
ar
X

iv
:1

30
4.

02
61

v1
  [

qu
an

t-
ph

]  
31

 M
ar

 2
01

3

Adiabatic quantum simulation with a segmented ion trap: Application to long-distance

entanglement in quantum spin systems
S. Zippilli1, M. Johanning2, S. M. Giampaolo1, Ch. Wunderlich2, and F. Illuminati1∗
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We discuss systems of ions in segmented linear Paul traps for the quantum simulation of spin models which 
exhibit long-distance entanglement (LDE) in the ground state. The axial potential can be tailored to create 
different coupling patterns suitable to create LDE. Microwave pulses are used to implement various kinds of 
spin-spin interaction Hamiltonians, which can be varied adiabatically thereby realizing the adiabatic preparation 
of the ground states of quantum spin Hamiltonians exhibiting LDE.

PACS numbers: 03.67.Ac, 37.10.Ty, 37.10.Vz

I. INTRODUCTION

Entanglement is a central resource for quantum technologi-
cal applications [1, 2]. Great effort has been devoted to the
generation and distribution of entanglement over long dis-
tances, with the intent of realizing large-scale protocols of
quantum information and communication technologies [3–
22].

Particularly intriguing in this context is the prediction that
certain spin models are naturally endowed with peculiar en-
tanglement properties in their ground state which could be
profitable for quantum communication purposes, for example,
between different spatial regions within a quantum proces-
sor. Specifically, the concept of long-distance entanglement
(LDE) has been introduced and discussed in order to identify
the occurrence of sizeable nonlocal quantum correlations be-
tween distant, non-directly interacting spins in quantum spin
chains and networks [17–22]. This phenomenon emerges in
models with non degenerate ground states, when the end spins
(spins at the boundary of the system) interact weakly with
their immediate neighbors, such that a strongly correlated bulk
mediates effective interactions between the distant, non di-
rectly interacting, end spins. In this work we discuss the fea-
sibility of schemes for the experimental observation of this
effect using trapped ions as quantum simulators of quantum
spin models.

Trapped ions are highly versatile systems which have been
proven to be extremely effective in quantum technological ap-
plications. The simulation of quantum models of strongly in-
teracting quantum matter with trapped ions holds promise for
the investigation of those quantum dynamics that remain so far
unexplored due their inescapable complexity [23]. Indeed, the
natural many-body dynamics of trapped atoms is very rich and
interesting by itself; on the other hand, in the present work we
will be mainly concerned with the subtle and intriguing task of
realizing models that are not directly provided by the natural,
i.e. non engineered, physics of trapped ions. Although spin
interactions emerge quite naturally in ion chain systems, engi-
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neering and control of a desired complex Hamiltonian can be
highly challenging tasks with high pay-off. Spectacular proof
of principle experimental demonstrations [24–27] have shown
the potential of trapped ion based quantum simulators. How-
ever, so far none of these experiments has explored the ground
state of spin models which are expected to exhibit highly non-
classical properties. Moreover, no experiment so far has faced
the simultaneous occurrence of all the following features com-
bined together: 1) sophisticated shaping of the trap potentials
in order to suppress the effect of long-range interactions; 2)
highly controlled adiabatic processes driving the system to the
ground state; 3) full implementation of Trotterization (Trotter
expansion) in order to generate the relevant spin-spin interac-
tions in all the needed directions and components.

In the following we will discuss schemes to simulate
ground states of complex quantum systems, exhibiting highly
nonclassical properties, by the use of trapped ions featuring
aspects 1)-3) listed above. Specifically, we will explore the
capabilities of trapped ion systems for the quantum simula-
tion of spin models, and we will apply them to propose the
first demonstration of LDE in quantum spin chains. LDE is
a global nonclassical effect which, on the other hand, can be
monitored by the analysis of only two spins, namely the end
spins of the chain. It is therefore a sufficiently simple, yet rich
phenomenon which is ideal to be demonstrated using an ion
trap quantum simulator. Differing from the previous experi-
ments cited above [25–27] in which the spin coherent manipu-
lation is realized with laser fields, here we focus on segmented
ion traps in the presence of a magnetic gradient where the en-
gineering of the quantum dynamics is realized by microwave
fields.

The paper is organized as follows. In Sec. II we introduce
the systems and discuss the basic features of the scheme that
we implement for the simulation of long distance entangle-
ment. In Sec. III we discuss how to tailor the spin-spin inter-
actions and we describe the scheme of pulses for the simula-
tion of spin Hamiltonians. In Sec. IV we discuss the results
for the adiabatic preparation of the ground state and discuss
the experimental feasibility of the protocol. Finally, in Sec. V
we draw conclusions and discuss possible outlooks.

D 1.1: Theoretical scheme on how to conduct experiments in circuit QED systems and in systems 
of trapped ions
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II. THE SYSTEM

Doppler cooled ions held in a segmented ion trap [28, 29]
and exposed to a magnetic field gradient realize effective spin-
1/2 models [30–33]. The effective spin-spin interactions in-
duced by the magnetic field are of Ising type and can be ad-
justed by tailoring the axial trapping potential. In particular,
if the ions are sufficiently cold, such that the ion motion can
be neglected (the validity of this approximation is discussed
in Sec. IV B), the effective system ofN spins is described by
the Ising Hamiltonian

H
(z)
Ising = Hz + Hzz

Hz =
~

2

N∑

j=1

ω jσ
z
j

Hzz = −
~

2

∑

j,k

J j,kσ
z
jσ

z
k, (1)

where the resonance frequencies of the atomic spinsω j de-
pend on the external magnetic fieldB(x0, j) at the equilibrium
position of the ionx0, j [34]. The spin-spin couplings are in
general long range and their magnitude depends on the trap-
ping potential and on the spatial derivative of the spin reso-
nance frequency that, in turn, is determined by the magnetic
field gradient. They are given by

J j,k =
~

2

∂ω j

∂x j
|x0, j

∂ωk

∂xk
|x0,k(A

−1) jk, (2)

Here,A, whose elements areA j,k =
∂2V(x1,···xN)
∂x j ∂xk

∣∣∣∣
xℓ=x0,ℓ , ∀ℓ

, is the

Hessian matrix of the potential energy functionV(x1, · · · xN)
that confine the ions withx j indicating the position of the ion
j. Besides, the magnetic gradient allows also for the address-
ing of individual spins with microwave field which can, there-
fore, be used to manipulate the spin dynamics.

A. General considerations

Spin Hamiltonians with non-trivial ground state correla-
tions (as in the case of LDE) are in general characterized by
non-commuting spin-spin interaction terms. This is not the
case of the simple Ising Hamiltonian (1) in which only in-
teractions terms of the formσz

jσ
z
k are present. Therefore, the

simulation of LDE requires the ability to engineer interactions
along a different axes, described for example by a term of the
formσx

jσ
x
k. Such an effective interaction can be induced using

a sequence ofπ/2 microwave pules that realize the transfor-
mation e−iπσy

j /4σz
je

iπσy
j /4 = σx

j over all the spins. In particular,
a free evolution sandwiched by two trains ofπ/2 pulses (each
pulse addresses a particular ionj = 1, ...,N) with opposite
phase performs the following transformation

e−i π4σ
y
N · · ·e−i π4σ

y
1e−iH

(z)
Isingtei π4σ

y
1/4 · · ·ei π4σ

y
N/4 = e−iH

(x)
Isingt, (3)

and realizes an Ising interaction along thex-axes. In order for
this transformation to be effective, the duration of the pulses

have to be sufficiently short so that the evolution due to the
spin-spin interactions can be neglected. This is achieved with
a sufficiently strong microwave driving field resulting in a
Rabi frequencyΩ ≫ J j,k. On the other hand each microwave
pulse should operate on a single spin, and its effect on the
other spins should be negligible. This imposes a limit on the
maximum allowed intensity of the driving fieldΩ ≪ ∆, where
∆ indicates the frequency difference between neighboring spin
resonances.

The simultaneous interaction alongzandxcan be simulated
by Trotterization, namely by repeated, fast application of the
two kind of interactions [35]. Provided that the interaction
timeτ/n is sufficiently small, it is possible to approximate

e
−i
[
H

(x)
Ising+H

(z)
Ising

]
τ
≃

[
e−iH

(z)
Isingτ1/ne−iH

(x)
Isingτ2/n

]n
, (4)

and to generate a stroboscopic evolution which simulates a
Hamiltonian that is the sum of two Ising Hamiltonians with
interactions along two orthogonal axes.

We also note that typically the parameters in the Hamilto-

nianH
(z)
Ising defined in Eq. (1) are such that the spin-spin cou-

pling strengths are much smaller then the single site energy,
J j,k ≪ ωℓ, which hence dominate the dynamics of this model.
Nevertheless we note that we are interested in the situation in
which the system is driven by a series of microwave pulses.
In this case, as demonstrated in the next section, the relevant
dynamics is that obtained in a reference frame rotating at the
driving field frequency. In this representation, the relevant sin-
gle site energy is in fact given by the detuningh = ω j − ν j be-
tween spin resonance frequency and driving field frequency,
which can therefore be adjusted and controlled during the dy-
namics.

These results can eventually be used for the adiabatic prepa-
ration of the ground state of, for example, XX Hamiltoni-
ans. The system is prepared initially in the ground state
of a sufficiently simple Hamiltonian which is easy to pre-
pare: In our case it consists of the ferromagnetic/fully polar-
ized spin state which is the ground state of the Ising Hamil-
tonian with finite magnetic field (Hinitial = ~ h/2

∑
j σ

z
j −

~/2
∑

j,k J j,kσ
z
jσ

z
k). Then, the effective magnetic field is slowly

switched off (h is reduced) while the interaction alongx is
turned on by tuning the relative duration of the evolutions

under the two HamiltoniansH
(x)
Ising and H

(z)
Ising. If the varia-

tion of the parameters is sufficiently slow, then the system re-
mains in the instantaneous ground state. And eventually it ap-
proaches the ground state of the final modified target Hamilto-
nianH f inal = −~/2

∑
j,k J j,k

(
σz

jσ
z
k + σ

x
jσ

x
k

)
where the effective

magnetic field is zero and both interactions alongx andz are
present. This Hamiltonian exhibits ground state long distance
entanglement when the end spins are weakly coupled to the
bulk [17–22].

However, in general the typical harmonic trapping poten-
tial of linear ion traps induces long range interactions with
maximum couplings at the end of the chain. Thus, in order
to simulate ground state LDE, the trapping potential has to be
carefully engineered and the end spins interactions have to be
made weak. This can be realized with segmented micro-traps

D1.1
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as discussed in Sec. III A.

III. ENGINEERING OF SPIN HAMILTONIANS WITH
TRAPPED IONS

In this section we study how to manipulate the coupling
strengthsJ j,k and how other kinds of spin Hamiltonians can be
designed. To be specific, we present detailed calculations for
an existing micro-structured ion trap [28, 29]. The principles
used to obtain the concrete results presented in what follows
are, of course, applicable to other segmented traps as well.

A. Tailoring the coupling constants in a segmented trap

In the following we will discuss how to generate the ax-
ial trapping potential which results in the desired coupling
pattern. The theory follows [36], where coupling patterns
were calculated, when ions are held in a micro-structured trap,
which means, that each single ion or ion chain is located at the
bottom of an approximately harmonic potential. The separa-
tion of potentials is large (on the order 100µ m) and the cou-
pling between different sites can become impractically small
(Hz) for the purpose described in this article. Here, we con-
sider ions held in common closely separated and anharmonic
wells, and we tune both the harmonic and anharmonic part to
obtain the desired coupling pattern.

The effective potential can be written as

φeff =
Prf

P0
φrf +

∑

i

Ui

U0
φi (5)

whereφrf is the effective rf potential present at an rf power
levelPrf = P0. φi is the dc potential originating from electrode
i set to the voltageUi = U0. The effect of the rf field on the
axial potential is neglected in the following discussion.

The potentialφi of a single segment electrode set to a non
vanishing voltage is bound to be symmetric with respect to
the center of that electrode for the approximation of harmonic
trapping and remains ideally symmetric for periodic boundary
conditions. This leads also to symmetric ion configurations,
unless the ’history’ of the string (e. g. applying intentionally
asymmetric potential patterns) was used to split the chain off-
centre. We are in a regime, where the electrodes are much
wider compared to inter ion separations, so potential or elec-
tric field cannot independently be chosen at each ion position.

With a given voltage pattern applied to the electrodes, and
an initial guess of ion positions, one can calculate equilibrium
positions by minimizing the total energy. Note that several lo-
cal minima are possible, corresponding to different numbers
of ions in wells. In addition, permutations of ion positions
yield identical total energies. After the equilibrium ion posi-
tions have been determined, we calculate the normal modes of
an ion string, the Zeeman shifts of individual ions and the re-
sulting coupling constants. For all numerical simulations pre-
sented in the rest of this paper, we assume an axial magnetic
field gradient of 50 T/m.

The desired coupling pattern is symmetric (a bulk chain
weakly coupled to outer ions) so we consider symmetric po-
tential configurations and ion positions. The symmetry can
easily be broken at will, either by applying non-symmetric
voltage patterns, or by loading different numbers of ions per
site. We create up to three potential wells, and depending on
wells up to four basic scenarios can be distinguished.

For small excursion∆xi of ion i from the equilibrium posi-
tion, the motion of the chain can be decomposed into normal
modes, which is equivalent to say that the forceFi j on ion j

depends linearly on the excursion pattern~∆x as

~F = M̂ ~∆x

Fi j has two contributions:

1. the sum of changes of all Coulomb forces

2. the change due to a different position in the external
potential

So M̂ can be read such that the column vectors are the
forces on ion j if ion i is moved by a unit length from its
equilibrium position.

Mi j =



q2

2πǫ0
1

(xi−x j )3 i , j

q∂2
xφ(x)|x=xi −

∑
k>i Mik i = j .

Coupling can thus be interpreted in three steps:

1. a flip of one ioni would lead to a position change in
a magnetic gradient. The size of that change depends
only on the magnetic moment, the gradient, and the lo-
cal curvature of the trapping potential

2. the new position changes the equilibrium positions of
all other ions. For ionj the size of the change is propor-
tional to the size of the position change of ioni and the
local potential curvature at the position of ionj

3. the position change∆x j is translated to a change of the
level splitting∆ω j . This change is proportional to∆x j

and the gradient at the positionx j

In the following, three potential shapes are discussed and
values for ion positions, qubit level splittings (for zero offset
field), normal modes and couplings are given. Note that, for
symmetric potentials and ion positions, the couplings are also
symmetric, thus

J1,2 = J3,4 and J2,3 = J3,4

1. Coupling in a common well

When one or more segments are set to a negative voltage,
and the others are kept at ground, a single trapping zone is cre-
ated and the potential is predominantly harmonic. The cou-
pling pattern shows strong next neighbor coupling and also

D1.1
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substantial coupling beyond next neighbors. Figure 1 shows
the potential in the vicinity of the center of symmetry together
with the equilibrium positions and the resulting coupling pat-
tern. Numerical values for positions, levels splittings, normal
modes and couplings are given in Tab. I.

i
j

J
ij
 (kHz)

1
2

3
4

1
2

3
4

0

1

2

3

FIG. 1: Axial potential and equilibrium ion positions for a predomi-
nantly harmonic single well

i 1 2 3 4
x0,i (µm) -37.7 -12.2 12.2 37.7

ωi/2π (MHz) -26.4 -8.5 8.5 26.4
νi/2π (kHz) 36.1 61.6 83.3 101.8

i, j 1,2 1,3 1,4 2,3
Ji j (kHz) 2.64 1.85 1.32 2.67

TABLE I: Positionsxi , qubit splittingsωi, normal modesνi and cou-
plings Ji j for an ion chain in an approximately harmonic axial trap-
ping potential.

2. Coupling in three wells

Trapping ions in three independent wells allows an intu-
itive approach to generate LDE: the inner ions are confined
in a common well and couple strongly. The outer ions sit in
separate wells and thus show only small coupling to the cen-
ter ’bulk’ string (see fig. 2, left image). In fact, separating
the outer ions might generate outer wells with a steep confine-
ment, further reducing the coupling to all other ions. This can
be seen in the resulting coupling pattern (see fig. 2, right im-
age). Numerical values for positions, levels splittings, normal
modes and couplings are given in Tab. II.
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FIG. 2: Axial potential and equilibrium ion positions for ionscon-
fined in three wells

i 1 2 3 4
x0,i (µm) -85.0 -14.9 14.9 85.0

ωi/2π (MHz) -59.5 -10.4 10.4 59.5
νi/2π (kHz) 36.1 66.6 85.4 85.5

i, j 1,2 1,3 1,4 2,3
Ji j (kHz) 0.14 0.10 0.00 3.93

TABLE II: Positions xi , qubit splittingsωi, mechanical normal
modesνi and couplingsJi j for an ion chain in three approximately
harmonic axial trapping potential.

3. Coupling in a single strongly anharmonic well

Making a well strongly anharmonic, substantially alters the
normal mode spectrum and allows to generate a pattern suit-
able for creating LDE. Changing the softness of the outer
wells allows to choose the ratio of the coupling of outer ions
to their neighbors with respect to the coupling between the
two center ions in a wide range (see fig. 3). Note that this
potential configuration differs only slightly from the situation
shown before. This indicates a strong dependence of the cou-
pling on the applied voltages and puts strict requirements on
voltage stability and accuracy which have to be taken account
the the design of the voltage supplies[37]. Numerical values
vor positions, levels splittings, normal modes and couplings
are given in Tab. III.
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FIG. 3: Axial potential and equilibrium ion positions for ions con-
fined in a single anharmonic well, whose shape generates a coupling
pattern suitable for creating LDE. The coupling of the inner ions
compared to the coupling to the end ions can be scaled by choos-
ing the anharmonicity.

i 1 2 3 4
x0,i (µm) -79.5 -15.1 15.1 79.5

ωi/2π (MHz) -55.6 -10.5 10.5 55.6
νi/2π (kHz) 36.1 52.9 53.0 65.9

i, j 1,2 1,3 1,4 2,3
Ji j (kHz) 0.14 0.10 0.00 3.93

TABLE III: Positions xi , qubit splittingsωi , normal modesνi and
couplingsJi j for an ion chain in a strongly anharmonic axial trapping
potential.
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4. ASuitable Potential to Simulate LDE

A pattern similar to the previous section is used for the sim-
ulations in the rest of the article. Compared to Sec. III A 3,
all voltages are scaled up by a factor of four, resulting in ap-
proximately two times stiffer axial trapping frequencies which
makes trapping more robust and reduces the populations in
higher vibrational modes. The couplings on the other hand are
reduced by a factor of 4, slowing down the speed of the sim-
ulation and thus requiring longer coherence. The long range
interactions are small, and the end spins are weakly coupled
giving appropriate starting conditions to generate LDE. Nu-
merical values for positions, levels splittings, normal modes
and couplings are given in Tab. IV.

i 1 2 3 4
x0,i i (µm) -76.8 -9.6 9.6 76.8

ωi/2π (MHz) -53.7 -6.7 6.7 53.7
νi/2π (kHz) 71.3 88.3 88.3 129.6

i, j 1,2 1,3 1,4 2,3
Ji j (kHz) 0.04 0.03 0.00 0.99

TABLE IV: Positions xi , qubit splittingsωi , normal modesνi and
couplingsJi j for an ion chain in three approximately harmonic axial
trapping potential.

B. Spin dynamics with microwave pulses

The spin dynamics can be manipulated using external mi-
crowave fields which can drive selectively a given spin by tun-
ing the driving frequency to the corresponding resonance. The
hamiltonian for the interaction between the ion spins and the
driving field in the rotating wave approximation and neglect-
ing the ion motion (see Sec. IV B for an analysis of the effects
of the motion) takes the form

HL(t) = −i~Ω(t)
∑

j

{
σ+j e

−i[ν(t)t+ϕ(t)] − σ−j e
i[ν(t)t+ϕ(t)]

}
. (6)

In general the amplitudeΩ, the frequencyν, and the phaseϕ
of the driving field can be time dependent. In particular we
consider a sequence of step-like driving pulses: We identify
a set of time instantstm with m = 0, 1, 2, · · · which define a
corresponding set of time intervals (tm−1, tm] during which the
driving Hamiltonian is constant, (Ω(t) = Ωm, ν(t) = νm and
ϕ(t) = ϕm for t ∈ (tm−1, tm]). In certain intervals the driving
field can also be zero. If we define the square-pulse function

ǫm(t) = θ(t − tm−1) − θ(t − tm) (7)

with θ(t) = 0 for t < 0 andθ(t) = 1 for t ≥ 0, then Eq. (6)
takes the form

HL(t) =
∑

m

ǫm(t)H
(m)
L (t) (8)

where

H
(m)
L (t) = −i~Ωm

∑

j

[
σ+j e−i(νmt+ϕm)

− h.c.
]
. (9)

In each time interval in whichΩm , 0, the driving frequency
is close to resonance to a single spinjm, with a small detuning
hm, that isνm = ω jm − hm.

Thespin dynamics can be further harnessed by controlling
the external magnetic field. Here we are interested in situa-
tions in which the spin-spin couplingsJ j,k are fixed. In partic-
ular J j,k does not change when, for example, the direction of
theB field is inverted. On the other hand in this case the spin
resonances are affected. Specifically, the difference between
the spin resonance frequency

∆ j,k = ω j − ωk

changes in sign when the direction of the magnetic field is
inverted. Hence in each step the spin frequency can be defined
as

ω(m)
j = ω0 + ηmω0 j ,

whereω0 is an offset frequency,ω0 j the frequency relative to
the offset andηm = ±1 accounts for two possible direction of
the magnetic field.

The system Hamiltonian is

H(t) =
∑

m

ǫm(t)
[
H

(m)
z + Hzz+ H

(m)
L (t)
]
. (10)

whereH
(m)
z = ~2

∑N
j=1ω

(m)
j σz

j .

The time dependence of the driving HamiltonianH
(m)
L (t)

canbe removed in a reference frame rotating at the driving
field frequency as discussed in App. A. The dynamics in the
two representations are related by a unitary and local transfor-
mation, thus the corresponding entanglement properties are
equal.

The system Hamiltonian in the new representation takes the
form (see App. A)

H(t) =
∑

m : Ωm=0

ǫm(t)
[
H(m)

z,0 + Hzz

]

+
∑

m : Ωm,0

ǫm(t)
[
H(m)

z,1 + Hzz+ H(m)
L

]
(11)

with

H(m)
z,0 =

~

2
hm

N∑

j=1

σz
j

H(m)
z,1 =

~

2

∑

j, jm

[
ηm ∆ j, jm + hm

]
σz

j

H(m)
L = −i~Ωm

∑

j

{
σ+j e

−i
[
φ

(m)
j −φ

(m)
jm

]
− h.c.

}
. (12)

Here the sum over the time intervals is divided into two sums
over the intervals in which the driving field is on and off re-
spectively, and the labeljm indicates the spin which is driven
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quasi resonantly in each time interval. Moreover we have set
the driving phaseϕm to the valueϕm = −φ

(m)
jm

with

φ(m)
j =

m−1∑

m′=1

[
ν(m′+1)

j − ν(m′)
j

]
tm′ , (13)

where

ν(m)
j = ηmω j − hm when Ωm = 0

ν(m)
j = ηmω jm − hm when Ωm , 0. (14)

So, in this representation, the spinjm sees an effective mag-
netic field along the y-axes.

C. Stroboscopic engineering of the XX spin dynamics

In order to engineer the dynamics of anXX quantum
spin model we consider a sequence of driving pulses made
of 2N + 2 steps (m = 1, · · ·2N + 2) and identified by the
corresponding values of the driven spinjm, the direction of
the magnetic fieldηm, the laser intensityΩm and the duration
of the time steptm − tm−1. During the all sequence the value
of the detunings is fixedhm = h. The sequence is made
as follows: after a free evolution (no driving:m = 1 and
Ω1 = 0), of timet1− t0 = ∆t1, each spin is driven sequentially
from the last to the first (such that form = 2, · · ·N + 1,{
jm = N −m+ 2, ηm = −1,Ωm = −Ω jm, tm − tm−1 = δt jm

}
,

where the actual values ofΩ jm and δt jm are iden-
tified below); then after another free evolution (no
driving: m = N + 2 and ΩN+2 = 0), of time
tN+2 − tN+1 = ∆t2, the spins are driven sequentially
from the first to the last (such that form = N + 3, · · ·2N + 2,{
jm = m− N − 2, ηm = 1,Ωm = Ω jm, tm− tm−1 = δt jm

}
). Note

that in the first train of pulses the values ofηm andΩm are the
opposite of that in the second train of pulses. This is realized
changing the direction of the magnetic field, that realizes the
transformationηm → −ηm, and adding a phase ofπ to the
driving field, that realizes the transformationΩm→ −Ωm.

As discussed in App. B the evolution operator at the final
time t̄ = t2N+2 = ∆t1 + ∆t2 +

∑
j δt j , corresponding to this

sequence, with the parameters in each time interval which sat-
isfy the relations

Ω jmδ jm =
π

4
1
2

∑

j> jm

∆ j, jmδt j = n jmπ with n jm ∈ Z, (15)

can be approximated, in the limit
∣∣∣∆ j, jm

∣∣∣ ≫ |Ωm| ≫ |hm| ,
∣∣∣J j,k

∣∣∣,
as

Ut̄ = e−iH(x)
Ising∆t2 e−iH(z)

Ising∆t1

(16)

where

H(ζ)
Ising =

h
2

N∑

j=1

σ
ζ
j −

1
2

∑

j,k

J j,kσ
ζ
jσ

ζ

k, for ζ ∈ {x, z} .(17)
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FIG. 4: End-to-end concurrence (thick, blue lines) and fidelity (thin,
red lines) with the instantaneous ground state for a four ion system.
The dashed line are obtained integrating the time dependent effec-
tive Hamiltonian in Eq. (22) with the time dependence defined in
Eq. (23) (h0 = 2π × 0.99kHz); The solid lines are obtained using
the Hamiltonian in Eq. (11), following the pulse scheme described
in Sec. III C and with the stepwise variation of the parametersh and
α. The spin-spin coupling constant and the spin resonance frequen-
cies are identified in Sec. III A 4. Plots (a) and (b) differ for the ve-
locity of the adiabatic manipulation: in (a)r = 2π × 10Hz in (b)
r = 2π × 40Hz. The other parameters are: (a)∆t1 = 64µs and
{δ1, · · · δt4} = {1.87, 1.95, 1.94, 1.87} µs, and (b)∆t1 = 80µs and
{δ1, · · · δt4} = {1.57, 1.61, 1.61, 1.57} µs

The stroboscopic evolution at timesnt̄, with n ∈ N, given by
the repeated application of this sequence of pulses is described
by the operator

Unt̄ = Ut̄
n =

(
e−iH(x)

Ising∆t2e−iH(z)
Ising∆t1

)n
. (18)

According to the Trotter formula [..cite]

e−i(H1+H2)t = lim
n→∞

(
e−iH1t/ne−iH2t/n

)n
, (19)

and in the limit∆t1,∆t2 ≪
∣∣∣J j,k

∣∣∣−1
, |h|−1, we can approximate

Unt̄ ≃ e−i
(
H(z)

Ising+αH(x)
Ising

)
n∆t1 = e−iβ

(
H(z)

Ising+αH(x)
Ising

)
nt̄ (20)

where

α =
∆t2
∆t1

β =
∆t1
t̄
=

∆t1
(1+ α)∆t1 + 2

∑
j δt j

. (21)

This result demonstrates that the stroboscopic evolution de-
scribed above approximate the evolution, at timesnt̄, of a spin
system with the effective Hamiltonian

Heff = β
[
H(z)

Ising + αH(x)
Ising

]
. (22)

IV. ADIABATIC PREPARATION AND
STROBOSCOPIC/PULSED DYNAMICS

The parametersh, α andβ can be varied adiabatically in
order to prepare the ground state of anXX hamiltonian as dis-
cussed in App. C.The effective external magnetic fieldh can
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FIG. 5: As in Fig. 4 with a dephasing rate (a)γ = 2π× 0.1Hzand (b)
γ = 2π × 0.4Hz.

be varied by adjusting the detuning between the driving field
and the ion-spin resonance frequencies. On the other handα,
and correspondinglyβ are varied by controlling the time∆t2.

The system is initialized in the ferromagnetic state with all
the spins aligned along the z-axes that is the ground state of
the Ising Hamiltonian (α = 0). The value ofh is initially set to
some valueh0 in order to remove the ground state degeneracy.

The parametersα andh are then slowly varied to realize
the adiabatic preparation of the LDE. In particular during each
sequence of pulses, that is described in Sec.III C, the values of
h andα are kept fixed, while they are varied from sequence to
sequence in order to realize a stepwise approximation of the
functions (see App. C)

α(t) = 1− e−rt

h(t) = h0e−rt . (23)

The efficiency of this stepwise adiabatic protocol is ana-
lyzed numerically by evaluating the evolution corresponding
to the Hamiltonian (11) with the time sequence and the param-
eters discussed in Sec. III C, and the corresponding stepwise
variation ofh andα. The results are shown in Figs. 4 and 5
(solid lines) for different values of the rate of variationr. They
are compared with that obtained by the numerical integration
of the Shrödinger equation with the effective time dependent
Hamiltonian 22 where the time dependent parametersα andh
are defined in Eq. (23) (dashed lines).

In both cases the protocol is characterized in terms of the
fidelity between the resulting state and the expected instan-
taneous ground state of the effective Hamiltonian (22) (red,
thin curves), and in terms of the end-to-end concurrence (blue,
thick curves). The fidelity indicates how far is the resulting
state from the expected one: Fidelity equal to one corresponds
to perfect adiabatic following; while equal fidelity for both
the standard adiabatic evolution (dashed lines) and the step-
wise adiabatic evolution (solid lines) means that the protocol
realizes a perfect simulation of the effective Hamiltonian. On
the other end, the concurrence measure the entanglement be-
tween the end spins, and concurrence equal to one indicates a
maximally entangled Bell state.

When r is sufficiently small (Fig. 4) (a) the ground state
preparation is quite good: The fidelity is close to one and as
expected the ground state exhibits large entanglement. When

on the other and the rate is too large (Fig. 4) (b) then the evo-
lution is no more adiabatic and the system ends up in a state
which is not the ground state of the final hamiltonian and the
fidelity is reduced. Nevertheless also in this case, the end-to-
end entanglement can be very large at certain times meaning
that the end spins approach a Bell state. Also in this case the
bulk efficiently mediates an interaction between the end spins
which entangle them efficiently.

In all cases the evolution performed with the effective
Hamiltonian and that obtained via the sequence of pulses are
very similar meaning that the protocol is faithful. The effi-
ciency of the second is only slightly reduced but the overall
behaviors are consistent.

A. Effect of spin dephasing

Fig. 5 is evaluated including the dephasing of the spins. It is
obtained by solving a master equation for the spins dynamics
of the form

ρ̇ = −i
[
H(t), ρ

]
+LDρ (24)

whereH(t) corresponds to the Hamiltonian (11) for the solid
lines and to the effective Hamiltonian (22) for the dashed lines.
MoreoverLD accounts for the spins dephasing at rateγ and
takes the form

LDρ =
γ

2

∑

j

(
σz

j ρ σ
z
j − ρ
)
. (25)

As expected, the dephasing reduces the efficiency of the
scheme. In Fig. 5 (b) the entanglement of the end spins is still
relatively high with a dephasing time of∼ 0.4s. The scheme
is expected to be resistant to stronger dephasing (smaller de-
phasing time) when the coupling constantsJ j,k are larger. This
could be obtained with a stronger gradient of the external
magnetic field.

B. Mechanical effects

So far we have neglected the motion of the ions. Internal
electronic dynamics and motion can be coupled by an electro-
magnetic filed. In particular when the ions are in a magnetic
gradient also long wavelength radiation, as microwaves, can
have a significant mechanical effect allowing for example for
sideband cooling [30, 31, 39]. In the following we justify our
treatment in which we neglect the atomic motion.

In a magnetic gradient the coupling between an ionj and
a mechanical normal modek is scaled by the effective Lamb-
Dicke (LD) parameters [31]

η j,k =

√
~

2mωk

µB g
~ωk

∂B
∂x

∣∣∣∣∣
x=x0, j

S j,k (26)

whereωk is the frequency of the normal modes, andS is
the matrix that diagonalize the Hessian matrixA (see Sec.II)
of the potential energy function that confine the ions, that is
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(
STAS

)
j,k
= δ j,k mω2

j . These parameters are typically small

and allow for a systematic expansion of the corresponding dy-
namics in power ofη j,k. Including the lowest order mechan-
ical effects the Hamiltonian for the interaction between the
ions and the driving field (see also Eq. (6)) takes the form

HL(t) = −i~Ω(t) (27)

×
∑

j

σ
+
j

1+
∑

k

η j,k

(
a†k − ak

) e−i[ν(t)t+ϕ(t)] − h.c.



where h.c. stands for the hermitian conjugate, anda†k, ak

are the creation and annihilation operators for the vibrational
modek. This Hamiltonian accounts for sideband transitions
at frequenciesω j ± ωk. In order for our analysis to be justi-
fied the corresponding excitation probability have to be very
small. It can be estimated as

∣∣∣∣∣∣
Ω(t) η j,k

ν(t) − ω j ± ωk

∣∣∣∣∣∣
2

(nk + 1)≪ 1 (28)

wherenk indicates the average number of motional excitations
in the modek. For the parameters used in Figs. 4 and 5, the
largest LD parameter has a value ofη

(max)
j,k ∼ 0.14 and the low-

est vibrational frequency isω(min)
k ∼ 71 kHz. On the other

handΩ = π/(4δt j) ∼ 70 − 80 kHz andν(t) − ω j is in the
interval [0, h0], with h0 ∼ 0.99 KHz, for the spins which are
driven close to resonance, and in the range [0.07, 0.126] GHz
for the other spins. The corresponding largest sideband tran-
sition probability is∼ 0.027(nk + 1), which demonstrate the
validity of our results also for Doppler cooled trapped ions,
without additional sub Doppler cooling to the ground state of
the axial potential. Increasing the gradient of theB field, the
coupling strengths increases allowing for a faster preparation;
However the system approaches the regime in which the me-
chanical effects are relevant. In fact, stronger gradient of the
magnetic field correspond to larger LD parameters. In turns
it imply that the LD expansion up to the first sidebands is no
more valid and higher order sideband transition may become
relevant hence invalidating our treatment.

C. Experimental Feasibility

Here, we first consider how a fluctuating coupling constant
(due to, for instance, fluctuating electrode voltages) would in-
fluence the generation of LDE. Then we briefly outline typical
experimental parameters, as are used in the experimental set-
up described in [29].

1. Stability estimates

Let us consider a spin model with HamiltonianH =∑
j,k J̃ j,k

(
σx

jσ
x
k + σ

z
jσ

z
k

)
. If the coupling matrixJ̃ = J whereJ

is the one defined in Sec. III A 4, then the ground state end-to-
end concurrence is 0.98.

0.01 0.02 0.05 0.1 0.2 0.5
0.80

0.85

0.90
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1.00
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FIG. 6: End-to-end concurrence for random couplings: for each
value of the interval of variation∆ξ of the random variablesξ j,k the
plot shows the concurrence corresponding to 500 different realiza-
tions (the 500 points form a vertical segment for each value of∆ξ).
The horizontal line indicates the value 0.92, that is the value of the
concurrence for the coupling matrix defined in Sec. III A 4.

Let us now define the random couplingsJ̃ j,k = J j,k

(
1+ ξ j,k

)

with ξ j,k uniformly distributed random variables in the range[
−∆ξ,∆ξ

]
. The resulting concurrence are reported in Fig. 6.

These results shows that the end-to-end entanglement is suffi-
ciently stable under variations of the spin-spin couplings.

In [29] the operation of a segmented trap with a built-in
switchable gradient based on micro-structured solenoid is re-
ported. Different isotopes of Ytterbium with or without hy-
perfine structure can be trapped. For the experiment proposed
here, we use171Ybwith a nuclear spin ofI = 1/2 yield-
ing two hyperfine levels withF = 0, F = 1 in the elec-
tronic ground state [33, 43]. Different qubit implementations
are possible and magnetic sensitive states can be included
to allow for magnetic gradient inducedcoupling (MAGIC)
[30–32] as required for the experiments discussed here or
avoided to yield a quantum memory with a long coherence
time. The qubit is manipulated using microwave fields (ap-
plied through a conventional wave guide) and Rabi frequen-
cies nearΩ ≈ 100 kHz on theσ transition and a bare coher-
ence time of the magnetic field sensitive hyperfine qubit on
the order of 5 ms have been observed. Applying spin echo
techniques [40], dynamical decoupling [41] or dressed states
[42], we expect to be able to observe a coherent time evo-
lution on a second timescale. Splitting and merging of ion
strings (which involves the generation of anharmonic trapping
potentials), as well as shuttling have been demonstrated. Sta-
ble trapping could be observed down to axial trap frequencies
aroundν1 = 2π · 40 kHz.

FIG. 7: Chain of 33171Yb ions in our segmented trap.

V. CONCLUSION AND OUTLOOK

In this theoretical article we have introduced and inves-
tigated schemes for the quantum simulation of LDE with
trapped ions. In particular, we have shown how to tailor the
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trapping potential in order to engineer a specific spin-spin
coupling pattern in one-dimensional lattices, and we have de-
signed a sequence of microwave pulses able to engineer ef-
fective spin-1/2 Hamiltonians of the gapless and isotropicXX
type. Finally, we have analyzed the efficiency of the adia-
batic quantum preparation of the ground state of an effective
Hamiltonian which exhibits LDE, demonstrating its feasibility
within the limits of current ion trap technology. In the course
of the investigation, we have introduced and combined for the
first time trap shaping, adiabatic preparation, and Trotteriza-
tion of the interactions, three key elements that have never be-
ing combined together and that we have proven necessary for
the realization, so far not yet attained, of truly and highly non-
classical features of complex models of interacting quantum
many-body systems.

We expect to be able to carry out the experiment in a
medium-term time scale as detailed in IV C. To improve the
level of control over the anharmonicity of the axial trapping
potential, it might be necessary to use smaller axial trapping
segments, possibly in a surface trap. Larger gradients would
boost the coupling and allow for stiffer axial confinement,
making the scheme more robust against thermal excitation and
external stray fields.
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Appendix A: The dynamics in a new reference frame

Let us consider the model described by the Hamiltonian in
Eq. (10), and study the dynamics in a new reference frame
defined by the unitary transformation

U0(t) =
∑

m

ǫm(t)e−iH(m)
0 (t−tm−1)e−iH(m−1)

0 (tm−1−tm−2) · · ·e−iH(1)
0 (t1−t0)

+θ(t0 − t) (A1)

with

H(m)
0 =

1
2

∑

j

ν(m)
j σz

j (A2)

where the actual values ofν(m)
j are identified below. Since the

unitary transformation is local, the entanglement properties in
the new representation are the same as that in the original one.

If |ψ(t)〉 is the state in the original representation, then the
dynamics of the transformed state|ψ(t)〉 = U†0(t)|ψ(t)〉 is ruled

by the Hamiltonian

H(t) = U†0(t)H(t)U0(t) −
∑

m

ǫm(t)H(m)
0

=
∑

m

ǫm(t)
[
H(m)

z + Hzz + H(m)
L

]
(A3)

with

H(m)
z = H

(m)
z − H(m)

0 =
1
2

∑

j

(ω(m)
j − ν

(m)
j )σz

j

H(m)
L = −iΩm

∑

j

{
σ+j e

−i
[(
νm−ν

(m)
j

)
t+φ(m)

j +ϕm

]
− h.c.

}
(A4)

where

φ(m)
j =

m−1∑

m′=1

[
ν(m′+1)

j − ν(m′)
j

]
tm′ . (A5)

The last Hamiltonian is obtained exploiting the relation
eiζσz

j tσ+j e
−iζσz

j t = σ+j e
2iζt. The values ofν(m)

j are chosen so
that the new Hamiltonian is time independent:

ν(m)
j = ω(m)

j − hm when Ωm = 0

ν(m)
j = ω(m)

jm
− hm when Ωm , 0. (A6)

Moreover the phase is fixed to the value

ϕm = −φ
(m)
jm

(A7)

so that the phase of the driving pulse,φ(m)
j + ϕm, is zero for

the spin jm which is the one that is close to resonance with
the driving field in each time intervalm. Thereby we obtain
Eq. (11).

The corresponding evolution operator decomposes into the
product of evolution operators each one describing the evolu-
tion in a single time interval [tm−1, tm]:

U(t) =
∑

m

ǫm(t)e−iH(m)(t−tm−1)e−iH(m−1)(tm−1−tm−2)
· · ·e−iH(1)(t1−t0),

(A8)

where

H(m) = H(m)
z + Hzz+ H(m)

L . (A9)

Appendix B: The sequence of driving pulses

We are interested in the limit in which
∣∣∣ω j − ω jm

∣∣∣ ≫ |Ωm| ≫

|hm| ,
∣∣∣J j,k

∣∣∣, for j , jm. Hence we can approximate the Hamil-
tonian (11) by retaining only the resonant terms as

H(t) ≃
∑

m : Ωm=0

ǫm(t)
[
H(m)

z,0 + Hzz

]

+
∑

m : Ωm,0

ǫm(t)
[
H(m)

z,1 + H(m)
L

]

H(m)
z,1 ≃

~

2

∑

j, jm

ηm∆ j, jmσ
z
j

H(m)
L ≃ ~Ωmσ

y
jm
. (B1)
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The evolution operator corresponding to the sequence of
pulses described in Sec. III C can be written, using the ap-
proximate Hamiltonian (B1), in the form

Ut̄ = e−iH(+)
N δtN · · ·e−iH(+)

1 δt1 e−iH(z)
Ising∆t2 e−iH(−)

1 δt1 · · ·e−iH(−)
N δtN

× e−iH(z)
Ising∆t1

(B2)

where

H(z)
Ising =

h
2

N∑

j=1

σz
j −

1
2

∑

j,k

J j,kσ
z
jσ

z
k

H(±)
jm
= ±

Ω jmσ
y
jm
+

1
2

∑

j, jm

∆ j, jmσ
z
j

 ,

(B3)

and the total time of the sequence is

t̄ = ∆t1 + ∆t2 +
∑

j

δt j. (B4)

The operatorUt̄ can be rewritten as

Ut̄ = TN · · ·T1 eiH(z)
Ising∆t2 T†1 . . .T

†

N e−iH(z)
Ising∆t1 (B5)

where

T jm = e−iD jmσ
z
jme−iΩ̌ jmσ

y
jm
δt jm (B6)

with

D jm =
1
2

∑

j> jm

∆ j, jmδt j (B7)

Now we use the relation

Ξ (Γ,∆) ≡ e−i∆σz
j e−iΓσy

jσz
je

iΓσy
j ei∆σz

j = (B8)

= cos(2Γ)σz
j + sin(2Γ)

[
cos(2∆)σx

j + sin(2∆)σy
j

]
,

which reduces toΞ (Γ,∆) = σx
j whenΓ = π

4 +nπ and∆ = n′π,
or whenΓ = − π4 + nπ and∆ = ± π2 + n′π with n, n′ ∈ Z. Thus
setting, for example,

Ω jmδ jm =
π

4
D jm = n jmπ (B9)

with n jm ∈ Z, ∀ jm, then

Ut̄ = e−iH(x)
Ising∆t2 e−iH(z)

Ising∆t1

(B10)

where

H(x)
Ising =

h
2

N∑

j=1

σx
j −

1
2

∑

j,k

J j,kσ
x
jσ

x
k. (B11)
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FIG. 8: (a) Gap between ground a first excited state ofHeff in Eq. (22)
with four ions, in the space of parameters{h, α}. The red line in-
dicates the gap corresponding to the adiabatic variation ofα and
h. (b) time evolution of the parametersα(t) and h(t). (c) End-to-
end concurrence (thick, blue line) and fidelity with the instantaneous
ground state (thin, red line), obtained integrating the time dependent
Shrödinger equation with the effective Hamiltonian in Eq. (22) with
four ions, and withh0 = 2π × 0.99kHz and r = 2π × 10Hz. The
spin-spin couplings are defined in Sec. III A 4. Although not relevant
for the present result, in order to be consistent with the results of
Sec. IV, we have set the parameterβ to the values defined in Eq. (21)
(a different value ofβ corresponds to a rescaling of the energy and
correspondingly of the duration of the protocol).

Appendix C: Adiabatic preparation of the Ground state

A system initially in an eigenstate|ψ j(0)〉 of its Hamilto-
nian, follows the instantaneous eigenstate|ψ j(t)〉, which de-
rive from the initial state by continuity, when the correspond-
ing Hamiltonian is deformed adiabatically [44]. Condition for
the adiabatic evolution is that during the evolution the proba-
bility for the transition form the eigenstate|ψ j(t)〉 to a different
one|ψk(t)〉 (∀k) is negligible, this can be estimated as [44]

∑

k, j

∣∣∣∣∣∣∣∣
~
〈ψk(t)|∂H(t)/∂t|ψ j(t)〉
[
Ek(t) − E j(t)

]2

∣∣∣∣∣∣∣∣

2

≪ 1. (C1)

It means that larger is the difference in energy between the
eigenstate state|ψ j(t)〉 and all the other, more easily the adia-
batic condition can be satisfied.

In particular if initially the system is prepared in the ground
state then it will remain in the instantaneous ground state un-
der a slow variation of some Hamiltonian parameters. This
idea can be applied to prepare the ground state of compli-
cated Hamiltonians: One can first prepare the ground state
of a sufficiently simple one which is easy to prepare. Then the
Hamiltonian is adiabatically changed until approaching the fi-
nal target Hamiltonian. Correspondingly the system will end
up in the ground state of the final Hamiltonian.

In our case according to the result of Sec. III C, we are able
to generate the dynamics corresponding to the Hamiltonian

D1.1



11

(see Eq. (22))

Heff (α, h) = β(t)
∑

j

h(t)
[
σz

j + α(t) σx
j

]

−β(t)
∑

j,k

J j,k

[
σz

jσ
z
k + α(t) σx

jσ
x
k

]
. (C2)

whereβ(t) is function ofα(t) as specified in Eq. (21).
We want to prepare the ground state ofHXZ ≡ Heff(1, 0) =
−β
∑

j,k J j,k

(
σz

jσ
z
k + σ

x
jσ

x
k

)
. Hence we can first prepare the

ground state of a ferromagnetic Ising HamiltonianHIsing ≡

Heff (0, h0) = β
(
h0
∑

j σ
z
j −
∑

j,k J j,kσ
z
jσ

z
k

)
which simply cor-

responds to the ferromagnetic state in which all the spins are
polarized alongz. Then the ground state ofHXZ is obtained
by the adiabatic variation of the parametersh/h0 : 1→ 0 and
α : 0→ 1.

An example of adiabatic preparation of the ground state of
the HamiltonianHeff(1, 0) is shown in Fig 8. The parameters
α andh are varied according to (see the curves Fig. 8 (b))

h(t) = h0 e−rt

α(t) = 1− e−rt . (C3)

Initially the parameters can be varied rapidly because the cor-
responding gap between ground and first excited state is rela-
tively large as depicted in Fig. 8 (a). AsHeff approaches the
target Hamiltonian the gap reduces and correspondingly the
variation have to slow down. The curves in Fig. 8 (c) are ob-
tained by numerical integration of the Schrödinger Equation
with the time dependent Hamiltonian (C2), and are equal to
the dashed curves in Fig. 4 (a). The red, thin line in Fig. 8 (c) is
the fidelity between the state obtained with the adiabatic evo-
lution and the instantaneous ground state. This curve is very
close to 1 at all times indicating that the system actually fol-
lows the adiabatic ground state. The spin-spin couplings that
are used in these calculation are that discussed in Sec. III A 4.
The HamiltonianHeff(1, 0) with these coupling strengths ex-
hibits long range entanglement, that is strong entanglement
between first and last spin. This feature is described by the
blue tick curve in Fig. 8 (c), that displays the entanglement, as
measured by the concurrence between first and last spins. As
expected, at large time the end spins are strongly entangled.
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