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D 5.1 Detailed theoretical schemes for the realization of modular entagnglement and
universal quantum integration
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We analyze the conditions for entanglement amplification between distant and not directly interacting quan-
tum objects by their common coupling to media with static modular structure and subject to a local (single-bond)
guenched dynamics. We show that in the non-perturbative regime of the dynamics the initial end-to-end entan-
glement is strongly amplified and, moreover, can be distributed efficiently between distant objects. Due to its
intrinsic local and non-perturbative nature the dynamics is fast and robust against thermal fluctuations, and its
control is undemanding. We show that the origin of entanglement ampilification lies in the interference of the
ground state and at most one of the low-lying energy eigenstates. The scheme can be generalized to provide a
fast and efficient router for generating entanglement between simultaneous multiple users.

PACS numbers: 03.67.-a, 03.67.Hk, 03.65.Ud, 75.10.Pq, 75.20.Hr

Realizing a sizable and stable entanglement between distaentangling distant qubits can be realized either via static or
qubits is a crucial stage in performing fundamental tasks oflynamic approaches, however, either at the price of a strong
guantum information and communicatioh [1]. In the groundthermal instability or an excessively demanding control.
state of noncritical strongly correlated systems with short- |n the present work we introduce a scheme that combines
range interactions the 2-points correlation functions and thughe modular-static and the quench-dynamic approaches to en-
the entanglement between spins can be proven to vanish exp@nglement generation and distribution among distant qubits.
nentially with the distance [2]. To overcome this problem, aThe proposed mixed scheme strongly reduces the drawbacks
possibility is to mediate indirect interactions between distanbf both approaches and realizes a novel mechanism of en-
qubits by a suitable quantum many-body medium. For intanglement amplification starting from weakly entangled in-
stance, one can exploit impurities weakly coupled to the endguts. In our model, a quantum spin chain is split into two
of a spin chain that mediates an indirect interaction and creelementary bulk modules. Two end impurities are attached to
ates a strong long-distance entanglement between them [ach module with couplings of arbitrary strength. This initial
Indeed, it has been shown that a relatively large family ofstatic configuration is then evolved through a sudden quench
strongly correlated many-body systems allows for this posof the bond connecting the two modules. We show that the
sibility [4-6]. However, for most of these systems the energygenerated end-to-end entanglement across the entire system
gap is exponentially decreasing in the size of the system, sig always larger than the initial entanglement at the ends of
that even for short chains the mechanism becomes thermallach module and that thisitanglement amplificatiozan al-
unstable: very small thermal fluctuations are sufficient to mixways be achieved for all parameter ranges. As the length of
the ground state with higher energy eigenstates and suppresach module is half the total size of the system and the im-
the entanglement between the end impurities. One can intl‘Qyurity couplings are non perturbative, the energy gap remains
duce systems with interaction patterns such that the gap closeiable even for very long chains and stability against ther-
algebraically with the distance![4]; in this case the thermamal fluctuations is assured even at moderately high tempera-
stability improves at the price of letting the end-to-end entantures. Moreover, by exploiting just a single bond quench for
glement become weakly decreasing with the size of the sysnducing a nontrivial dynamics, the required control is mini-
tem [4,5]. Even if all these results can be extended to highemal. This mechanism can demonstrate an entanglement router
dimensional systems|[7] this appears to be the unavoidablghich unlike previous proposals neither needs AC-control of
limit of a a purely static, ground-state approddh [8] the couplings[[16] nor the presence of both ferromagnetic
and anti-ferromagnetic couplings simultaneou@ [17]. Fur-
thermore, the entanglement amplification mechanism finds a

; Xlear physical explanation in the quantum interference be-
body systems [9]. In particular, global [10] or local quan- tween only two eigenvectors (ground and one of the low-lying

tum quencheﬂiElM] can create long-distance entanglemeg&cited energy eigenstates) of the final Hamiltonian.

Apart from certain perturbative proposals that suffer from Th delW ider two ind dent di ional
a very slow convergencam], the dynamical schemes € modeLe consider two independent one-dimensiona

in general do not require the weak end coupling assumlozglrrays of qubits, thenodules Each module is constituted by

tion [9,[10,[14]15] and hence thermal instability is not as? '?eurlfil(c(t)ifo?\pgjrr?ilot l:)ﬂiz(r]: ?;rbggéﬁ ?:OS dvl\::;hrtev;(()jlsrppurlt|es. The
dramatic issue as in the case of static schemes. Rather, tHe :

price to be payed is the need for a very accurate tuning of the Ny —2

i i i ' k k k
times at which optimal entanglement is generated and thgs a g, = J;;J(hg,g) + th;z—l,Nk) +J Z hgz)Jr1 ’
much more elaborate control on the system. In conclusion, P

On the other hand, it is well known that properly tailored
time evolutions can propagate entanglement through man
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ule hasevenlength IV, and J;, < J so that the spins in the

Ju_ Leftbulk Ju o T Rightbulk  J'p bulk tend to entangle between themselves and consequently
f" A M \ *\ the two end impurities are forced to getentandﬂaE[A 5]. From
the ground state of the XXZ HamiltoniaH, one can com-

Lo Zd e MmN NeNp=1o o 3e 2e 1y pute the initial reduced density matrix of the two impurities
\ Y J\ Y J by tracing out the spins of the bulk. Due to the symmetries of
Left module: impurities+bulk Right module: impurities+bulk the system, the reduced state is diagonal in the Bell basis

(b) Ply, Ny, :Pks|"/)7><¢7|+ Z Pka|Ba><Ba|a 2
Ji Leftbulk Ji  Jx  Rightbulk I’ aTTYE
f{\_f.\ }.HJ\L}{\_}.\ ‘_HJ\ wherely)~) is the singlet state?? is the singlet fraction,B*)
(for « = x,y, 2) are the other Bell states which can be ob-
1, 2,3, . N,—1N, NgpNgp-1 3r 2z 1p

tained by applying thex Pauli operator on one part of the
singlet, and theP’s account for their contributions. For a

FIG. 1: (Color online) (a) A schematic picture of two indepemde [X€d length N, one can increasé;’ arbitrarily and create
modules and their couplings to the respective end impurities. (b) Onlarge entanglement between the two impurities by decreasing
set of a quenched interaction dynamics between the two modules by;,. However, by decreasing, the energy gap of the system
switching on instantaneously a strong bohdbetween the impuri-  also decreases, at best algebraicﬂlﬂ4, 5]; when the thermal
ties at the module-module boundary. energykpT becomes comparable with the gap, the state of
the system becomes a mixed thermal state with no entangle-
ment between the end impurities. In Higl. 2(a) the energy gap

0.08 0.5
—— o €Y o) (b) A is plotted as a function of, for a XX module of length
= Ak°'4 ' - - y=075 Ny, which clearly shows an exponential decay for snigls.
0.3} Of course, the gap also decays with the sieas shown in

Fig.[2(b).

Dynamical entanglement generation in a modular quantum
spin chain Given the initial static situation with the two mod-
ules in their respective ground states, we introduce a quench
dynamics between them. The two even-sized modules of
lengths N, and Ny are described via the Hamiltoniafg;,
and Hg, introduced in Eq.[{1). The exchange couplihgnd
anisotropic parameter are assumed to be identical in both
modules, while the couplings with the end impurities are re-
spectivelyJ; andJy. The initial ground state of a chain of
total lengtN = N + Ny formed by the two noninteracting

hﬁ’}) — Xi(k)Xj('k) + yi(’“)yj(’“) + 521_(’“)2](_’“) 7 (1)  modules is obviously the tensor product of the ground states
' of the two subsystems$y(0)) =|GSL)®|GSRr). Att=0one
wherek = L, R denotes the left or right module, respectively switches on the interaction between the two modules:
with N, = N,Ng spins,{Xi(k),Yi(k),ka)} are the Pauli spin
operators at site in the k-th module,.J > 0 is the exchange
spin-spin coupling strengthj;, > 0 specifies the coupling to
the end impurities, and is the interaction anisotropy along

thez direction. A schematic picture of this system is shown 'nrepresented in Fig] 1(bffz — H,+H H, . The initial prod-

Fig.[ (a) (note the mirror inversion of spin numbering in each : .
. oo uct state is not an eigenvector Bfr and the system evolves
module). The spin-/2 XXZ Hamiltonian Eq. [1) for each according toy (1)) = e *H71(0)). The reduced state of the

module has a rich zero-temperature quantum phase diagramw() end impurities at time s
in particular, for—1 < ¢ < 1, the system is in the so-called

gapless XY antiferromagnetic phase that admits a nondegen-

erate, highly entangled ground state. In the two fully isotropic P1u1a(t)
limits one recovers the relevant cases of the XX Hamiltonian

(6=0) and the Heisenberg (XXX) Hamiltonian {1). We use relative entropy of entanglemént [18] as an operational
Static end-to-end entanglement in modulest.us first dis-  measure to quantify the entanglement content of the two end-

cuss the entanglement between the two end impurities in thiag impurities at sites ;, and1 defined by

ground state of a single module. The modelin E}y. (1) exhibits

long-distance entanglementin the ground state when the mod-
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FIG. 2: (Color online) Energy gap\, of a single XX module as a
function of: (a) the coupling/’ to the end impurities for different
sizesN}, of the module; (b) the siz&/;, for different values of/’.

H = 5(X$xE + v+ 62020, )

whereJ; is the bond that couples the two modules. The total
Hamiltonian of the system at> 0 becomes, as schematicly

= PoyOWT )07+ D Paat)B)B°|.

a=w,y,z

E1L71R(t) =1-Hd (P;ut(t)) 4)
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whereH (z) = —zlogyxz—(1—x)logy(l—x). Thisis of course re- 1 1
lated to the concurrence [19] of the two impuriti€s, ;. (¢) £ 08 (@ o 2R I (b)
viaEy, 1,(t)=1-H ((C1,1,(t)+1)/2) and always give a 08 |+ : Eo |\
lower value with respect to concurrence. 04 ,': " ,/\ 06
Perturbative regimeWe first study the case of; and.Jj 021 [\ 1‘ " /\\_,/‘ |
both sufficiently small so that the pairs of end impurities in o : 04
. 0 4 8,12 16 20 10 20 30 40 50 60
each module are initially highly entangled (strong initial end- t N
to-end entanglement in both modules). In this situation, in 20 5 09 @)
each module the impurities are effectively decoupled fromthe ; 15 © 0’
rest of the system and resorting to the Schrieffer-Wolff trans- ™ 10 . 02”7 [—e—xxx o1 |
formation [20] one obtains an effective interaction Hamilto- p/Ue —o XX 05
nian for the impurities in each module 5M : MG«H«HW'
HY = 08 (XE XE 4 YEYE o2k 2 ), () e "how w0 0 ®

where the effective coupling is linear in the energy gap: . ) )
Jfff = A/4 with k = L, R. Fixing the inter-module inter- FIG. 3: (Color online) (a) End-to-end entanglement as a fonatif

: I time for N, =Nxr=10,J'=0.5 and J;=0.65. (b) E.. as a function
_ 7L R
action bond atl; = J;; + Jj;, as shown in Fid.J1(b), one o x (c) Optimal timet,,; versus lengthV. (d) Optimal impurity

has thatF, 1, (t)=1—H (5730085(4&1&) . Therefore, at the coupling J;,,; for XXX (open blue circles) and XX (green open di-
optimal timet,,; — -, the maximal fong-distance entan- amonds) and optimal interaction couplidg”’ for XXX (filled red
opt — 4JI 1

glement is established between the ending sites. Comparecgdes) and XX (filed brown diamonds).
to the static case with a single long module of lengthwith
the same entanglement between the end imputitiend1 z, o . ) )
the dynamical mechanism in the perturbative regime assurd8 the initial one in each module. The optimal entangling
a larger thermal stability "per sé”. If the entangling timg, time ¢, is then the earl_le_st t|_me at WhICh the_end-to-end
is engineered so to be much smaller than the thermalizatiogntanglement peaks, defining its maximum attainable value:
time, then the thermal effects are fully determined by the therEmaz = E(topt). In Fig.[3(b) we plotE,,, as a function
mal initial state associated to the energy gap of each modul®f the total chain’s sizeV when bothJ’ and.J; are tuned to
which is always above and can be made much larger than t{Beir optimal val_ues. One has Fhat for long enough chains both
gap of the two combined in a single one of si¥e= N+ Nx. the XX an_d Heisenberg _Hamlltomans per_form equally well.
In the dynamic case one can exploit larger impurity couplingdfowever, if we look at Figl13(c), wherg,,, is reported as a
J/ for each module in comparison to the static case with a sinfunction of V, one can see that the Heisenberg chain gener-
gle module of sizeV, thus increasing the gap, as illustrated in @tes a faster dynamics with earlier peaks, an important added
Fig.[@(a). In this way thermal instability is ameliorated but Value in order to minimize the effects of decoherenciz. Fi-
not fixed; moreover, the perturbative nature of the coupling@lly: in Fig.[3(d) we report the optimal valug§,, and./;"”",
Jr implies a very slow dynamics. The power of the Schemerespegtlvely of _the _coupllng to the end |_mpur|t|es and the in-
shows only in the non-perturbative regime. teraction c_ouplmg in the bulk, as funct|_0ns of. Remark-_
Non-perturbative regime: Entanglement amplification.ably, as Fig[B(d) clearly shows, one finds that the optimal
When the strength of the coupling to the impurities become§0UPlings decrease very slowly by increasing the 8izem-
comparable to the interaction energies in the bulk, the iniPlying the onset of a fast dynamics and the permanence of
tial end-to-end entanglement for each module is strongly sug€ non-perturbative regime even for very long chains. Fur-
pressed, the reduction to the effective Hamiltonians Elg. (5§hermore, larger couplings in Heisenberg chains in compare
is no longer justified, and; cannot be determined analyti- © XX ones results in a faster dynamics _qnd provides higher
cally as in the perturbative regime. To proceed, one can oln€rgy gap and thus higher thermal stability.
serve that in practice the affordable time for the entangling To show how entanglementis actually amplified by the dy-
dynamics is ultimately bounded by the decoherence rates. Imamical process we compare the initial static end-to-end en-
troducing such upper bounds for the optimal entangling timetanglementZ;, n, (0) in the ground state of a single mod-
we define an optimization problem for the largest attainablaile of lengthN;, = N/2 and the output dynamical end-to-
end-to-end entanglement that depends on two free paramend entanglemetH; , 1, (¢,,:) at the optimal entangling time
ters, i.e. the static coupling to the end impurités=J; = J}, across two interacting modules forming a chain of total length
and the quench-dynamic bonkl between the two modules. N;+Ng= N. Fig.[4(a) shows that the initial ground-state end-
In Fig.[3(a) the end-to-end entanglemént, ; ., (¢) is plotted  to-end entanglement slwaysamplified for the entire range
as a function of time both for the Heisenberg and the XXof couplingsJ’ to the end impurities. A remarkable rebound
Hamiltonians for different values of’ andJ;. As reported of E1, 1,(top:) OCCUrs at a point of non-analyticity that sep-
in Fig.[3(a), the time evolution after the quench generatearates the perturbative from the non-perturbative regime, cor-
a large end-to-end entanglement, strongly amplified respecesponding to the onset of enhanced dynamical amplification
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FIG. 4: (Color online) (a) The initial, static end-to-end @mgle- 04
ment E1, ~, (0) (or E1, np(0)) in each single module of length 0.2
N, = Nr = 10 together with the maximal end-to-end dynamical 00 2 4 6 8 10 12 00 5 4 6 8 10 12
entanglemenk ; 1, (topt fOr the entire two-module chain of length at Jt

N = N+ Ng, as functions of the coupling’ for 6 = 1. (b) The

optimal timet,,,; at which entanglement peaks, as a functiot/'of FIG. 5: (Color online) Upper paneldi? | versusAE/.J = (E, —

Ey)/J for all eigenvectors of 1 for two chains withVy, = Nr = 4,

Ji, = Jp = 0.5, Jr = 0.75J whereJ is the bulk amplitude for (a)
against pure decay. In order to characterize and understand-=0; (b) 6 =1. Lower panels:E:, 1, vs. time for the two chains
these two different regimes and the transition between theryith parameters given above and @)= 0; (d) 6 = 1. The red
we have studied the entangling timg, as a function of the dgshed I|n.es stand for. the mma[ end t.o end entgnglement in each

. , . - . . . single chain. The vertical gray lines signal the times at which the
couplingJ’ to the end impurities. Figl4 (b) illustrates that in phases (t) = exp(—iwgt) — — 1.
the perturbative regime,,; increases exponentially with de-
creasingJ’, while in the non-perturbative regime it remains

essentially flat at very small values, guaranteeing, for approggmjjtonian parameters away from the optimal ones and/or
priately chosen values of, that maximal amplification oc-  the dimension of the two modules is increased, the relative
curs well in advance of the effects of decoherence. weight of the other eigenstates becomes more relevant reduc-
Origin of amplification: Excitation spectrum and quantum ing the maximum value reached B, ,
interference. To understand the physical mechanism under- cgonclusions & Outlook: Entanglement routdy consid-
lying entanglement amplification in the non-perturbative dy-ering many-body media with static structures of bulk mod-
namics of modular many-body systems we must take notice Qfjles and by engineering suitably quenched local interaction
thefacttha{hﬁ(t)}:Zizlcne*iEHHEn),Where,En(|En>) is  dynamics between different modules, we have introduced
the n-th eigenvalue (eigenvector) éf andc,, = (E.f)(0)).  a method for the generation and amplification of entangle-
When the values of the Hamiltonian paramet&rand./; are  ment between distant and non-interacting quantum objects.
far from their optimal values, many @f,’s are significantly =~ The method is intrinsically non-perturbative and does not re-
different from zero. At values close to the optimal set the situ-quire sophisticated controls of the system dynamics. Indeed,
ation becomes radically different, as reported in Hi@js. 5(a) andve showed that the end-to-end entanglement initially present
(b), where the squared amplitudes|? are plotted as func- in the ground state of a modular many-body system is am-
tions of the energy difference between the corresponuitiy  plified by the quenched dynamics whenever all the values
eigenstate and the ground state /éf, respectively for the of the Hamiltonian parameters are far from the perturbative
XX (6§ = 0, Fig.[B(a)) and the Heisenberg Hamiltonidr(1, regime. The ensuing entangling dynamics is fast and robust
Fig.[3(a)). In both cases the initial state is essentially proagainst thermal fluctuations. The occurrence of such dynam-
jected onto only two eigenstates Bf;, the ground state and ical mechanism of entanglement amplification finds a sim-
just one of the first few low-lying excited states. Therefore theple and beautiful explanation in the constructive interference
evolution of the initial state at timeunder the action ofiis  of only two energy eigenstates of the driving Hamiltonian.
essentially due to the relative phase faettr) = exp(—iwst), This opens potentially many new perspective for studying en-
wherews is the the difference of the eigenvalues of the twotanglement generation, distribution, and manipulation across
eigenstates as indicated in Fif$. 5(a) and (b). As shown iarbitrary distances in a many-body systems. Our minimal
Figs.[B(c) and(d), the maximum of the entanglement amplicontrol strategy applies immediately to the demonstration of
fication is reached when(t) ~ —1. Therefore the dy- an entanglement router capable of distributing entanglement
namic amplification of long-distance entanglement is essensimultaneously between multiple users. Indeed, consider a
tially due to a constructive interference between the two eigensetup in which every user controls one impurity in a mod-
state while the fact that the maximum is reached around andle which extends from its position to a common dispatching
not exactly ap(t) = —1 accounts for the projections on the center where the other impurities are controlled. In the dis-
remaining part of the spectrum: although strongly suppressegatching center, one can switch on the interaction between
they are not exactly vanishing. As we move to values of theany pair of impurities of different modules and switch on the
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