE OF THE DOCUMENT... 6
1.2 DELIVERABLE STRUCTURE .. 6
1.3 DEVIATIONS WITH RESPECT TO THE PLAN .. 6

2 THE SENSOR NETWORK SYSTEM ... 9

2.1 MAIN COMPONENTS .. 9
2.2 GUARANTEEING THE SENSOR NETWORK ROBUSTNESS ... 11
2.3 ADDITIONAL SENSORS SELECTION AND INTEGRATION .. 13

2.3.1 Wearable inertial sensors ... 13
2.3.2 Pulse Oximeter and Fall Detector .. 16

3 THE MIDDLEWARE ...17

3.1 THE DESKTOP AND MOBILE STABLE VERSIONS .. 17
3.2 NEW FEATURES ... 19

3.2.1 Enriched interfaces .. 19
3.2.2 Heartbeat .. 21
3.2.3 Failover mechanism .. 22
3.2.4 Dynamic reconfiguration .. 23

3.3 GUARANTEEING THE MIDDLEWARE ROBUSTNESS .. 24
3.3.1 Maintenance and bug fixing ... 24
3.3.2 Scalability .. 25

4 THE GIRAFF PLATFORM ..29

4.1 COLLABORATIVE CONTROL ... 29
4.2 GIRAFF SOFTWARE ... 32

APPENDIX 1 - SELECTION OF CHANGES AND BUGFIXES TO THE GIRAFF AND PILOT SOFTWARE OF RELEASE 2.434

REFERENCES ..36

GiraffPlus D2.3

Version Final 15th of July 2014 4

List of Tables

Table 1 Matching requirements from DoW with results achieved at M30 ... 6
Table 2 Energy consumption in mW.. 27

GiraffPlus D2.3

Version Final 15th of July 2014 5

List of Figures

Figure 1 A screenshot of the GiraffPlus Engineer GUI ... 9
Figure 2 The sensor integration mechanism ... 10
Figure 3 The test chain .. 11
Figure 4 Probability density function of the transmission delay ... 12
Figure 5 Cumulative distribution function of the transmission delay ... 12
Figure 6 The Pebble SmartWatch .. 13
Figure 7 Pebble App and Phone App possible communication diagram .. 14
Figure 8 Pebble watch reference axes .. 15
Figure 9 An in-depth view of the middleware component ... 17
Figure 10 The Android middleware architecture with component (a) and class (b) diagram 18
Figure 11 The failover mechanism phases .. 22
Figure 12 The failover mechanism sequence diagram. In the figure ti represents i-th the topic, mi represents
the message, ri the retained flag for the i-th message, and idi the i-th identifier assigned by mongo db. 23
Figure 13 Middleware latency with 1 producer and 1 consumer varying the requests per second............... 25
Figure 14 Middleware latency with 1 consumer varying the number of producers transmitting at 5 requests
per seconds .. 26
Figure 15 Middleware latency varying the number of consumers with 1, 10, 25, and 50 producers
transmitting at 5 requests per seconds ... 27
Figure 16 Comparison of energy consumptions in one hour of test of the two different approaches analyzed
with respect to the ALL-ON situation. The WiFi Scan saves 60.5% while the proposed solution saves the
67.5% still remaining connected to the GiraffPlus system .. 28
Figure 17 Two typical cases where the collaborative control proves its suitability for teleoperation. a) The
user drives the robot towards an obstacle. b) The user wants to cross a door by marking a point inside the
room. In both cases the collaborative control generates appropriate paths to arrive the user destination
while negotiating obstacles. .. 29
Figure 18 Secondary User Interface in Collaborative Control Mode... 30
Figure 19 Collaborative control integrated with the architecture presented in D2.2 31
Figure 20 Selection of the user destination and transformation into the global reference frame of the
localization system .. 32

file:///D:/SkyDrive/ISTI/GIRAFF+/D2.3/GiraffPlus_D2.3_v1.0_AC.docx%23_Toc393197891

GiraffPlus D2.3

Version Final 15th of July 2014 6

1 Introduction

1.1 Scope of the document

The document is a progress report with respect of the D2.2 and describes the third
prototype of sensors, Giraff robot, and the GiraffPlus integrated system. The final version
of the sensor network system is provided together with second and final version of the
Giraff platform. There have been improvements on all parts of the system and novel
features additions. In particular, the stable version of the middleware has been released in
its desktop and mobile adaptation, allowing new features as heartbeat, failover system,
and dynamic reconfiguration. New wearable inertial system has been investigated and
ready to be integrated. Finally, the Giraff platform in its improvements is presented
allowing collaborative control between the human teleoperator and the onboard motion.

A considerable effort has been spent during this period on providing stability and
robustness of the system. In particular, the results of stress tests performed on sensors
readings latency and middleware performance are presented.

This third prototype of the GiraffPlus system is currently under deployment at 15 test sites.

1.2 Deliverable structure

The document starts with an outline of what has been achieved and how it matches the
DoW. In section 2 the sensor network system is described, section 3 focuses on the
middleware infrastructure, while section 4 is dedicated to the Giraff platform and its
collaborative control feature. Each section presents the effort made in terms of new
features, tests, and bug fixing.

1.3 Deviations with respect to the plan

The project is proceeding according to the plan outlined in the DoW with no deviations. In
particular, Table 1 shows how the requirements of the DoW are matched to what has been
achieved by month 30 in the project.

Table 1 Matching requirements from DoW with results achieved at M30

Required from the DoW Achieved at month 30

Sensor network design and
implementation:
The network infrastructure is refined
according to the needs of other WPs

Section 2

The solutions adopted in order to allow
plug-and-play use of sensors/actuators and
other equipment already available on the
market have been consolidated and tested.

The network infrastructure has been
refined according to the needs of the other

GiraffPlus D2.3

Version Final 15th of July 2014 7

WPs. The refinements to the main
components of the sensor network system,
the tests made in order to guarantee the
robustness of the sensor network are
described in section 2.2.

Middleware design and implementation:
The final version of the middleware is
delivered

Section 3

The final version of the middleware has
been delivered al month 30 and presented
in an international peer reviewed journal,
featuring new functionalities and hardware
and operating system compatibilities.

New features regarding the heartbeat,
failover and dynamic reconfiguration
mechanisms are described in section 3.2.

The tests performed in order to guarantee
robustness and scalability of the
middleware infrastructure are described in
section 3.3.

Development of Giraff robot platform:
A new version of the platform is delivered

Section 4

The new software version (v2.4) for both
Giraff and Pilot developed and released
during this period includes new features
for the 4.0 version Giraffs which are related
with the night vision and height
adjustment.

A lot of changes and bug fixing has been
made and described in section 4.2 and
Appendix 1.

Additional sensor selection and design:
A complete version of the sensor system
ready for the last evaluation

Section 2

Additional inertial wearable sensors were
selected to be integrated with the Android
mobile version of the GiraffPlus platform.
After an accurate review of the commercial
available solutions, the Pebble SmartWatch
was selected as the optimal choice (Section
2.3.1).

GiraffPlus D2.3

Version Final 15th of July 2014 8

Android-based sensor platform has been
successfully integrated into the GiraffPlus
platform. As a result, MDHPulseOximeter
and MDHFallDetector were added to the
system (via Engineering GUI) as
complementary sensors (Section 2.3.2).

Additional control functionalities were
introduced, including wireless network
availability, average activity check and
“switch on/off status” notifications.

Enabling safe and secure communication:
An intermediate version is available

Section 3

A continuous maintenance activity was
carried out during the period and, since the
deliverable D2.2 some bug fixing were
performed on the libraries used in order to
guarantee safe and secure communication
between services (Section 3.3.1).

Improvement of Giraff mobility:
Giraff platform collaborative control
between the human teleoperator and the
onboard motion system to facilitate
passing through doors, corridors and
clutter spaces

Section 4

According to the requirements for the third
prototype of the GiraffPlus system at
month 30, the robotic platform has been
enhanced with a collaborative control
system, which consists of a high-level
controller that extends the capabilities of
the prototype presented in deliverable
D2.2.

It complements the motion commands
from the driver with the semiautonomous
navigation system to safely pass through
doors, corridors, and cluttered spaces.

GiraffPlus D2.3

Version Final 15th of July 2014 9

2 The Sensor Network System

The solutions adopted in order to allow plug-and-play use of sensors/actuators and other
equipment already available on the market have been consolidated and tested. The network
infrastructure has been refined according to the needs of the other WPs. The refinements to the
main components of the sensor network system, the tests made in order to guarantee the
robustness of the sensor network, and the additional sensors selected and integrated are
described in the following subsections.

2.1 Main components

Environmental sensors provided by Tunstall, physiological sensors provided by Intellicare,
and additional ZigBee and wearable sensors are integrated in the GiraffPlus system by
means of gateways [1] exploiting the capabilities of the GiraffPlus middleware as described
in D2.2.

The gateways deployed to the set-top boxes and android tablets installed in the primary
user house, listens for sensed data, and publishes the information to the context bus when
an event is raised.

Figure 1 A screenshot of the GiraffPlus Engineer GUI

The first configuration of a newly installed sensor is made through the GiraffPlus Engineer
GUI (Figure 1). It enables the GiraffPlus professionals to enter and edit configuration data

GiraffPlus D2.3

Version Final 15th of July 2014 10

for any home included in the GiraffPlus ecosystem. The GUI is a wizard-like web
application, which can be used from any web-enabled device using any web of the major
web browsers. It was implemented in Java using the Play Framework [2]. In the backend it
communicates securely with the GiraffPlus Storage Web Service to store all configuration
data in the underlying database.

Figure 2 The sensor integration mechanism

Figure 2 shows the steps involved in the integration of Tunstall gateway and how its data
format is translated into the data schema managed by the middleware. The same steps are
performed for other sensors integrated in the system. When a new sensor is installed in
the house, it is configured by means of the Engineer GUI (Step 1), the Server Infrastructure
middleware instance publish on the Control Bus topic:

<<location>>/controlBus/configuration

a JSON file (configuration.json) containing the new configuration (Step 2). Since the
Tunstall sensor data schema is composed of several event codes representing all the
possible events that a sensor can trigger, the Tunstall driver component developed upon
the GiraffPlus middleware maintains in memory a table that associates a possible event to
a sensor, described in terms of ServiceDescriptor. This table is updated with the
information about the new configuration forwarded by the middleware (Step 3) and the
announce method is called on the Service Bus notifying all the interested service about the
presence of a new sensor (Step 4). When an event is triggered by the new sensor (step 5), a
translation from event code to the GiraffPlus message format is done (Step 6) and the
message is published on the Context Bus topic composed of the keyword ”sensor” and the
configured ”id” (Step 7). Once the message is published, each component that was
subscribed on that topic will receive the message (Step 8). This is the case of DVPIS,
monitoring real time data and alarms, and GiraffPlus MQTT Listener, storing historical
context data for future long term data analysis. These steps are also made when a sensor is
removed or changed in its configuration.

GiraffPlus D2.3

Version Final 15th of July 2014 11

2.2 Guaranteeing the sensor network robustness

One of the main goals of the GiraffPlus system is the possibility to monitor in the long-term
period the activities and behaviors of the user while he/she interacts with the
environment. In this context, the reliability of the sensor network plays a crucial role. For
this reason, we performed several tests to determine the performance of the chosen
sensor network solution in terms of transmission delay and message-loss.

Figure 3 The test chain

Figure 3 shows the laboratory testbed used. It is composed of an Arduino-based [3] Intel®
Galileo Development Board controlling a relay that switches on/off the Tunstall Universal
Sensor simulating a sequence of 2000 messages for chair pressure on/off at variable
interval from 10 to 30 seconds.

We calculated the transmission delay for each message comparing the timestamp t
generated by the Arduino board sent through the control bus of the middleware and the
timestamp t’ received by the gateway and sent to the context bus of the middleware
through the Tapit interface.

Figure 4 shows the probability density function of the obtained results in terms of
transmission delay. A very noticeable result is that on all the tests we received all the
message sent, obtaining a zero message-loss. It must be noted that this high level of
reliability is achieved at the expense of quite high average delay in message delivery. We
observed an average delay of 3519 milliseconds with a standard deviation of 713.98
milliseconds. Such times are acceptable for GiraffPlus applications that deal with near real
time scenario e.g., long term monitoring of user mobility, time spent in particular locations,
and alarms which must be managed by human intervention (typically in the order of
minutes).

GiraffPlus D2.3

Version Final 15th of July 2014 12

Figure 4 Probability density function of the transmission delay

Figure 5 shows the cumulative distribution function of the transmission delay. We define
the error ε as the difference between t and t‘. The Cumulative Distribution Function (CDF)
of ε is the probability that the transmission delay takes a value less than or equal to e
milliseconds and it is defined in equation (1). The obtained CDF shows a 3785 milliseconds
tertile (delay less than or equal to 3785 milliseconds in the 75 percent of measurements).

 (1)

Figure 5 Cumulative distribution function of the transmission delay

GiraffPlus D2.3

Version Final 15th of July 2014 13

These results demonstrate that this kind of solution fits well in a long-term monitoring
scenario where the need of reliable data is larger than the need for low latencies in
transmissions.

2.3 Additional sensors selection and integration

During the project, the need of collecting more data about the elderly activities arose and
to satisfy that, additional sensors have been selected to be integrated into the GiraffPlus
platform. These allow to study with more detail the elderly activities and also to generate
additional alarms in case of detected abnormal movements like falls.

2.3.1 Wearable inertial sensors

In order to integrate the data coming from the environmental and physiological sensors,
wearable inertial sensors can tell when and how much the person is moving and can help in
suggesting which activity is performing. One of the ways to achieve this objective is by
analysing the wrist movements.

Additional inertial wearable sensors were selected to be integrated with the Android
mobile version of the GiraffPlus platform. After an accurate review of the commercial
available solutions, the Pebble SmartWatch (Figure 6) was picked as the more appropriate
choice for the purpose of the project, in that it features a good trade-off between user
acceptability and additional monitoring characteristics:

 Open development platform

 Android API available

 Good battery life (about one week)

 Bluetooth 4 with low energy capabilities

 Accelerometer

 Vibration

 Data logging

 Persistent storage

 Accessible price (around 150€)

Additionally, custom Pebble applications can be implemented in C language and deployed
on the watch through a command line tool that could be also used to download the real-
time log generated by the system.

Figure 6 The Pebble SmartWatch

GiraffPlus D2.3

Version Final 15th of July 2014 14

Figure 7 Pebble App and Phone App possible communication diagram

The communications between a Pebble app and an Android app take place by exchanging a
set of key-value pairs (called Dictionary) following the scheme shown in Figure 7. The API
provided is called AppMessage and enables a bi-directional communication between the
devices. By using the callback mechanism, the watch app is notified when a message is
received from the android phone/tablet and vice versa. Moreover an acknowledgment
message allows to be notified in case of errors while sending or receiving data.

The Pebble hardware accelerometer is able to detect taps, perform measures at a given
frequency, and transmit samples in batches to save CPU time and processing. In the API,
data events on a three-dimensional axis are simply enumerated as raw x, y and z 16-bit
signed integers. Each value is measured in milliGs. Pebble accelerometer is calibrated to
measure a maximum acceleration of +/- 4G. When looking at Pebble, axes (shown in
Figure 8) are standardized to the following coordinates [4]:

 X+ Specifies left to right axis

 Y+ Bottom to top axis

 Z+ Coming up out of the watch

GiraffPlus D2.3

Version Final 15th of July 2014 15

Figure 8 Pebble watch reference axes

On the phone side, an app provided by the Pebble manufacturer is used to communicate
with the watch, providing to the developers an easy and efficient interface to interact with
the Pebble. This app also allows downloading from the Pebble Store additional apps to
personalize the watch functionalities like tracking the running activities, receiving news
alerts, calling predefined phone numbers, setting alarms and reminder in line with the
GiraffPlus use cases.

The application developed for the GiraffPlus system is an Android service that receives the
accelerometer data (x, y and z acceleration values expressed in milliGs) sampled at 10Hz
from the watch and sends it to the GiraffPlus system. This data can be elaborated to help
detecting falls or understanding the current activity carried out by the person wearing the
watch. To receive data from the Pebble app, the Android service implements a special
purpose BroadcastReceiver provided by the PebbleKit:

private PebbleKit.PebbleDataReceiver pebbleReceiver = new
 PebbleKit.PebbleDataReceiver (PEBBLE_MONITORING_APP_UUID) {

@Override
 public void receiveData (final Context context, final int

 transactionId, final PebbleDictionary data) {
 // Elaboration of the received data

}

The Pebble app is started or stopped on demand in order to save energy by calling the
correspondent:

PebbleKit.startAppOnPebble (context, PEBBLE_MONITORING_APP_UUID)

and:

PebbleKit.closeAppOnPebble (context, PEBBLE_MONITORING_APP_UUID)

Every Pebble App is identified by a unique ID that is defined in a manifest file at compile
time and that has to be provided every time we need to interact with that app.

GiraffPlus D2.3

Version Final 15th of July 2014 16

The Pebble SDK is definitely a fast and efficient development environment that reduced the
time needed to integrate the device into the GiraffPlus system. Additional applications like
sending notifications to the users both visually and with vibration can be developed to
increase the interaction level with the assisted persons. Moreover the device is expected to
have a good level of user acceptance in that it is not invasive and with size comparable with
normal watches. This makes the Pebble watch a good choice for extending the GiraffPlus
platform.

Additional services can be developed to increase the feedback level from the primary users
through simple questions displayed on the screen and reported back to the DVPIS,
tightening the connection between the elderly and the caregivers.

2.3.2 Pulse Oximeter and Fall Detector

Android-based sensor platform has been successfully integrated into the GiraffPlus
platform. As a result, MDHPulseOximeter and MDHFallDetector were added to the system
(via Engineering GUI) as complementary sensors. Additional control functionalities were
introduced, including wireless network availability, average activity check and “switch
on/off status” notifications.

A separate application has been developed to perform activity monitoring and fall
detection with alarm notification functionally based on Pushover [5] and GiraffPlus
middleware. The user is invited to choose the communication option depending on
monitoring circumstances.

Subsequently, a number of real-life tests were initiated to perform continuous monitoring
of physiological parameters and to assess both entities in terms of user acceptance, data
collection and communication reliability. Application has been tested and integrated into
the monitoring process.

With latest improvement, complementary sensors are able to communicate with
caregivers directly in case fall alarm has been triggered. Subsequently, a number of real-life
tests were initiated to perform continuous monitoring of physiological parameters and to
assess both entities in terms of user acceptance, data collection and communication
reliability. Both sensor functionalities were involved into the current research towards
context aware fall risk assessment, resulting in a journal publication [6].

GiraffPlus D2.3

Version Final 15th of July 2014 17

3 The Middleware

In addition to the smooth integration of equipment for sensing the environment, a middleware
solution is necessary in order to support the interaction between smart services and user
interfaces defined and deployed in the system. This middleware solution described in its main
functionalities in D2.2 has proven useful hiding heterogeneity and distribution of both hardware
and software resources.

The final version of the middleware has been delivered al month 30 and presented in [7], featuring
new functionalities and hardware and operating system compatibilities. These new features will
be described in details in the following subsections together with the tests made in order to
guarantee robustness and scalability of the middleware.

3.1 The desktop and mobile stable versions

Stable versions of the mobile and desktop middleware have been developed and deployed
in the running test sites. The code is available with ASL license [8] on the GiraffPlus svn
(https://giraffplus.xlab.si/svn/giraff/trunk), the mobile middleware service is available for
installation to GiraffPlus professionals on the Google play store [9], and the procedures and
best practices useful to install and maintain the middleware components are available on
the GiraffPlus wiki pages (http://wnlab.isti.cnr.it/giraffplus/).

Figure 9 An in-depth view of the middleware component

Figure 9 shows the component diagram of the final middleware desktop version reflecting
the reference architecture described in D2.2, while Figure 10 shows the component
diagram and class diagram of the final android middleware.

GiraffPlus D2.3

Version Final 15th of July 2014 18

a

b

Figure 10 The Android middleware architecture with component (a) and class (b) diagram

GiraffPlus D2.3

Version Final 15th of July 2014 19

3.2 New features

Some new features were added to the GiraffPlus platform, mainly to improve the reliability
of the overall system. The additional features with respect to the deliverable D2.2 are
presented in the following sections.

3.2.1 Enriched interfaces

In order to address the continuous feedback from developers and to accomplish the
requirement of having a feedback about the status of the middleware instances deployed
in the test sites, concerning the desktop version of the system, the Middleware interface
has been extended with the following functionalities:

 public Set<String> getLocation ()
This method returns the set of locations to which the current instance of the
middleware has access, based on the certificate used to connect to the server

 public boolean isReady ()
This method returns whether the middleware is ready to be used and it should be
called before any other method of this class

 public boolean configure (Dictionary properties)
This method allow the reconfiguration of the middleware instance at run-time
passing a set of key-value pairs containing the configuration information

 public LocationStatus getLastHeartbeat (String location,
String instance)
This method returns the information about the last heartbeat message received
from all the locations to which this instance has access. This method is used only
while the middleware is in “office” configuration

The CommunicationConnector interface has been also modified as well to comply with the
changes of the Middleware component with the following new functions:

 public int getPendingOperations ()
This method returns the number of operations that are currently pending to be
carried out by the MQTT library. Any reconfiguration of the connector should verify
that there are no pending operations before continuing

 public boolean configure (Dictionary properties)
Like in the previous interface, this method allow to reconfigure the communication
connector at run-time

 public void registerListener (CommunicationConnectorListener
listener)
This method allows to register a callback to be notified when the connection with
the MQTT broker is lost or established

GiraffPlus D2.3

Version Final 15th of July 2014 20

Regarding the Android version, the following methods were added to the IMiddleware
interface facilitating the process of retrieving the location configuration settings:

 String getLocation ()
Similar to the desktop version, this method returns the location configured within
the middleware instance

 String getAllSensors ()
This utility method returns the list of the sensors installed in the configured location
as a JSON formatted string.

 String getSensorsByManufacturer (String manufacturer)
This utility method returns the list of the sensors like the previous one but filtered
by a manufacturer name.

Also the GiraffPlus Storage API underwent changes to reflect modifications in the data
schema of underlying data entities and in the authentication mechanism (see deliverable
D5.4).

As before, the GiraffPlus Storage API allows other components to save, update, delete or
retrieve all entities defined in the changed data schema. There are, however, some
specifics connected to the data schema – e.g., a sensor entity cannot be retrieved
individually, as it is embedded in the home configuration entity, thus one must retrieve the
whole home configuration entity and then select the desired sensor within that entity.

Whereas this may seem a very limiting factor, we must understand that these entities are
mostly retrieved by the DVPIS or individual middleware instances, which require the entire
home configuration entity in any case – e.g., the DVPIS, to correctly visualize the home
configuration and retrieve sensor measurements, and middleware instances, to correctly
initialize all components and sensors in the home.

In terms of authentication and authorization, the GiraffPlus Storage API must now be
provided with a valid GiraffPlus certificate identifying the user or component trying to
access data via the Storage API. This certificate is then used to authorize and authenticate
against the GiraffPlus Storage LTS Web Service and to encrypt all communication between
the Storage API and the web service.

Two new functions were added to the GiraffPlus Storage API:

 List<SensorData> sendQueryWithPreSample (int numOfThreads,
ObjectId sensor, Date start, Date end)

The function returns, in addition to sensor readings in the defined time interval, the
last sensor reading before the defined time interval. This function is used in the
DVPIS and enables better visualization of certain kinds of data.

 Hashtable<ObjectId, List<SensorData>> sendMultiQuery
(List<SensorQuery> queries)

GiraffPlus D2.3

Version Final 15th of July 2014 21

This function allows the user to simultaneously define multiple queries (e.g., when
initializing the view in the DVPIS), which is faster than making multiple queries due
to latencies introduced by the authentication and authorization mechanisms.

3.2.2 Heartbeat

A feature strongly requested from the continuous evaluation and integration of the system
in the test sites was the possibility of monitoring the current state of the software modules
running on the test sites to notifying the technicians in case of software issues. Therefore,
in order to allow a real-time surveillance of the test site status, a heartbeat mechanism was
introduced. The heartbeat is basically a message sent periodically (currently every minute)
on the control bus that signal the middleware presence and gives useful information to the
technician in charge of monitoring the test sites. The topic on which this message is
published is:

<location>/controlBus/heartbeat/<instance>

where <instance> can be: home, tablet of giraff. Depending on the device on which the
GiraffPlus middleware is running, different information are sent within the heartbeat
message. This message is “retained”, that means the server will store and publish it to the
clients even if the sender goes offline. This allows receiving the last status in case a
middleware instance crashes or goes offline.

For the home and giraff versions the heartbeat contains:

 date: a timestamp of the sender time

 uptime: the time elapsed since the middleware has been started

 mw-version: the version of the middleware bundle currently installed

 mqtt-version: the version of the mqtt connector bundle currently installed

 local-db: a flag that indicates wheter the local db backup is enabled or not

 local-address: local IP addres of the machine on which the middleware is running

while for the tablet mobile version the heartbeat contains:

 date: a timestamp of the sender time

 uptime: the time elapsed since the middleware has been started

 imei: the unique identifier of the device

 plugged: whether the mobile device is plugged in to the mains or not

 battery-status: the state of the battery (charging, discharging, full, not charging)

 battery-level: the currently level of the battery (from 0.0 to 1.0)

 mw-version: the version of the middleware app installed

 mw-install: the installation date of the middleware app

 mw-updated: the last update date of the middleware app

 mqtt-version: the version of the communicator connection app installed

 mqtt-install: the installation date of the communicator connection app

 mqtt-updated: the last update date of the communicator connection app

GiraffPlus D2.3

Version Final 15th of July 2014 22

 onecare-version: the version of the OneCare app installed

 onecare-install: the installation date of the OneCare app

 onecare-updated: the last update date of the OneCare app

When a middleware instance is started with an “office” configuration, it keeps track of all
the heartbeats received from the “home”, “giraff”, or “tablet” instances to which it has
access, and by a call to the previously described getLastHeartbeat() the
correspondent status can be retrieved.

3.2.3 Failover mechanism

Another important request arose during the deployment phase of the system was a long
term backup mechanism. The development of this feature was triggered by the loss of data
in some test sites after an episode of long network disconnection. To improve the reliability
of the system in case of long term connection outages, a failover strategy was
implemented through the usage of a local instance of MongoDB [10]. When the system
detects a connection problem it simply switches to a local installed database and starts to
save the data within it. Later on, when the network connection is restored, then the locally
saved data is sent to the remote server (Figure 11).

Phase 1. Network is working normally

Phase 2. Network goes down

Phase 3. Messages are sent to the local
Mongo database

Phase 4. Network connection is established
again and the data is sent to the remote
server

Figure 11 The failover mechanism phases

The module that provides an interface with the local database is MqttBackup2Mongo. The
main methods exposed by this module are the following:

GiraffPlus D2.3

Version Final 15th of July 2014 23

 public void saveMessage(String topic, String message, boolean
retained)
This method saves the message on the DB

 public List<Object[]> getSavedMessages()
This method returns the list of the messages present on the local DB. Every entry of
the returned list is an array composed of four fields <topic, message, retained, id>

 public void dropMessage (String id)
This method removes from the database the entry with the given id

Going into the details, an example of typical interaction during a network outage is shown
in Figure 12.

Figure 12 The failover mechanism sequence diagram. In the figure ti represents i-th the topic, mi represents

the message, ri the retained flag for the i-th message, and idi the i-th identifier assigned by mongo db.

The MongoDB is installed as a Windows service and configured with automatic startup
during the testsite deployment. No further actions are required for its normal operation.

3.2.4 Dynamic reconfiguration

To improve the system flexibility, the possibility to programmatically change the
middleware configuration without the need to restart the related bundles was added. Is it
now possible to call the method configure() on the middleware instance passing the
following properties (with example values) as a Dictionary:

GiraffPlus D2.3

Version Final 15th of July 2014 24

 mw.keystore.trust.pwd=*******
 mw.keystore.trust.path=..//trust.jks

 mw.keystore.client.pwd=********

 mw.keystore.client.path=..//client.jks
 mw.configuration=home

 connector.keystore.trust.pwd=*******

 connector.keystore.trust.path=..//trust.jks
 connector.keystore.client.pwd=********

 connector.keystore.client.path=..//client.jks
 connector.host=giraffplus.xlab.si

 connector.port=8883

Whenever that method is called with a new configuration, the middleware takes care of
unsubscribing from all the subscribed services, cleaning the internal state and
automatically configuring the communication connector module as well. In case a property
is missing, the configuration procedure is aborted and signaled to the calling application.

3.3 Guaranteeing the middleware robustness

A constant performance and resiliency assessment is necessary when the software is
deployed in the real test sites to guarantee the correct behaviour during unexpected
situations like bugs in the code, reaction to network misconfigurations, updates of third
party software, etc.

3.3.1 Maintenance and bug fixing

A continuous maintenance activity was carried out during this period of the project and,
since the deliverable D2.2, some bug were fixed in both the desktop and mobile version of
the GiraffPlus middleware.

An issue causing the impossibility to reconnect to the MQTT broker after a connection drop
was fixed by properly regenerating the SSL context before a new attempt to reconnect.

A limitation regarding the certificate keystore version was preventing the Android
middleware to open a BKS keystore with a version greater than 1.46. This because Android
uses a customized version of the library that cannot be updated. A workaround was found
by using the SpongyCastle library [11], a third-party project that can handle any version of
the keystore.

Some checks and verifications were added in the code to ensure a proper behavior of the
system even in case of uncommon combination of conditions that could have led to the
instability of the system.

GiraffPlus D2.3

Version Final 15th of July 2014 25

A real-time monitoring application, exploiting the heartbeat functionality, was developed in
order to get an overview of the working status of all the test sites. A web interface that will
be integrated in the EngineeringGUI is planned to be implemented.

3.3.2 Scalability

In order to evaluate the middleware performances, we run several tests on an
experimental platform composed of a GiraffPlus middleware instance on a desktop
computer running also a MQTT broker and two instances of mobile middleware running on
smartphones equipped with an ARM Cortex A8 1.2GHz processor and Android 4.0.4. We
measured the performances of GiraffPlus mobile middleware in terms of latency
introduced by the middleware to manage the publish requests made by a producer service
and to dispatch messages to a consumer service. In particular, we aim at observing how
latency scales with the number of requests per second (rps) and the number of consumers
and producers concurrently running on the same device. These tests were deliberately
chosen as an extreme conditions scenario in order to test GiraffPlus dealing with a very
high number of services simultaneously running on the same node.

Figure 13 Middleware latency with 1 producer and 1 consumer varying the requests per second

Figure 13 shows the time (in milliseconds) spent by the middleware to accomplish the
publish request of a producer sending a message of 100 bytes to the network (Producer
time) and to dispatch the message to a consumer once it is received from the network
layer (Consumer time). We observed that the aggregated time remains in the range of 5 ±
0.5ms from 1 to 100rps and grows up to 14ms at 300rps. After that value the mobile
middleware stops handling the requests returning a TransactionTooLargeException. This
behavior is strictly connected to the hardware limit of the tested device: the GiraffPlus
mobile middleware process cannot handle such a high number of requests per second that
saturate the Binder transaction buffer (that has a limited fixed size of 1 Mb and it is shared
by all transactions in progress for the process). This is reasonable especially because in AAL

GiraffPlus D2.3

Version Final 15th of July 2014 26

application the system should react with timings compatible with the user, which hardly
requires high frequencies [12]. It should be note however that, if higher frequency in data
sampling is required, the actual rate of communication is generally lower due to the need
for data aggregation and fusion techniques [13].

In further tests on scalability we have considered frequencies up to 5rps for a producer
service. Figure 14 shows the scalability of the GiraffPlus mobile middleware in terms of
number of concurrent producers on the same device. We identified a limit of 40 producers
at 5rps with 100B of message payload. Also in this case the limitation is due to the
hardware of the tested device for the same reason of the previous case.

Figure 14 Middleware latency with 1 consumer varying the number of producers transmitting at 5 requests

per seconds

Finally, Figure 15 shows the scalability of GiraffPlus mobile middleware in terms of number
of concurrent consumers on the same device varying the number of concurrent producers
transmitting at 5rps with 100B of message payload. Each consumer is subscribed to all the
present producers in the network. The middleware can handle, with an aggregated latency
under 30ms, up to 10 concurrent consumers in presence of 50 producers, up to 20
consumers when 25 producers are transmitting simultaneously, up to 30 consumers with
10 concurrent producers, and more than 100 consumers subscribed to a single producer.

GiraffPlus D2.3

Version Final 15th of July 2014 27

Figure 15 Middleware latency varying the number of consumers with 1, 10, 25, and 50 producers

transmitting at 5 requests per seconds

We tested the GiraffPlus middleware in particular stress conditions with the mobile device
acting as a single aggregation point of all the possible services installed in the home
environment.

We also tested the context-awareness of the GiraffPlus mobile middleware developing a
concrete application that turn off unnecessary network adapters like bluetooth or WiFi
once it detects an outside scenario. We believe that such an application is very useful to
limit the energy consumption of mobile devices exploiting the context data coming from
the GiraffPlus network. An elderly person living alone in her house is a scenario particularly
dear to the AAL community. Also in the GiraffPlus test sites, elderly people live alone, so
when no presence sensor data is sent on the context buses, we can infer that the user is
outside the house. To estimate the increased battery saving of this solution, we compared
the power consumption of the context-aware application built upon the GiraffPlus
middleware with a generic application that periodically scans the WiFi signal strength to
fingerprint the home WLAN. We also compared our solution with a generic situation where
the user forgets all the used network interfaces on when he goes outside (ALL-ON).

Table 2 Energy consumption in mW

WiFi Bluetooth Radio

on scan active on active on active

5.1 192.7 229.7 2.59 32 7.95 686

Table 2 shows the energy consumption of the network adapters present in our test device
taken from its power profile file. In the proposed solution, the GiraffPlus mobile

GiraffPlus D2.3

Version Final 15th of July 2014 28

middleware sends a heartbeat of 100B each 30s using the 3G radio. We estimated the
active state of the radio while transmitting the heartbeat during 0.13ms (with an uplink
bandwidth of 5.76Mbps). During the duration of the tests (1 hour) the radio was in on
mode, so the total radio consumption was 120 × 0.686W × 0.00013s + 3600s × 0.00795W =
28.63J. The WiFi scan application calls a wifi.scan with the same period (30s), the scan
operation last 500ms in which the adapter is in the active state, and the WiFi was on during
the duration of the test, so the total consumption of the WiFi adapter was 120 × 0.422W ×
0.5s + 3600s × 0.0051W = 43.68J. We measured the CPU consumption of GiraffPlus mobile
middleware and the WiFi scan application using the PowerTutor [14] model. In the ALL-ON
scenario, we left the default WiFi scan period of 15s, and we estimated the additional
consumption of the Bluetooth interface left on and undiscoverable in 3600s × 0.00259W =
9.32J.

Figure 16 Comparison of energy consumptions in one hour of test of the two different approaches analyzed

with respect to the ALL-ON situation. The WiFi Scan saves 60.5% while the proposed solution saves the
67.5% still remaining connected to the GiraffPlus system

In Figure 16 the overall results are shown. Using the context information provided by the
GiraffPlus middleware, a simple application can optimize the power consumption of the
device remaining connected to the GiraffPlus system and reachable from her caregivers.

The energy optimization represents a crucial aspect in the deployment of the GiraffPlus
system on mobile nodes, for this reason further work will be performed in the next period
of work of the project.

GiraffPlus D2.3

Version Final 15th of July 2014 29

4 The Giraff Platform

In this section the second and final version of the Giraff platform is presented focusing on the new
features implemented. New Giraff software has been developed and released in order to allow
collaborative control between the human teleoperator and the onboard motion (4.1) together
with new functionalities offered by the platform (4.2).

4.1 Collaborative control

According to the requirements for the third prototype of the GiraffPlus system at month
30, the robotic platform has been enhanced with a collaborative control system, which
consists of a high-level controller that extends the capabilities of the prototype presented
in deliverable D2.2. It complements the motion commands from the driver with the
semiautonomous navigation system to safely pass through doors, corridors, and cluttered
spaces.

During this period, a new software module has been implemented to enable a hybrid
operating mode with the aforementioned collaborative control feature considering the
obstacles detected by the sensing system. The result is a new teleoperation mode where
the driving payload is highly reduced while the driver still feels s/he is controlling the robot.

a b

Figure 17 Two typical cases where the collaborative control proves its suitability for teleoperation. a) The
user drives the robot towards an obstacle. b) The user wants to cross a door by marking a point inside the
room. In both cases the collaborative control generates appropriate paths to arrive the user destination

while negotiating obstacles.

Figure 17 shows two typical scenarios where the collaborative control is useful. Figure 17.a
shows how the driver selects a trajectory colliding an obstacle (red line). In this situation
the collaborative control intercepts the user intentions and generates a free-obstacle path.
In Figure 17.b the driver drives the robot through a door by simply selecting a point inside
the room without paying attention to the narrow space of the door. The collaborative
control identifies the user wants to go into the room and generates the proper path
negotiating the door frame.

GiraffPlus D2.3

Version Final 15th of July 2014 30

The Collaborative Control has been integrated into the secondary user application, i.e.
Pilot. Specifically, it has been integrated into the semiautonomy plugin presented in D2.2.

Figure 18 shows a screenshot of the current version of the user application, highlighting the
collaborative control option. The driver can select the collaborative control by selecting the
option into the left panel. A text message as well as a different color scheme for the
application indicates that the feature is active. Under this mode the driver commands the
robot as usual although her/his commands are (can be) override by the semiautonomous
navigation system to negotiate obstacles.

Figure 18 Secondary User Interface in Collaborative Control Mode

Figure 19 shows the robotic architecture including the collaborative control module and its
relations with the rest of modules. It captures the destination marked by the driver and
generates a target which is inputted to the reactive navigator of the robot. So, the
collaborative control can be seen as an intermediate layer between the driver and the
semiautonomous navigation system presented in D2.2.

The collaborative control module considers three security levels for which a behavior is
selected for the robot navigation:

• Level 0: Obstacles-free navigation mode. No obstacles are detected nearer than 1
m. and the collaborative control system does not override the user commands.

• Level 1: Obstacles sensed in the range 1m to 4 cm. User navigation is supervised by
the semi-autonomy system, i.e. the user commands are transferred to the reactive
navigation algorithm which generates a secure path.

GiraffPlus D2.3

Version Final 15th of July 2014 31

• Level 2: Maximum risk; obstacles under 4 cm. In this case, the semi-autonomy
system commands an emergency stop and limits the movements of the robot to
avoid collision. In this mode, the robot can only rotate to escape from a dead-path.

Figure 19 Collaborative control integrated with the architecture presented in D2.2

The work done by the collaborative control system is almost transparent for the driver,
who commands the robot by clicking on the remote video image received from the robot,
i.e. as done for the normal driving option. However, each movement command is
appropriated manipulated to generate a target destination suitable for the reactive
navigation system. Concretely the destination marked by the driver (px, py) is captured
from the viewport in polar coordinates and transformed from the local reference frame of
the image to the global localization frame used by the semi-autonomous navigation system
(Figure 20).

GiraffPlus D2.3

Version Final 15th of July 2014 32

Figure 20 Selection of the user destination and transformation into the global reference frame of the
localization system

In summary, the collaborative control algorithm is as follows:

1. The system receives a user command in terms of the module and angle of the
selected destination (Cmod,Cphi).

2. The security level is decided according to the obstacles sensed.

a. For low risky situations (obstacles farther than 1m) the user commands are
directly sent to the motor system.

b. For risky situations (obstacles between 1 m. and 4 cm.) a target for the
reactive navigator is composed by the robot pose (RLx,RLy,RLphi) given by
the localization system and the polar coordinates of the destination
(Cmod,Cphi).

c. For highly risky situations (obstacle under 4 cm.) the collaborative control
only permits rotations setting the angular speed w=sign(Cphi)*Wmax*Cmod

3. Go to step 1 while the collaborative mode is switched on.

4.2 Giraff software

The new software version (v2.4) for both Giraff and Pilot developed and released during
this period includes new features for the 4.0 version Giraffs which are related with the
night vision and height adjustment.

GiraffPlus D2.3

Version Final 15th of July 2014 33

The feature of sending an alert when a Giraff is not charging has been developed.

Additionally, the new software includes a number of bug fixes and improvements that
increases the overall reliability.

The new software includes a lot of release testing. Moreover, the latest software version
contains a few bug fixes and support for the new remote control. An in depth overview of
the changes and bug fixing performed is given in Appendix 1 - Selection of changes and
bugfixes to the Giraff and Pilot software of release 2.4.

GiraffPlus D2.3

Version Final 15th of July 2014 34

Appendix 1 - Selection of changes and bugfixes to the Giraff and Pilot
software of release 2.4

 Assisted docking drive plugin no longer sticks until next call. If you hang up with this plugin
active the default drive plugin will be active when the next call starts.

 Added Giraff User's Guide.

 Added Vsee configuration files for the 4.0 Giraff.

 Updated updateVSeeConfig ruby script to work for 4.0 Giraff.

 Major rewrite of the virtual camera driver for the camera present on the 4.0 Giraff.

 Added support for starting Giraff with OpenMORA/AVR.

 Created an API for closing the Sentech camera manually.

 Added a grace period before killing Vsee, allowing it to terminate by itself.

 Added magnification functionality.

 AutoUpdater now terminates the software correctly.

 Increased the polling frequency of the battery status.

 Fixed E28 bugs and made corrections in PID regulator values to work with the hardware
failure E41 error for 4.0 Giraffs which has new motors.

 Added night vision functionality.

 Fixed bug causing loss of colour settings when zooming in.

 Changed timeout length for answering calls.

 Refactoring of the virtual camera code, added timestamps to images, sleep mode when not
in call.

 Updated battery software version.

 Fixed a bug in the assisted docking plugin causing the algorithm to select a worse target
candidate over a better one.

 Fixed a bug in the assisted docking plugin causing the bottom of the target rectangle to be
used instead of its centre.

 New feature that should protect the tilt motor gear box if someone physically pulls the
screen.

 Added support for compiling .elf file containing main program, fuses, bootloader (controller
only) and eeprom (charger 2.0 only).

 Minor parameter tweaks for the auto docking algorithm.

 Removed the old (and never used) zoom command and all references to it.

 Refactoring of system errors and changed behaviour to listening for status from the
microcontroller instead of inferring errors from other parameters.

 Prepared for using timestamps in 4.0. Now works in all resolutions. Disabled as it does not
work with older (<4.0) Giraffs.

 Removed timestamp extraction from VSeeImageGenerator dll. This is handled in java code
from now on.

 Changed HTTP API access to use preemptive authentication (saving us one server call).

 Updated Apache HttpClient to version 4.2.5.

 Changed default resolution/framerate to 480p@30fps .

 Added logic in InCallView for handling night vision mode.

 More fail-safe handling of the robotnum configuration file.

 Corrected behaviour of the B indicator on the Giraff.

GiraffPlus D2.3

Version Final 15th of July 2014 35

 Compacted Pilot UI to fit 768 pixel high windows with a menubar.

 Type refactoring of AVR communication layer.

 Refactoring of call state in ApplicationManager.

 Fixed bug that caused some AVR data not present in Giraffs older than 4.0 to be polled.

 Auto-raise neck when hanging up call, warning on Pilot when hanging up if not in raised
state.

 Added a top voltage cut-off when charging (another E28 bugfix).

 New extension point (BAT file execution) when starting/quitting Giraff application.

 Fixed a bug causing the Giraff to get stuck when turning it on.

 Completed resource cleanup (network sockets, file descriptors, streams, etc).

 Fixed the bug were the SPI bus gets out of sync when turning off the big microcontroller in
the middle of a message.

 No keep-alive for sentry fake ping connection (to avoid new threads being created).

 Giraff will now notify Sentry when left outside charging station.

 Fixed some Swing repainting logic.

 Changed the UI logic for making sure there is no zoom or resolution changes while in night
vision mode.

 Correctly sync microphone and speaker volume when loading settings from previous call.

 Changed the error handling when setting up serial port communication.

 Corrected error message shown when logging in without providing a username.

 Added logging to last_error.txt

 Fixed a bug causing exception handling to fail when not logged in.

 Fixed problems related to default resolution in local mode.

 Added a command line switch for full screen mode.

 Fixed a bug causing the network card MAC address not being set in the application model.

 Added a full screen mode to PilotMainWindow.

 Updated translation files.

 Removed Finnish and Chinese languages from Pilot application.

 Fixed a UI bug that showed up when switching from 720p to night vision.

 Set resolution to 480p when entering night vision mode.

GiraffPlus D2.3

Version Final 15th of July 2014 36

References

[1] Girolami, Michele, et al. "The Integration of ZigBee with the GiraffPlus Robotic
Framework." Evolving Ambient Intelligence. Springer International Publishing, 2013. 86-
101.

[2] http://playframework.com/
[3] http://www.arduino.cc/
[4] https://developer.getpebble.com/2/guides/
[5] https://pushover.net/
[6] Koshmak, Gregory, Maria Linden, and Amy Loutfi. "Dynamic Bayesian Networks for

Context-Aware Fall Risk Assessment." Sensors 14.5 (2014): 9330-9348.
[7] Palumbo, Filippo, et al. "Sensor network infrastructure for a home care monitoring

system." Sensors 14.3 (2014): 3833-3860.
[8] http://www.apache.org/licenses/LICENSE-2.0.html
[9] https://play.google.com/store
[10] http://www.mongodb.org/
[11] http://rtyley.github.io/spongycastle/
[12] Barsocchi, Paolo, et al. "Evaluating Ambient Assisted Living Solutions: The Localization

Competition." Pervasive Computing, IEEE 12.4 (2013): 72-79.
[13] Palumbo, Filippo, et al. "Multisensor data fusion for activity recognition based on

reservoir computing." Evaluating AAL Systems Through Competitive Benchmarking.
Springer Berlin Heidelberg, 2013. 24-35.

[14] http://ziyang.eecs.umich.edu/projects/powertutor/

