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We discusssystemf ionsin segmentedinear Paultrapsfor the quantumsimulationof spinmodelswhich
exhibit long-distanceentanglemen{LDE) in the groundstate. The axial potential can be tailoredto create
differentcoupling patternssuitableto createLDE. Microwave pulsesare usedto implementvariouskinds of
spin-spininteractionHamiltonianswhich canbevariedadiabaticallytherebyrealizingthe adiabatiqreparation
of thegroundstatesof quantumspin Hamiltoniansexhibiting LDE.

PACS numbers: 03.67.Ac, 37.10.Ty, 37.10.Vz

I. INTRODUCTION neering and control of a desired complex Hamiltonian can be

highly challenging tasks with high payfo Spectacular proof

Entanglementis a central resource for quantum technologQf principlg experimenta! demonstrafions [24_.27] have shown
the potential of trapped ion based quantum simulators. How-

cal applllcatlons Il 2.]' Qreatff@rt has been devoted to th? ever, so far none of these experiments has explored the ground
generation and distribution of entanglement over long dis-

tances, with the intent of realizing large-scale protocols oTState .Of shin modpls which are expected_to exhibit highly non-
quantu,m information and communication technologlds [3_clas§|cal properties. Moreover, no experiment so far has faced
23] the simultaneous occurrence of all the_followmg features com-
. bined together: 1) sophisticated shaping of the trap potentials
Particularly intriguing in this context is the prediction that in order to suppress thdfect of |0ng-range interactions; 2)
certain spin models are naturally endowed with peculiar enhighly controlled adiabatic processes driving the system to the
tanglement properties in their ground state which could bgjround state; 3) full implementation of Trotterization (Trotter
profitable for quantum communication purposes, for examplegxpansion) in order to generate the relevant spin-spin interac-

between dierent spatial regions within a quantum proces-tions in all the needed directions and components.
sor. Specifically, the concept of long-distance entanglement

(LDE) has been introduced and discussed in order to identify i . .

the occurrence of sizeable nonlocal quantum correlations be- N the following we will discuss schemes to simulate
tween distant, non-directly interacting spins in quantum spirfound states of complex quantum systems, exhibiting highly
chains and network$ [17-22]. This phenomenon emerges ienclassical properties, by the use of trapped ions featuring
models with non degenerate ground states, when the end spii§P€Cts 1)-3) listed above. Specifically, we will explore the
(spins at the boundary of the system) interact weakly Withc_apabnme_s of trapped ion syst.ems for the quantum simula-
theirimmediate neighbors, such that a strongly correlated bulio" Of spin models, and we will apply them to propose the
mediates ffective interactions between the distant, non di-fir'St demonstration of LDE in quantum spin chains. LDE is
rectly interacting, end spins. In this work we discuss the fea@ 9l0bal nonclassicalfect which, on the other hand, can be
sibility of schemes for the experimental observation of thismonitored by the analysis of only two spins, namely the end

effect using trapped ions as quantum simulators of quanturdPins of the chain. Itis therefore affiniently simple, yetrich
spin models. phenomenon which is ideal to be demonstrated using an ion

trap quantum simulator. Bering from the previous experi-
€Mhents cited above [26=27] in which the spin coherent manipu-
lation is realized with laser fields, here we focus on segmented
ion traps in the presence of a magnetic gradient where the en-
ineering of the quantum dynamics is realized by microwave
elds.

Trapped ions are highly versatile systems which have be
proven to be extremelyfkective in quantum technological ap-
plications. The simulation of quantum models of strongly in-
teracting quantum matter with trapped ions holds promise fo
the investigation of those quantum dynamics that remain so f
unexplored due their inescapable complexity [23]. Indeed, the
natural many-body dynamics of trapped atoms is very rich and
interesting by itself; on the other hand, in the present work we The paper is organized as follows. In Set. Il we introduce
will be mainly concerned with the subtle and intriguing task ofthe systems and discuss the basic features of the scheme that
realizing models that are not directly provided by the naturalwe implement for the simulation of long distance entangle-
i.e. non engineered, physics of trapped ions. Although spifnent. In Sed Tl we discuss how to tailor the spin-spin inter-
interactions emerge quite naturally in ion chain systems, engiactions and we describe the scheme of pulses for the simula-

tion of spin Hamiltonians. In SeE. 1V we discuss the results

for the adiabatic preparation of the ground state and discuss

the experimental feasibility of the protocol. Finally, in Je¢. V
*Corresponding author: illuminati@sa.infn.it we draw conclusions and discuss possible outlooks.
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Il. THE SYSTEM have to be sfiiciently short so that the evolution due to the
spin-spin interactions can be neglected. This is achieved with

Doppler cooled ions held in a segmented ion tfap [28, 29p suficiently strong microwave driving field resulting in a
and exposed to a magnetic field gradient realifeotive spin- abi frequency2 > Jjk. On the other hand each microwave
1/2 models[[30=33]. Theftective spin-spin interactions in- Pulse should operate on a single spin, and ffsat on the
duced by the magnetic field are of Ising type and can be ad?ther spins should be negligible. This imposes a limit on the
justed by tailoring the axial trapping potential. In particular, Maximum allowed intensity of the driving field < A, where -
if the ions are sfiiciently cold, such that the ion motion can A indicates the frequencyitierence between neighboring spin
be neglected (the validity of this approximation is discussed€sonances. _ _ _
in Sec[TVB), the &ective system oN spins is described by The simultaneous interaction alongndx can be simulated

the Ising Hamiltonian by Trotterization, namely by repeated, fast application of the
two kind of interactions/[35]. Provided that the interaction
ﬁf?mg = H,+ Hy, timer/nis suficiently small, it is possible to approximate
N
_ Jm0 =0 2 0
HZ — ZZwJO—T efl[HlsngrHlsing]T ~ |:eflHfs)‘nng/nelefs)mgTz/n " , (4)
=1
H.. = _h Z I o202 (1) and to generate a stroboscopic evolution which simulates a
z7 2 M % Hamiltonian that is the sum of two Ising Hamiltonians with

interactions along two orthogonal axes.
where the resonance frequencies of the atomic spinde- We also note that typically the parameters in the Hamilto-
pend on the external magnetic fielxo j) at the equilibrium nianﬁl(z)ing defined in Eq.[{1L) are such that the spin-spin cou-

position of the ionxy j [34]. The spin-spin couplings are in yjing strengths are much smaller then the single site energy,
general long range and their magnitude depends on the trag}k < wy, which hence dominate the dynamics of this model.

ping potential and on the spatial derivative of the spin resoneyertheless we note that we are interested in the situation in
nance frequency that, in turn, is determined by the magnetighich the system is driven by a series of microwave pulses.
field gradient. They are given by In this case, as demonstrated in the next section, the relevant

howj  dwy N dynamics is that obtained in a reference frame rotating at the
Jik = zglx&ja—&lx&k(A )iks (2)  driving field frequency. In this representation, the relevant sin-
! gle site energy is in fact given by the detunimg w; —v; be-
Here,A, whose elements ar = PV (X1, Xn) isthe tween spin resonance frequency and driving field frequency,
. . " I e x=xqy, Ve which can therefore be adjusted and controlled during the dy-
Hessian matrix of the potential energy functid(ixy, - - - xn) namics.

that confine the ions with; indicating the position of the ion  Thege results can eventually be used for the adiabatic prepa-
j. Besides, the magnetic gradient allows also for the addressation of the ground state of, for example, XX Hamiltoni-

ing of individual sping with microque field WhiCh can, there- gns  The system is prepared initially in the ground state
fore, be used to manipulate the spin dynamics. of a suficiently simple Hamiltonian which is easy to pre-
pare: In our case it consists of the ferromagnitlty polar-
ized spin state which is the ground state of the Ising Hamil-
tonian with finite magnetic fieldHinita = 7 h/ZZja]? -
n/2%k Jj,ka-?a-ﬁ). Then, the &ective magnetic field is slowly
switched df (h is reduced) while the interaction alongis

. . o . L Wrned on by tuning the relative duration of the evolutions
non-commuting spin-spin interaction terms. This is not the

: : o = whi i under the two HamiltonianBl oy, and Hian. If the vari
case of the simple Ising Hamiltoniafl (1) in which only in- Under the two Hamiltoniansl,gjpg and Hsng. € varia-
teractions terms of the formr’o; are present. Therefore, the tion of the parameters is fiiciently slow, then the system re-
simulation of LDE requires the ability to engineer interactionsMains in the instantaneous ground state. And eventually it ap-
along a diferent axes, described for example by a term of thdProaches the ground state of the final modified target Hamilto-
form o¥o¥. Such an fective interaction can be induced using nianH inar = ~71/2 % Jjk (szffﬁ + U'JX‘TE) where the #ective

a sequence of/2 microwave pules that realize the transfor- magnetic field is zero and both interactions alorandz are
mation €1/42e™7/4 — % over all the spins. In particular, Present. This Hamiltonian exhibits ground state long distance
i i ' ’

a free evolution sandwiched by two trainsg® pulses (each entanglement when the end spins are weakly coupled to the

. 7 . . bulk [17-+22].
pulse addresses a particular ipn= 1, ..., N) with opposite . . . .
. . However, in general the typical harmonic trapping poten-
phase performs the following transformation . ; . . . . .
tial of linear ion traps induces long range interactions with

o130 . gl it g Pt 5ot/ 5/ = Pt 3y  Maximum couplings at the end of the chain. Thus, in order

to simulate ground state LDE, the trapping potential has to be
and realizes an Ising interaction along thaxes. In order for  carefully engineered and the end spins interactions have to be
this transformation to befkective, the duration of the pulses made weak. This can be realized with segmented micro-traps

A. General considerations

Spin Hamiltonians with non-trivial ground state correla-
tions (as in the case of LDE) are in general characterized b
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as dscussed in SeE.TITA. The desired coupling pattern is symmetric (a bulk chain
weakly coupled to outer ions) so we consider symmetric po-
tential configurations and ion positions. The symmetry can
I11. ENGINEERING OF SPIN HAMILTONIANSWITH easily be broken at will, either by applying non-symmetric
TRAPPED IONS voltage patterns, or by loadingftrent numbers of ions per
site. We create up to three potential wells, and depending on
In this section we study how to manipulate the couplingwells up to four basic scenarios can be distinguished.
strengthsl;x and how other kinds of spin Hamiltonians can be  For small excursion\x; of ioni from the equilibrium posi-
designed. To be specific, we present detailed calculations fdion, the motion of the chain can be decomposed into normal
an existing micro-structured ion trap [28, 29]. The principlesmodes, which is equivalent to say that the foFggon ion j
used to obtain the concrete results presented in what followgepends linearly on the excursion pattésas
are, of course, applicable to other segmented traps as well.

F = MAX
A. Tailoring the coupling constantsin a segmented trap Fij has two contributions:

In the following we will discuss how to generate the ax- 1. the sum of changes of all Coulomb forces

ial trapping potential which results in the desired coupling 2 the change due to aftiirent position in the external
pattern. The theory follows [36], where coupling patterns potential

were calculated, when ions are held in a micro-structured trap, R

which means, that each single ion or ion chain is located atthe So M can be read such that the column vectors are the
bottom of an approximately harmonic potential. The separaforces on ionj if ion i is moved by a unit length from its
tion of potentials is large (on the order 100n) and the cou-  equilibrium position.

pling between dferent sites can become impractically small

(Hz) for the purpose described in this article. Here, we con- @ 1

sider ions held in common closely separated and anharmonic 260 (5-X ) i #
wells, and we tune both the harmonic and anharmonic part to Mij =
obtain the desired coupling pattern. qQ20(X)x=x — Sii Mi 1= J.

The dfective potential can be written as _ _ )
Coupling can thus be interpreted in three steps:

ot = &% . Z _i¢i (5) 1. a flip of one ioni_ would Ieaq to a position change in
Po — Uo a magnetic gradient. The size of that change depends
only on the magnetic moment, the gradient, and the lo-
whereg is the dtective rf potential present at an rf power cal curvature of the trapping potential
level P = Po. ¢ is the dc potential originating from electrode o o -
i set to the voltagd); = Uo. The dfect of the rf field on the 2. the new_posmon phz_;mges.the equilibrium p_osmons of
axial potential is neglected in the following discussion. all other ions. Forior the size of the change is propor-
The potentialp; of a single segment electrode set to a non tional to the size of the position change of ioand the
vanishing voltage is bound to be symmetric with respect to local potential curvature at the position of ign

the center of that electrode for the approximation of harmonic 3

trapping and remains ideally symmetric for periodic boundary

conditions. This leads also to symmetric ion configurations,

unless the ’history’ of the string (e. g. applying intentionally

asymmetric potential patterns) was used to split the ch#in o In the following, three potential shapes are discussed and

centre. We are in a regime, where the electrodes are muahalues for ion positions, qubit level splittings (for zerfiset

wider compared to inter ion separations, so potential or eledfield), normal modes and couplings are given. Note that, for

tric field cannot independently be chosen at each ion positiorsymmetric potentials and ion positions, the couplings are also
With a given voltage pattern applied to the electrodes, andymmetric, thus

an initial guess of ion positions, one can calculate equilibrium

positions by minimizing the total energy. Note that several lo- Ji2=J34 and Jp3=J34

cal minima are possible, corresponding tffalient numbers

of ions in wells. In addition, permutations of ion positions

yield identical total energies. After the equilibrium ion posi- 1. Coupling in a common well

tions have been determined, we calculate the normal modes of

an ion string, the Zeeman shifts of individual ions and the re- When one or more segments are set to a negative voltage,

sulting coupling constants. For all numerical simulations pre-and the others are kept at ground, a single trapping zone is cre-

sented in the rest of this paper, we assume an axial magnetited and the potential is predominantly harmonic. The cou-

field gradient of 50 m. pling pattern shows strong next neighbor coupling and also

. the position chang&x; is translated to a change of the
level splittingAw;j. This change is proportional #x;
and the gradient at the position
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substantial coupling beyond next neighbors. Figre 1 shows i 12 3 4
the potential in the vicinity of the center of symmetry together Xoi (um) -85.0 -14.9 14.9 85.0
with the equilibrium positions and the resulting coupling pat- ‘”iézz’; (('I\</|I—||_|zz)) ggf 'ég'g' gs)'j 2?355)
tern. Numerical values for positions, levels splittings, normal v ' ' ' '
modes and couplings are given in Tab. I. i 12 13 14 23

Jij (kHz) 0.14 0.10 0.00 3.93

). (kHz)
0.08 Y

0.00 TABLE II: Positions x;, qubit splittings wj, mechanical normal

modesy; and couplings); for an ion chain in three approximately
harmonic axial trapping potential.

0.04
0.02

¢~ bmin (MeV)

0.00

-40  -20 0 20 40
position (um)

3. Coupling in a single strongly anharmonic well

FIG. 1: Axial potential and equilibrium ion positions for a poeai-

o Making a well strongly anharmonic, substantially alters the
nantly harmonic single well

normal mode spectrum and allows to generate a pattern suit-
able for creating LDE. Changing the softness of the outer
wells allows to choose the ratio of the coupling of outer ions
to their neighbors with respect to the coupling between the
two center ions in a wide range (see fig). 3). Note that this
potential configuration diers only slightly from the situation
shown before. This indicates a strong dependence of the cou-
i 12 13 14 23 pling on the applied voltages and puts strict requirements on
Jj (kHz) 2.64 1.85 1.32 2.67 voltage stability and accuracy which have to be taken account
the the design of the voltage supplies[37]. Numerical values

vor positions, levels splittings, normal modes and couplings
TABLE I: Positionsy;, qubit splittingsw;, normal modes; and cou-  are given in Tal.TlI.
plings J;; for an ion chain in an approximately harmonic axial trap-
ping potential.

i 1 2 3 4

Xoi (um) -37.7 -12.2 12.2 37.7
wi/2n (MHz) -26.4 -85 85 26.4
vi/2n (kHz) 36.1 61.6 83.3 101.8

J;; (kHz)

0.10

(meV)

0.05

6= Prin

2. Coupling in three wells
0.00

Trapping ions in three independent wells allows an intu- 00 50
. . . . . position (um)
itive approach to generate LDE: the inner ions are confined
in a common well and couple strongly. The outer ions sit in
separate wells and thus show only small coupling to the ceng|G. 3: Axial potential and equilibrium ion positions for ionsre
ter 'bulk’ string (see fig[R, left image). In fact, separating fined in a single anharmonic well, whose shape generates a coupling
the outer ions might generate outer wells with a steep confinggattern suitable for creating LDE. The coupling of the inner ions
ment, further reducing the coupling to all other ions. This cancompared to the coupling to the end ions can be scaled by choos-
be seen in the resulting coupling pattern (seeig. 2, right iming the anharmonicity.
age). Numerical values for positions, levels splittings, normal
modes and couplings are given in Tab. II.

i 1 2 3 4
1 kH2) Xoj (um)  -79.5 -15.1 15.1 79.5
wi/2x (MHz) -55.6 -10.5 10.5 55.6
vi/2n (kHz) 36.1 52.9 53.0 65.9

0.10

0.05

¢— Pmin (MeV)

4
3
2
1) i, ] 12 13 14 23

000 Jj (kHz) 0.14 0.10 0.00 3.93

-100 -50 0 50 100
position (pum) J

TABLE IlI: Positions x;, qubit splittingsw;, normal modes; and
FIG. 2: Axial potential and equilibrium ion positions for ionen-  €0uplingsJ;; for anion chain in a strongly anharmonic axial trapping
fined in three wells potential.
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4. ASuitable Potential to Simulate LDE where
Tm - _j + o1 (Vmt+¢m)
A pattern similar to the previous section is used for the sim- HU() = =i Z [O—j © B h'C'] ’ ©)

ulations in the rest of the article. Compared to $ec. 11 A3, .
all voltages are scaled up by a factor of four, resulting in apdin each time interval in whicky, # 0, the driving frequency
proximately two times sfier axial trapping frequencies which is close to resonance to a single spipwith a small detuning
makes trapping more robust and reduces the populations imy, that isvm = wj,, — hm.
higher vibrational modes. The couplings on the other hand are Thespin dynamics can be further harnessed by controlling
reduced by a factor of 4, slowing down the speed of the simthe external magnetic field. Here we are interested in situa-
ulation and thus requiring longer coherence. The long rangéons in which the spin-spin couplinggx are fixed. In partic-
interactions are small, and the end spins are weakly coupledlar J;x does not change when, for example, the direction of
giving appropriate starting conditions to generate LDE. Nu-the B field is inverted. On the other hand in this case the spin
merical values for positions, levels splittings, normal modegesonances arefacted. Specifically, the flerence between
and couplings are given in Tdb.IV. the spin resonance frequency

i 1 2 3 4 Ajk = wj — wk
Xoil (um) -76.8 -9.6 9.6 76.8

w/2r (MHz) -53.7 -6.7 6.7 53.7 changes in sign when the direction of the magnetic field is

yi/2r (kHz) 71.3 88.3 88.3 129.6 inverted. Hence in each step the spin frequency can be defined
as
i,j 12 13 14 23 m _ )
Jj (kHz)  0.04 0.03 0.00 0.99 @) T @oF Imoj,

wherewq is an dfset frequencyyo; the frequency relative to
TABLE IV: Positions x;, qubit splittingsw;, normal modes; and the dfset ar_1d7,_n = <1 accounts for two possible direction of
couplingsJ; for an ion chain in three approximately harmonic axial € magnetic field.

trapping potential. The system Hamiltonian is
A = Y e[ + e+ FOO 0
m
B. Spin dynamicswith microwave pulses Whereﬁ(zm) = 43N WMo
=1@j gy

E .. . .—(m)
The spin dynamics can be manipulated using external mi- The time dependence of the driving Hamiltoniai (f)

. : . : ; ) canbe removed in a reference frame rotating at the driving
crowave fields which can drive selectively a given spin by tun-,

ing the driving frequency to the corresponding resonance ThﬁeIOI frequency as discussed in App. A. The dynamics in the
hzfmiltonian fgor thqe inteyaction betwegn the i%n spins and the o representations are related by a unitary and local transfor-

S e . S P (I:’nation, thus the corresponding entanglement properties are
driving field in the rotating wave approximation and neglect-

. . . . equal.
ing the ion motion (see SdC. 1V B for an analysis of thieets The system Hamiltonian in the new representation takes the

of the motion) takes the form form (see AppA)
ﬁL(t) = —inO(t) Z {O_-Jye—i[V(t)Htﬂ(t)] _ O.j—ei[V(t)Htﬂ(t)]} .(6) H(t) = Z em(®) [H(ng) + sz]
i m: Qm=0
In general the amplitud®@, the frequency, and the phase + Z em(t) [HS‘I’ +Hzz+ H|(_m)] (11)
of the driving field can be time dependent. In particular we m: Qm#0

consider a sequence of step-like driving pulses: We identify, i,
a set of time instants, with m = 0,1, 2,--- which define a
corresponding set of time intervalg,(1, ty] during which the

N
L. . o _ _ HMm _ ﬁh Zo_z
driving Hamiltonian is constant{((t) = Qm, v(t) = vm and 20 >'m j
e(t) = pmfort € (tn-1.tm]). In certain intervals the driving =1
field can also be zero. If we define the square-pulse function (m) h - z
Hyy = > [Tlm Ajjm + hm] o]
i#jm
en(t) = 0(t = tm-1) = 6t — tm) @ ’ o
H™ = i Y {aj*e"["’? o] — h.c.}. (12)

with 6(t) = 0 fort < 0 andé(t) = 1 fort > 0, then Eq.[(B) i

takes the form . . . .
Here the sum over the time intervals is divided into two sums

A = Z em(t)ﬁ(Lm)(t) (8)  over the intervals in which the driving field is on anff ce-

= spectively, and the labg}, indicates the spin which is driven
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guasi resonantly in each time interval. Moreover we have se Pl e a—— 1E == =
the driving phasen, to the valuepy, = —¢(m) with \ N I’ \
] L/ 2 _
m-1 1/ \\
(m _ (M+1) _ | (m) !
o = >, A=At 13) o5 / 05 ,
=1 I ,
)
where / /
™ (@) (b)
™ 0 0.08 016 O 0.02 0.04
vi© = nmwj, —hm when Qn # 0. (14) time (s) time (s)

So, in this representation, the spip sees an fective mag-
netic field along the y-axes. FIG. 4: End-to-end concurrence (thick, blue lines) and figethin,

red lines) with the instantaneous ground state for a four ion system.

The dashed line are obtained integrating the time dependksd- e

tive Hamiltonian in Eq.[{2R) with the time dependence defined in

Eqg. (23) b = 27 x 0.9%H2); The solid lines are obtained using

the Hamiltonian in Eq.[(J11), following the pulse scheme described
In order to engineer the dynamics of afX quantum  in Sec[I[Q and with the stepwise variation of the parameeand

spin model we consider a sequence of driving pulses made The spin-spin coupling constant and the spin resonance frequen-

of 2N + 2 stepsifh = 1,---2N + 2) and identified by the cies are identified in SeC.TI[A4. Plots (a) and (bifeli for the ve-

corresponding values of the driven sgip, the direction of Iocity of the adiabatic manipulation: in (&) = 2r x 10Hz in (b)

the magnetic fieldy,, the laser intensit@, and the duration T = 27 x 40Hz. The other parameters are: (&) = 64us and

of the time stefm — tm_1. During the all sequence the value {01--0ta} = {1.87,1.951.94 187 s, and (b)At; = 80us and

of the detunings is fixedh, = h. The sequence is made {91+ 6t} = {1.57,1.61, 1.61, 1.57} us

as follows: after a free evolution (no drivingn = 1 and

Q, = 0), of timet; — tg = Aty, each spin is driven sequentially

from the last to the first (such that fon = 2,---N + 1,

C. Stroboscopic engineering of the XX spin dynamics

The stroboscopic evolution at timeg with n € N, given by
the repeated application of this sequence of pulses is described

{im=N=m+2nm=-10n=-Qj, tn—tm1=dt,}, by the operator

where the actual values of),, and t;, are iden- ( n

tified below); then after another free evolution (no Unr= Ug" _( Hinge g 'Hlsmgml). (18)
driving: m = N + 2 and Qy,2 = 0), of time

tnr2 — tnyr =  Aty, the spins are driven sequentially According to the Trotter formula [..cite]

from the first to the last (such that far= N + 3,---2N + 2, o Hyting ot
{im=m=N=27n="10n=0j,tn—tn1 =dt,)). Note gt = fim (e7HetmgriHat)T, (19)

that in the first train of pulses the valuesigf andQn, are the
opposite of that in the second train of pulses. This is realize@nd in the limitAt;, At, < |J; k| ,IhI™*, we can approximate
changing the direction of the magnetic field, that realizes the

transformationy, — —nm, and adding a phase aefto the Up~ e (HingraHizg)ntt  grif(HiZngraH i)t (20)
driving field, that realizes the transformati®g, —» —Qn,.
As discussed in ApfiIB the evolution operator at the finalVNere
timet = by = At; + Aty + 2.j otj, corresponding to this Aty
sequence, with the parameters in each time interval which sat- @ = Aty
isfy the relations Aty Aty
Q05 = :11 === (L1+a)Aty+ 236t (1)
This result demonstrates that the stroboscopic evolution de-
Z Ajj.0ty = njm withnj €Z, (15)  scribed above approximate the evolution, at timesf a spin
l>lm system with the #ective Hamiltonian
;z;\n be approximated, in the linfit .| > [Qm| > [hnl,|Jju, Heg =IB[HI(?|ng + aHl(:?ng] (22)
UF= e IsmgAtz e IslngAt
(16) 1V. ADIABATIC PREPARATION AND
STROBOSCOPIC/PULSED DYNAMICS
where
ho 1 The parameterh, @ andg can be varied adiabatically in
Hl(Qn - _ Z - Z 4 O-i, for £ € {x,z(17)  orderto prepare the ground state of¥a hamiltonian as dis-
9 2 2 K cussed in Apd_LC.Thefkective external magnetic fiekd can
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1E= = on the other and the rate is too large (Fig. 4) (b) then the evo-
J S lution is no more adiabatic and the system ends up in a state
which is not the ground state of the final hamiltonian and the
/ fidelity is reduced. Nevertheless also in this case, the end-to-
0.5 ’ 9 end entanglement can be very large at certain times meaning
’ that the end spins approach a Bell state. Also in this case the
/ bulk efficiently mediates an interaction between the end spins
-~ (b) which entangle themfgciently.
0 0.08 0.16 00 0.02 0.04 In all cases the evolution performed with th&eetive
time (s) time (s) Hamiltonian and that obtained via the sequence of pulses are
very similar meaning that the protocol is faithful. Thgie
ciency of the second is only slightly reduced but the overall
behaviors are consistent.

FIG. 5: As in Fig[4 with a dephasing rate fay 27 x 0.1Hz and (b)
y=2rx0.4Hz

. - . A. Effect of spin dephasi
be varied by adjusting the detuning between the driving field ect of spin dephasing

and the ion-spin resonance frequencies. On the otherdand
and correspondinglg are varied by controlling the timat,.

The system is initialized in the ferromagnetic state with al

the spins aligned along the z-axes that is the ground state

the Ising Hamiltoniand = 0). The value ohis initially set to . :

. = —i[H(t),p] + 24

some valudyg in order to remove the ground state degeneracy. P [H(.p]+ Lop (24)

The parameters andh are then slowly varied to realize \hereH(t) corresponds to the Hamiltonian {11) for the solid
the adiabatic preparation of the LDE. In particular during eachines and to theféective Hamiltonian[{22) for the dashed lines.

sequence of pulses, that is described in[Secllll C, the values ®fioreover£p accounts for the spins dephasing at ratend
handa are kept fixed, while they are varied from sequence tqakes the form

sequence in order to realize a stepwise approximation of the

Fig.[H is evaluated including the dephasing of the spins. Itis
|obtained by solving a master equation for the spins dynamics
811‘ the form

functions (see Apfi.IC) Lop = % Z (cfpot—p). (25)
j
alt) = 1-e™ . .
h(t) = hoe™. 23) As expected, the dephasing reduces tlfiiciency of the

scheme. In Fid.]5 (b) the entanglement of the end spins is still
The dficiency of this stepwise adiabatic protocol is ana-'¢latively high with a dephasing time ef 0.4s. The scheme

lyzed numerically by evaluating the evolution corresponding’ €XPected to be resistant to stronger dephasing (smaller de-

to the Hamiltoniani{111) with the time sequence and the param2Nasing time) when the coupling constafgare larger. This

eters discussed in SEC_TII C, and the corresponding stepwiscé)md b_e (_)btalned with a stronger gradient of the external

variation ofh ande. The results are shown in Figs. 4 did 5 magnetic field.

(solid lines) for diferent values of the rate of variationThey

are compared with that obtained by the numerical integration

of the Shrodinger equation with théfective time dependent

Hamiltoniar 22 where the time dependent parametensdh ) )

are defined in Eq[(23) (dashed lines). So far_ we have_ neglected_the motion of the ions. Internal
In both cases the protocol is characterized in terms of th&lectronic dynamics and motion can be coupled by an electro-

fidelity between the resulting state and the expected instafD@gnetic filed. In particular when the ions are in a magnetic

taneous ground state of th&ective Hamiltonian[[22) (red, grad|ent.alslo_ long wavelength rad|at|on, as microwaves, can

thin curves), and in terms of the end-to-end concurrence (bludave a significant mechaniceftect allowing for example for

thick curves). The fidelity indicates how far is the resulting Sideband cooling [30. 31, 39]. In the following we justify our

state from the expected one: Fidelity equal to one correspond&eatment in which we neglect the atomic motion.

to perfect adiabatic following; while equal fidelity for both N @ magnetic gradient the coupling between an jamnd

the standard adiabatic evolution (dashed lines) and the steg-mechanical normal modeis scaled by theféective Lamb-

wise adiabatic evolution (solid lines) means that the protocoPicke (LD) parameters [31]

realizes a perfect simulation of th&ective Hamiltonian. On

the other end, the concurrence measure the entanglement be- Nik = h psg 0B

K= 1 /

B. Mechanical effects

Sik (26)

tween the end spins, and concurrence equal to one indicates a 2may hwyk OXlx=x,,

maximally entangled Bell state.

Whenr is suficiently small (Fig[#) (a) the ground state wherewy is the frequency of the normal modes, aBds
preparation is quite good: The fidelity is close to one and ashe matrix that diagonalize the Hessian mathixsee SeCll)
expected the ground state exhibits large entanglement. Whaaf the potential energy function that confine the ions, that is
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(STAS)jk = 6jx mw’. These parameters are typically small
and allow for a systematic expansion of the corresponding dy-
namics in power ofjx. Including the lowest order mechan-
ical effects the Hamiltonian for the interaction between the
ions and the driving field (see also Elgl (6)) takes the form

Concurrenct
o
o
o

0.01 0.02 0.05 01 0.2 0.5

1+ 5 i (al - a }ei[v(t)tw(t)] _ h.c.} :
Ek: nik (8 - &)

HL(t) = —ikQ(t) 27) 0.80
+
J FIG. 6: End-to-end concurrence for random couplings: fortheac

. value of the interval of variation¢ of the random variables; the

where h.c. stands for the hermitian conjugate, aafl a plot shows the concurrence corresponding to 5@Bint realiza-

are the creation and annihilation operators for the vibrationaiions (the 500 points form a vertical segment for each valu&f

modek. This Hamiltonian accounts for sideband transitionsThe horizontal line indicates the value 0.92, that is the value of the

at frequenciesj + @. In order for our analysis to be justi- concurrence for the coupling matrix defined in $ec. TlIA 4.

fied the corresponding excitation probability have to be very

small. It can be estimated as

Q(t) 7k
y(t) — wj + Wi

Let us now define the random couplingg = Jj« (1 + é:j’k)
with &; uniformly distributed random variables in the range
[-A¢&, A€]. The resulting concurrence are reported in Elg. 6.
These results shows that the end-to-end entanglemerffiis su
whereny indicates the average number of motional excitationsiently stable under variations of the spin-spin couplings.
in the modek. For the parameters used in Figk. 4 &hd 5, the In [29] the operation of a segmented trap with a built-in
largest LD parameter has avalue;ﬁiza” ~ 0.14 and the low-  switchable gradient based on micro-structured solenoid is re-
est vibrational frequency i§(km.n) ~ 71 kHz. On the other portgd. Diferent isotopes of Ytterbium with or without hy-
handQ = 7/(4ét)) ~ 70— 80 kHz and(t) — w; is in the perfine structure can be trapped. For the experiment proposed

71 H i — i _
interval [Q ho], with hg ~ 0.99 KHz, for the spins which are _heret, Weh USéf_ Yb\l’v'thla n_t:;:ilzea_r Soplg 0_“ 1_. 1{; y|elld
driven close to resonance, and in the rang@q{®.126] GHz Ing two ypgr 'P?f,;’g 54;\" D - t’ b';' Iln etetgc-
for the other spins. The corresponding largest sideband trafronic ground state 133, .]' erent qubit Implementations
sition probability is~ 0.027(fi. + 1), which demonstrate the 2'€ possible and magnetic sensitive states can be included
validity of our results also for Doppler cooled trapped ions,to allow for magnetic gradientinducedcoupling (MAGIC)

without additional sub Doppler cooling to the ground state of[30_.'§23j ?s r_eth(;ured fortthe expenmen_'iﬁ dlslcussedhhere or
the axial potential. Increasing the gradient of théeld, the avol eThO yl%’t aquan urlntm((jamo_ry with a fong ]Solderence
coupling strengths increases allowing for a faster preparatioﬁlme‘ € qubit is manipulated using microwave fields (ap-

However the system approaches the regime in which the mep-."ed through a conventional wave ggide) and Rabi frequen-
chanical &ects are relevant. In fact, stronger gradient of the®'€s ngatQ ~ 100 kHz on.the_n- transition and a b"?“e cohgr-
nce time of the magnetic field sensitive hyperfine qubit on

magnetic field correspond to larger LD parameters. In turn he order of 5 ms have been observed. Applying spin echo

it imply that the LD expansion up to the first sidebands is no : . .

morep \}//alid and higherrz)rder sidepband transition may becomg Ehnlques [40], dynamical decoupling [41] or dressgd states

relevant hence invalidating our treatment. 4‘.‘]' we expect to b_e able to obsgrye a coherent_ time evo-
lution on a second timescale. Splitting and merging of ion

strings (which involves the generation of anharmonic trapping

potentials), as well as shuttling have been demonstrated. Sta-

ble trapping could be observed down to axial trap frequencies

' _ _ i aroundyy, = 2z - 40 kHz.
Here, we first consider how a fluctuating coupling constant

(due to, for instance, fluctuating electrode voltages) would in-
fluence the generation of LDE. Then we briefly outline typical

experimental parameters, as are used in the experimental set-
up described in [29]. FIG. 7: Chain of 3371Yb ions in our segmented trap.

2
M+ <1 (28)

C. Experimental Feasibility

FPERFARIAEFFESTRANAARTFR R e 8"

1. Stability estimates
V. CONCLUSION AND OUTLOOK
Let us consider a spin model with Hamiltonidh =
2ikJik ((TTO’E + (T?ffﬁ)- If the coupling matrixJ = J whereJ In this theoretical article we have introduced and inves-
is the one defined in Sdc. 1ITA 4, then the ground state end-tatigated schemes for the quantum simulation of LDE with
end concurrence is98. trapped ions. In particular, we have shown how to tailor the
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trapping potential in order to engineer a specific spin-spirby the Hamiltonian
coupling pattern in one-dimensional lattices, and we have de- - m
signed a sequence of microwave pulses able to engineer ef- H(®) = Us(HH(©OUo(t) - Z em(t)Hg
fective spin-12 Hamiltonians of the gapless and isotrojix m
type. Finally, we have analyzed théieiency of the adia- = Z em(t) [HE + Hz + H™| (A3)

batic quantum preparation of the ground state of @#@ecéve m

Hamiltonian which exhibits LDE, demonstrating its feasibility \yiin

within the limits of current ion trap technology. In the course 1

of the investigation, we have introduced and combined for the HM = F" - HM = 2 Z(wgm) -v{Mo?

first time trap shaping, adiabatic preparation, and Trotteriza- 2 ]

tion of the interactions, three key elements that have never be- m ) ¢ i ™ e+

ing combined together and that we have proven necessary for H" = _'sz {‘71 ey P h'C'} (A4)
the realization, so far not yet attained, of truly and highly non- j
classical features of complex models of interacting quantumyhere

many-body systems.

m-1
We expect to be able to carry out te experiment in a ¢§m) = Z Mmu) _ ng)]tm' (A5)
medium-term time scale as detailedin IV C. To improve the o1

level O-f co_ntrql over the anharmonicity of the aX|a_I TapPING 10 |ast Hamiltonian is obtained exploiting the relation
potential, it might be necessary to use smaller axial trapping s,z . _iso?r +2ict ™

segments, possibly in a surface trap. Larger gradients would ' i€ =" = ;€7 '_I'he_ val.ues obj” are chosen so
boost the coupling and allow for feér axial confinement, thatthe new Hamiltonian is time independent:

making the scheme more robust against thermal excitation and V™ = ™ _h - when Q= 0

external stray fields. ! !

A = o™ —hy,  when Qq # 0. (A6)
Moreover the phase is fixed to the value
Acknowledgments
g P (A7)
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() = 3 en(iye M) Minatod) MO,

Appendix A: Thedynamicsin a new reference frame ™
(A8)
Let us consider the model described by the Hamiltonian in, ;..o
Eq. (10), and study the dynamics in a new reference frame
defined by the unitary transformation H™ = H™ 4 H,, + H™. (A9)

- HEY (-t ) T HE P ltna—tm2) | goiHG (t-t)
Uo(t) = me(t)e 0 ve g TR Appendix B: The sequence of driving pulses

m

+6(to — 1) (A1) . . oo .
We are interested in the limitin whidw; — wj, | > |Qnl >

with Il |Jjk, for j # jm. Hence we can approximate the Hamil-
tonian [11) by retaining only the resonant terms as

1
HE = 2 > o (A2) HO = D en(®[HE + Hey
j m: Qn=0
+ em(t) [H + H™

where the actual values of” are identified below. Since the m%“#o [ i - ]
unitary transformation is local, the entanglement properties in h

. . . . H(m) ~ _ A o%
the new representation are the same as that in the original one. 21 5 5 2 TmAnT]

If [%(t)) is the state in the original representation, then the 1#m

dynamics of the transformed stagét)) = U () (1)) is ruled H™ ~ Qo . (B1)



The evolution operator corresponding to the sequence of
pulses described in Sdc. 1l C can be written, using the ap-

proximate Hamiltoniar {B1), in the form

giH{ot oiH

U* = e—iH,(\‘+)(5tN . e Ising

t e

_iH(Z)

X @ IsingAt:l

where
h & 1
Hl(?ing = é Z 0—? - é Z ijkofa'ﬁ
i=1 ik

— 1
Y _E‘ S
| Q07 + > AJ,ij'j ,

Jm L
J#]Im

T
&
I

and the total time of the sequence is
= At + At + ) 6.
i

The operatotJycan be rewritten as
Up= Ty --- Ty @Mingdt T T e iHiTgA
where

2
D05

i0: o st
im —IQJm(ijbtJm

ij =e
with
1
Djn =5 Z Ajindty
1>Im
Now we use the relation

E(F, A) = efiAD’?efil—b'ij/O_];eira'}/eiAa'? —

D1.1

Ay o iHD ot | griH oty

(B2)

(B3)

(B4)

(BS)

(B6)

(B7)

(B8)

cos(2I) o + sin(2I) [cos(24) ¥ + sin(24) o]

which reduces t& (I, A) = o whenI' = 7 + nrandA = ',

J

orwhenl' = -7 + ntrand A = +5 + Wz with n,n” € Z. Thus

2
setting, for example,

Qj,0j, =
D, =

m Jm

= RN

with nj,, € Z, ¥jm, then

iH® iH®@
U= e_IHI:irlgAtz e_lHléingAtl

where

(B9)

(B10)

(B11)

10

(b)
N

- h(t)/ hO

1‘/r 5/r 10/r

0 0.08 0.16
time (s)

FIG. 8: (a) Gap between ground a first excited statdgfin Eq. [22)

with four ions, in the space of parametdhsa}. The red line in-
dicates the gap corresponding to the adiabatic variation ahd

h. (b) time evolution of the parametesgt) and h(t). (c) End-to-

end concurrence (thick, blue line) and fidelity with the instantaneous
ground state (thin, red line), obtained integrating the time dependent
Shrodinger equation with thefective Hamiltonian in Eq[{22) with
four ions, and withhy = 27 x 0.99%kHz andr = 27 x 10Hz. The
spin-spin couplings are defined in Sec. TITA 4. Although not relevant
for the present result, in order to be consistent with the results of
Sec[1M, we have set the paramegep the values defined in E._{21)

(a different value of3 corresponds to a rescaling of the energy and
correspondingly of the duration of the protocol).

Appendix C: Adiabatic preparation of the Ground state

A system initially in an eigenstate(0)) of its Hamilto-
nian, follows the instantaneous eigenstaitgt)), which de-
rive from the initial state by continuity, when the correspond-
ing Hamiltonian is deformed adiabatically [44]. Condition for
the adiabatic evolution is that during the evolution the proba-
bility for the transition form the eigenstalg;(t)) to a diferent
onelyk(t)) (YK) is negligible, this can be estimated as [44]

| OIOH() /0000 i
@ B - Ei('f)]2

It means that larger is the figrence in energy between the
eigenstate state/;(t)) and all the other, more easily the adia-
batic condition can be satisfied.

In particular if initially the system is prepared in the ground
state then it will remain in the instantaneous ground state un-
der a slow variation of some Hamiltonian parameters. This
idea can be applied to prepare the ground state of compli-
cated Hamiltonians: One can first prepare the ground state
of a suficiently simple one which is easy to prepare. Then the
Hamiltonian is adiabatically changed until approaching the fi-
nal target Hamiltonian. Correspondingly the system will end
up in the ground state of the final Hamiltonian.

In our case according to the result of Sec_1Il C, we are able
to generate the dynamics corresponding to the Hamiltonian

< L (C1)
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(see Eq.[(22)) Initially the parameters can be varied rapidly because the cor-
responding gap between ground and first excited state is rela-
Heg (@, h) = B(t) Z h(t) [o-]? + a(t) a-jx] tively large as depicted in Figl 8 (a). A4 approaches the

] target Hamiltonian the gap reduces and correspondingly the
[z z X X variation have to slow down. The curves in Hig. 8 (c) are ob-
B0 Zk: Jik [Uio—k +a() Uigk]' (€2) tained by numerical integration of the Schrodinger Equation
b with the time dependent Hamiltoniah (IC2), and are equal to
whereg(t) is function ofa(t) as specified in EqL{21). the dashed curvesin Fg. 4 (a). Thered, thinline in[Big. 8 (c) is
We want to prepare the ground staterbf; = Her(1,0) =  the fidelity between the state obtained with the adiabatic evo-
“BY ik (o-?o-ﬁ n U}(O—E)' Hence we can first prepare the |lftl0n ang the I||ns_tanta_nil(_)us_grm:]nd sr:ate. This curve”|s ]:/eiry
ground state of a ferromagnetic Ising Hamiltoniding = ;:ose to 1 at all imes indicating that the system actually fol-
Z , 2 i . ows the adiabatic ground state. The spin-spin couplings that
Herr (0. ho) = f(ho 3 o - 2jk ‘]i»k‘rj‘rk) which simply cor- 516 ysed in these calculation are that discussed i Sec.lll A 4.
respc_mds to the ferromagnetic state in which all the SPiNs arg¢he HamiltonianHer(1, 0) with these coupling strengths ex-
polarized along. Then the ground state fxz is obtained  hjpjts ong range entanglement, that is strong entanglement
by the adiabatic variation of the parametlefiy : 1 —0and  petween first and last spin. This feature is described by the
a: 0-1. _ ) ) blue tick curve in Fig.B (c), that displays the entanglement, as
An example of adiabatic preparation of the ground state ofneasured by the concurrence between first and last spins. As

the HamiltoniarHex(1, 0) is shown in Fig B. The parameters eypected, at large time the end spins are strongly entangled.
a andh are varied according to (see the curves Eig. 8 (b))

h(t) = hg e
at) = 1- e, (C3)
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