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Executive Summary

This document summarizes the main achievements in Task T2.1 Transaction-Level
Diagnosis, which is part of WP2 in the DIAMOND project. It is the final deliver-
able for this task. Together with the deliverables D2.2b and D2.3b, it contributes
to milestone M2.2 Prototypes of diagnosis tools implemented.

Various formal, semi-formal and dynamic techniques for error localization on
the transaction-level are presented. This includes techniques to diagnose over-
constraint formal specifications, to diagnose inconsistencies between hardware de-
scriptions and their transaction-level specification, techniques based on symbolic
execution, and techniques using program slicing. Moreover, a fault-management
infrastructure for multi-processor system-on-chip architectures is described. Fi-
nally, the tool FOREnSIC implementing several of the presented debugging tech-
niques is briefly introduced.
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1 Introduction and Overview

DIAMOND addresses automated error localization and correction on different lev-
els in the hardware design flow. Fig. 1 illustrates how this is achieved. Based
on end-user requirements, identified in Task T4.1 and summarized in Deliverable
D4.1 [5], a holistic diagnostic model is developed in WP1. This diagnostic model,
presented in Deliverable D1.2 [7], is the backbone of the DIAMOND infrastruc-
ture. Together with the reasoning engines developed in WP1, it forms the basis for
error localization and correction, addressed in WP2 and WP3, respectively.

Requirements & DIAMOND
End-User Needs . Holistic Fault Model &
(T4.1) Reasoning Engines (WP1)

~~ ~~

DIAMOND Diagnosis & Correction (WP2, WP3)

Design Error Soft Error .In Situ.
Dlagnos!s Analysis Dlagnoslls
& Correction & Repair
DIAMOND Validation of the
Platform > DIAMOND Flow
(T4.2) (WP4)

Figure 1: Overview of DIAMOND

This document deals with error localization in hardware designs that are described
at transaction-level. A transaction-level model of a hardware design describes its
functionality and basic structure on a high abstraction level. Implementation de-
tails like the exact timing of signals, bit-widths, and communication protocols are
typically not included. On the transaction-level, designs are usually modeled by
(simple) software programs. C, C++, or SystemC, which is an extension of C++
with a simulation kernel, are typical languages for such models. These languages
come with a rich set of features like dynamic memory allocation, recursive func-
tion calls, and libraries of existing functions. This rich set of features allows the
designer to quickly explore different design options and to validate basic function-
ality early in the development process. At the same time, it also renders automated
reasoning about the design and its correctness difficult and challenging.
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In order to automatically reason about the correctness of a transaction-level model,
and in order to locate errors, some form of specification defining the desired be-
havior of the design has to be available. Such a specification may be given as a
golden reference implementation, a set of assertions, or a test bench (see also [7]).
Given a transaction-level model which violates its specification, error localization
attempts to identify (sets of) components of the model which may be responsible
for the violation. There are two additional objectives, which cannot both be max-
imized at the same time. On the one hand, the information about possible error
locations should be precise, i.e., fine-grained and without too many false positives.
On the other hand, the methods should be efficient and scalable.

In the DIAMOND project we developed various methods for transaction-level di-
agnosis, providing different trade-offs between these two main objectives. They
can be classified into three major categories: formal methods, semi-formal meth-
ods, and dynamic methods. As illustrated in Fig. 2, these different kinds of meth-
ods have different characteristics. Formal methods transform the model into the
domain of logic and use logic solving to compute diagnoses. They provide high
reasoning power and, hence, the potential to produce precise diagnoses. On the
other hand, they are computationally expensive. Dynamic methods execute the
model with a given set of inputs. They are very scalable but notoriously incom-
plete. Semi-formal methods provide a compromise between these two extremes.
They often execute the program but provide additional information about execu-
tion paths.

Reasoning Power

Scalability

Figure 2: Different Characteristics of Different Methods

1.1 Overview of the Methods and the Document

Section 2 describes formal methods for error localization that have been devel-
oped within DIAMOND. A method to locate errors in unrealizable formal specifi-
cations is presented in Section 2.1. A specification is unrealizable if no system can
implement it. Unrealizable specifications are a serious problem in all applications
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in which complete or almost complete specifications are required. Section 2.2 dis-
cusses a method to diagnose inconsistencies between a hardware description at the
register-transfer-level and its transaction-level specification via counterexamples.

Section 3 describes a semi-formal method to locate errors in transaction-level
models. It is based on symbolic execution and model-based diagnosis, using a
Satisfiability Modulo Theories (SMT) solver to find potential error locations.

Section 4 presents dynamic methods for diagnosis. Section 4.1 discusses a method
to rank components of the transaction-level design regarding their suspiciousness.
Dynamic program slicing is used to improve the accuracy of this method. Finally,
Section 4.2 discusses a simulation-based algorithm for SystemC designs, which is
based on program slicing as well.

Section 5 describes integration and implementation activities. Section 5.1 de-
scribes a multi-level fault-management architecture with an emphasis on diagnosis.
A key feature of the architecture is that it enables fast fault detection with accurate
fault localization. The architecture is designed in a hierarchical (tree-structured)
way such that when a fault is detected at a leaf, it is propagated to the root. For fault
detection, only the root has to be checked, while the hierarchical structure reduces
the time spent for fault localization. Finally, Section 5.2 describes FORENSIC, a
prototype tool implementing various diagnosis methods for incorrect transaction-
level models that are given as C programs. FORENSiC has been developed from
scratch within DIAMOND. A first release of the tool is planned for the end of
2011.

All activities presented in this document have been completed. The implementa-
tion of the techniques (cf. Section 5) is working, but it is likely to be improved and
fine-tuned during the evaluation-phase of the project.

1.2 Link to the DoW

This deliverable summarizes activities in Task 2.1 Transaction-Level Diagnosis,
which is part of WP2. The techniques presented address objective O2.1 “De-
velopment of specification debugging and transaction-level error diagnosis tech-
niques” [6].

The Description of Work [6] reads:

“On the transaction level we will use a mix of formal, semi-formal, and dynamic
techniques to combine efficiency with maximal discriminating power. We will also
have to target faults in the specification itself.”

Formal, semi-formal, and dynamic techniques are presented in the Sections 2, 3,
and 4, respectively. A method for specification debugging is presented in Sec-
tion 2.1.

Furthermore, the description of work states that we will deal with high-level mod-
els in C or in SystemC, and that we will make use of the reasoning engines de-
veloped in WP1. Most of the methods we developed are not specific for a certain
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language. Our implementation in FORENnSIiC operates on models written in C.
The simulation-based method discussed in Section 4.2 diagnoses SystemC mod-
els. The different diagnosis techniques use various reasoning engines from WP1,
e.g., model-based diagnosis engines, symbolic execution engines, and concolic
execution engines.

Together with the deliverables D2.2b and D2.3b (to be submitted in March 2012),
this deliverable contributes to milestone M2.2 Prototypes of diagnosis tools imple-
mented. Prototype implementations are covered in Section 5.
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2 Formal Diagnhosis Methods

This section presents activities to use formal methods for error diagnosis. Formal
methods are characterized by high reasoning power but also by a high amount of
required computational resources (time and memory).

2.1 Activity: Diagnosis of Formal Specifications

Automatic error localization and correction of hardware designs requires a speci-
fication which defines the desired behavior of the circuit. Such a specification may
be given in different forms (cf. Deliverable D1.2 [7]). One option is to use a formal
specification. Creating a formal specification for a design is a challenging task and
mistakes happen frequently. At the same time, debugging a formal specification is
difficult, especially if no corresponding implementation is available. One reason is
that the specification cannot be executed to track down the error, as one would do
with an erroneous implementation.

This section presents an automated diagnosis method for unrealizable formal spec-
ifications of reactive systems. A reactive system is a system which continuously
interacts with its environment. A specification for a reactive system is unrealizable
if it is so restrictive that no system can implement it. Especially when trying to
create a complete specification for a system, mistakes often lead to unrealizabil-
ity [13, 14]. The presented debugging method considers the specification stand-
alone, i.e., it does not require a corresponding implementation or higher-level spec-
ification. All it requires is a procedure to check a specification for realizability.

The diagnosis method for formal specifications has been published in the Haifa
Verification Conference 2010 [14]. An extended version is accepted for pub-
lication in the International Journal on Software Tools for Technology Transfer
(STTT). An implementation in the tool RATSY for so-called Generalized Reac-
tivity(1) specifications [15] has been presented at CAV 2010 [2]. The reason-
ing engine underlying this debugging method (a model-based diagnosis engine)
is described in Deliverable D1.3 [3]. The following sub-sections describe the de-
bugging method on a relatively high abstraction level. For technical details, con-
fer [14]. Two types of specifications are considered. The first one consists of a
set of properties, the second one consists of environment assumptions and system
guarantees. Finally, it is discussed how over-constrained signals can be identified.
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Specifications Consisting of Properties

This type of specifications is given as a set P of properties for a system with in-
puts X and outputs Y. The specification requires the system to fulfill all properties.
The specification is assumed to be unrealizable, i.e., so over-constrained that no
system can implement it. The diagnostic challenge is to find out which parts of
the specification may be responsible for unrealizability. Each individual property
of the specification is considered to be one component of the specification. This
makes sense because every property typically represents a relatively self-contained
aspect of the system behavior. Therefore, the goal is to compute minimal sets of
components that can be modified in such a way that the specification becomes real-
izable. These are exactly the properties that may be responsible for unrealizability.

A set of properties A C P can be modified in such a way that the specification
becomes realizable if and only if the specification P\ A is realizable. This obser-
vation allows to compute diagnoses in the a naive way: For every possible subset
A of P it can be checked if P\ A is realizable. If so, then A is a diagnosis, i.e., the
properties in A may be responsible for unrealizability. Diagnoses can be computed
more efficiently using model-based diagnosis. Deliverable D1.3 [3] describes the
model-based diagnosis engine that is used as an underlying engine of this debug-
ging method to compute diagnoses. As a side-product, this model-based diagnosis
engine also produces conflicts. Conflicts are sets of components that cannot all be
correct at the same time. These conflicts can be presented to the user as additional
diagnostic information.

Specifications Consisting of Assumptions and Guarantees

The second type of specifications is of the form A — G, where A is a set of en-
vironment assumptions, and G is a set of system guarantees. If the environment
of the system fulfills all assumptions, the specification requires the system to ful-
fill all guarantees. In this setting, it does not make sense to compute assumptions
which can be modified in such a way that the specification becomes realizable,
because every assumption can be modified in such a way. In particular, modifying
any assumption to false renders the specification realizable. Hence, the debugging
method computes minimal sets of guarantees that can be weakened in such a way
that the specification becomes realizable. This works essentially in the same way
as described in the previous section.

Diagnosing Signals

The diagnostic question cannot only be formulated with respect to the different
properties of the specification, but also regarding its signals. The goal is then to
identify signals on which restrictions can be loosened to obtain a realizable specifi-
cation. This problem can be solved by defining a special existential quantification
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operator on signals, which removes all restrictions on the quantified signals. Re-
moving restrictions on signals is similar to removing properties: it weakens the
specification. The computation of diagnoses is similar as well. A set of signals
is a diagnosis if removing restrictions on these signals using the existential quan-
tification renders the specification realizable. Model-based diagnosis can again
be applied to compute diagnoses efficiently. The two approaches of diagnosing
signals and properties are orthogonal and can also be combined.

2.2 Activity: Diagnosis via RT-Level techniques

As described in the previous section, automated error localization and correction
of hardware designs requires a specification which defines the behavior of the cir-
cuit. Often such a specification is given in a higher software-like language, such
as e.g., C or C++. From such a specification, an implementation can be derived
through a conversion to Verilog or VHDL. Since there are many differences be-
tween hardware and software, a correct conversion from software to hardware
turns out to be a difficult task. For instance, in hardware designs computation is
heavily parallelized. Furthermore, clocking schemes are added which synchronize
the interaction between computational units that run in parallel. Thus, verifying
the equivalence between software specifications and hardware implementations is
a sophisticated but important field. After detecting discrepancies, diagnosing the
problems is necessary.

This section describes an approach for verifying equivalence and diagnosing dis-
crepancies between high-level specifications and corresponding RT-level imple-
mentations automatically. The reasoning engine underlying this approach is de-
scribed in Deliverable D1.4 [4].

The presented approach considers ANSI-C specifications and RTL implementa-
tions. Both implementations in VHDL and Verilog are supported. In order to
verify equivalence, the C program is mapped to a finite state machine (FSM) and
then converted to the RT-level. The actual equivalence check is mainly driven by
a satisfiability (SAT) solver. To perform an equivalence check, the correspond-
ing primary inputs of both designs have to be determined and constrained to be
stimulated by identical input values. Under these identical input values the corre-
sponding outputs are determined and compared for identical functional behavior.
This step involves heuristics to determine the correspondence between the untimed
C model and the timed RTL model.

Since nowadays designs consist of billions of components, an equivalence check
for whole designs is not possible due to capacity limitations of the SAT engine.
Therefore, the conventional equivalence check is extended by a cutpoint detection
which reduces the size of the verification instance significantly. Cutpoints repre-
sent parts within two designs which are assumed to be equivalent such that the
verification procedure can be improved either by using the cutpoints as new start-
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ing points to feed the designs with input values, or by reducing the verification
problem by merging the functionally equivalent structures.

The diagnosis method running on top of this equivalence checking procedure deter-
mines mismatches between C specifications and RTL implementations and returns
counterexamples for a detected mismatch. An implementation is part of FOREnSiC
(see Section 5.2).
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3 Semi-Formal Methods

This section describes diagnosis methods which are based on symbolic or concolic
execution of the transaction-level model.

3.1 Activity: Diagnosis using Symbolic Execution

Symbolic execution is a program analysis technique which incorporates character-
istics of dynamic methods and formal methods. Just like other dynamic methods, it
executes the program. The difference is that symbolic execution uses symbols in-
stead of concrete values for the inputs. Symbols are placeholders for any possible
value. This allows for higher reasoning power when compared to purely dynamic
methods, which can capture the program behavior for certain input values only. On
the other hand, symbolic execution also produces predicates in some logic which
express under which conditions a certain program path is activated. This is similar
to other purely formal techniques which typically transform the program behavior
directly into a formula in some logic. An essential difference is that symbolic ex-
ecution analyzes the program path-by-path. This allows to trade reasoning power
for efficiency quite easily: the more paths are analyzed, the more computational
resources (time and memory) are required, but the higher the accuracy.

This section presents a diagnosis method for transaction-level models of hardware
designs, which is based on symbolic execution. The symbolic execution engine it-
self is not described here. It is introduced as a reasoning engine in the deliverables
D1.3 [3] and D1.4 [4]. This section contains a high-level summary of the diagno-
sis approach itself. The technical details have been published at the International
Conference on Formal Methods in Computer Aided Design (FMCAD) [12]. An
implementation is part of FOREnSIC (cf. Section 5.2).

Setting and Fault Model

We assume that the transaction-level model is given as a program in an imperative
language, such as C. Assert statements in the code serve as specification. This also
allows to use reference implementations as a specification: The program and the
reference implementation can be executed with the same input and the outcome
can be compared with user-defined assertions. The advantage of this approach is
that the notion of equivalence can be defined by the user.
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The diagnosis method should be able to identify components of the transaction-
level model that may be faulty. Therefore, first of all a definition of what con-
stitutes a component of the model is needed. The debugging method is able to
handle the right-hand side (RHS) of every assignment as a potentially faulty com-
ponent. The rest of the program is assumed to be correct. This fault model is able
to handle all kinds of incorrect expressions, because every expression can be as-
signed to a temporary variable!. However, it cannot handle faults like, e.g., missing
statements. This fault model was chosen because it allows for efficient program
analysis.

Program Analysis

Before symbolic execution is carried out, it needs to be expressed that components
may be faulty. This is done by textually replacing all assignments LHS = RHS by
LHS = cmp(c, RHS).Here, cmp is a special function indicating that the RHS may
be faulty. The parameter c is a unique identifier of the component.

Next, symbolic execution is used to compute path conditions for the different ex-
ecution paths of the program. Whenever the function cmp is called, a new symbol
r is created. The symbol can take on any possible value. The new symbol is also
associated with the symbolic value of RHS. This is the original value that would
be produced by the component if the component was correct. It is denoted as
Orig(r) in the following. The component c that produced symbol r is denoted as
CmpOf(r).

The execution paths of the program can be divided into two sets: execution paths
that end in an assertion violation, and execution paths that do not. For all paths that
do not end in an assertion violation, the disjunction of the corresponding path con-
ditions is computed. The resulting condition will be called 7(i,7) in the following.
It contains the input symbols i and the symbols 7 representing the unknown values
returned by the calls to the function cmp. It evaluates to true if the program con-
forms to the specification when executed with the inputs i and when cmp returns
the values 7.

A special form of symbolic execution is concolic execution. Here, the program
is executed with symbolic and concrete inputs simultaneously. For the purpose of
error localization, these two methods can be used interchangeably. Refer to the
deliverables D1.3 [3] and D1.4 [4] for more details.

Computation of Diagnoses

The goal is to identify sets of components that can be modified in such a way
that the program becomes correct. Such sets are called diagnoses. This definition

'Such a transformation is actually done in the implementation of this method.
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makes sense because components that can be modified in such a way that the pro-
gram becomes correct are exactly the components that may be responsible for the
incorrectness.

A given set A of components is a diagnosis if the formula

Vi.3r. (i, 7) A N r = Orig(r) (1)
{rer| CmpOf(r)¢A}

is satisfied. That is, for all inputs, there must exist some values that can be returned
by the components such that the program behaves conforming to the specification.
Components which are not part of the diagnosis must return the value that is re-
turned by the original implementation of the component. If the above formula is
satisfied, then this means that there exist some values that can be returned by the
components in A such that the program becomes correct. This means that the com-
ponents in A can, in principle, be modified in such a way that the program becomes
correct.

Equation 1 contains a quantifier alternation which makes it hard to solve. De-
pending on the logic to express correctness and depending on the domains of the
symbols, it may even be undecidable. Therefore, in practice, Equation 1 is not
checked for all inputs but only for a given set of concrete input values. This can
lead to false positives in diagnosis computation, but it increases the efficiency.

Equation 1 can be used to compute diagnoses in a naive way: every set of compo-
nents can be check if it is a diagnosis. A more efficient algorithm, which is based
on the computation of unsatisfiable cores and a hitting set tree, is presented in [12].
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4 Dynamic Methods

This section explains methods to locate errors using dynamic methods. Dynamic
methods have the potential to scale to large programs. However, their accuracy
often cannot compete with formal or semi-formal methods.

4.1 Activity: Diagnosis via Dynamic Slicing

In this activity, dynamic slicing [16, 1] is applied in order to locate the causes of
design errors in algorithmic descriptions. Program slicing is a technique for ex-
tracting portions of a program affecting a selected set of variables of interest. By
focusing on the computation of only a few variables, the slicing process can be
used to discard portions of the program which cannot influence these variables,
thereby reducing the size of the program. The reduced program is called a slice.
Slices represent a projection from the behavior of the initial program. This pro-
jection preserves the values of certain variables as seen at certain points in the
program.

Figure 3 illustrates the concepts of static and dynamic slicing on a C code exam-
ple. The leftmost column contains the statements of the example program. The
next column shows the corresponding flowchart. The slice of the program is com-
puted with respect to the variable a in the last line. That is, the slice answers the
question which parts of the program may be responsible for the value of variable a
at the end. This question can be answered statically, i.e., independent of a concrete
execution. The third column in Figure 3 shows a static slice. It says that, under no
circumstances, the statement b=0 may be responsible for the value of a in the end.
Slicing can also be done dynamically, i.e., using a concrete execution. Column 4
shows a concrete execution for a=2, b=4 and c=7. The last column depicts the
corresponding dynamic slice. It says that, in this execution, the initial value of b
and the assignment to b are irrelevant for the value of a in the end.

This activity combines dynamic slicing with a ranking of the nodes [11] in the
program flow-graph by calculating the suspiciousness score to each node n;. Let a
failing slice be a slice computed for an execution which results in erroneous values
at the observable output of the system. All other slices are called passing slices
in the following. Moreover, let F; be the number of failing slices containing the
flow-graph node n; and let P; be the number of passing slices containing n;. Two
options for calculating suspiciousness scores have been investigated. In the first
one, the score of a node #n; is equal F;, i.e., to the number of failing slices in which
it occurs. The second option is to calculate the suspiciousness score of node n; by
Fi/(Pi+F).
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static exec. |dynamic
statements:| P: slicing : |statem. :| slicing :
int a; (np) . ° °
int b & . .
int c; () . L L
if (¢>0) { (N3) . . .
b=0; °
c=3; ° ° °
a=c+2;} ° ° °
else {
a=b-c;} °
out==a; ° ° °

Figure 3: Example: A program and its slices

Our experiments show that the first option is more accurate in case of single de-
sign errors whereas the second option provides more robust results in the case of
multiple simultaneous design errors. An implementation of this method has been
done in the tool FORENSIC (see Section 5.2).

4.2 Activity: Simulation-Based Debugging of SystemC

Simulation-based procedures are commonly used in different areas of application,
both in software and hardware. They are a powerful approach to analyze large
systems, since formal and semi-formal procedures with strong reasoning capabili-
ties have potentially large resource requirements regarding run time and memory.
SystemC increasingly receives attention since SystemC allows for specifying hard-
ware designs in a more abstract way than standard hardware description languages
do. SystemC is based on C++, extending the language with class libraries and a
simulation kernel.

This section presents a simulation-based debugging algorithm based on program
slicing. The objective of the procedure is to reduce the debugging effort by fo-
cusing the attention of the designer on a subset of program statements which are
expected to contain faulty code.

Whenever one obtains erroneous output values from simulation, for a given Sys-
temC design, faulty computation steps must have occurred. The resulting simula-
tion traces are expected to contain faulty code so that they focus the attention on a
subset of the design to be debugged.
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The reasoning engine underlying this diagnosis method is described in Deliverable
D1.4 [4]. The technical details of this work have been presented at the Forum on
Specification & Design Languages [8]. Furthermore, the work has been accepted
for inclusion in a book on the best papers of the conference published in the series

Lecture Notes in Computer Science.
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5 Integration and Implemen-
tation

This section covers integration and implementation activities to enable error diag-
nosis in practice. It describes a fault-management infrastructure for multi-processor
systems. It also briefly describes the tool FORENSiC implementing many of the
techniques described above.

5.1 Activity: Fault Management Infrastructure

This section presents an infrastructure to enable diagnosis in a multi-processor
system-on-chip (MPSOC). Parts of the work have been published in [10].

MPSoC
MEMORY
MASTER CPU é
% Al ACCELERATOR
M FIPI ’ T
DSP
CcPU
BLOCK - FIM

INSTRUMENT M

Figure 4: An MPSOC with CPUs, DSPs, accelerators, and memories

A typical MPSOC is shown in Fig. 4. The MPSOC consists of a set of components
such as CPUs, DSPs, accelerators and memories. Each component consists of one
or more blocks. Fig. 5 shows the ALU block and the control (CTRL) block of the
CPU in more detail. The ALU block consists of a scan-chain, which is primarily
used for manufacturing tests. The CTRL block consists of a program counter (PC)
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and a register to enable emulation of program execution. There is one master CPU
responsible for assigning jobs to the components. For experimentation, the Fault
Injection Manager (FIM) injects soft and hard faults into the MPSOC.

4 Component-Level

Intra-component-Level

NIVHO NV2S [
3114 ¥31S193Y
Y31S193Y

Instrument-Level

Figure 5: A CPU with an ALU block and a control (CTRL) block

The master CPU, responsible for assigning jobs to components, needs to receive a
fault status from each component such that the assignment of jobs to components
can be optimized. The requirements on sending the fault information is that it
should have a minimal impact on the functionality.

Each block is assumed to have a fault detection mechanism. The infrastructure
connecting blocks and components with the master CPU is constructed to enable
fast notification if an error occurs somewhere in the MPSOC and precise diagnosis
to accurately pinpoint the fault location. The infrastructure consists of a Failure
Indication and Propagation Infrastructure (FIPI), shown as dotted lines in Fig. 4.
When an error occurs in a block, for example in a register file of the CPU, the error
indication flag (EIF) of the register is set. The error indication is also propagated to
the component-level, the component type-level, and the system-level. The EIF-bit
at the system-level indicates that an error has occurred.

The Instrument Access Infrastructure (IAI), which follows the proposal for IEEE
standard P1687 to standardize the access to on-chip instrumentation, is designed
such that segment insertion bits (SIBs) are added to allow flexible access of instru-
ments, including EIF-flags. Typically, the system-level EIF is constantly polled to
determine if an error is present in the system. If an error is present, the IAI can
be reconfigured such that the error is localized level-by-level. This is illustrated in
Fig. 6.

At system-level, the Resource Manager (RM) is responsible for collecting fault sta-
tuses from instruments, conducting fault handling tasks, and scheduling jobs based
on the fault statuses. The RM gives commands to the Instrument Manager (IM)
which acts as the interface between the RM and the instruments.
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Figure 6: The diagnostic infrastructure in detail

5.2 Activity: FORENSIC

FOoRENSIC is a tool to automate error localization and correction for transaction-
level models which are given as C programs. It has been developed from scratch
within the frames of the DIAMOND project. A first release as an open-source
tool is planned for the end of 2011. The hope is that, with this release, we draw
additional attention to the research done in DIAMOND. Moreover, sharing the
implementations of various debugging methods with the community is supposed
to stimulate further research in this interesting field.

FoRENSIC stands for “Formal Repair Engine for Simple C”, but actually the title is
not fully accurate any more. FOREnSIC has grown to be more. First of all, it is not
one engine but a bundle of several engines implementing various different debug-
ging techniques. Second, it is not purely formal. The techniques implemented in
FoRENSIC range from simulation-based methods to semi-formal and formal ones.
Third, it does not only address repair of programs but also error detection and lo-
calization. Finally, FOREnSIC cannot only debug C programs but also hardware,
with a C program functioning as a specification for this hardware.

The Architecture
Figure 7 depicts the architecture of FORENnSIC in a simplified form. A (potentially
faulty) C program is the main input for the tool. The front-end of FORENSIC parses

this C program and produces an internal model of the program. FOREnSIC has sev-
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Figure 7: The architecture of FORENSIC.

eral back-ends operating on the model of the program. They implement different
error localization and correction methods. The user selects the back-end which is
best suitable for her problem.

Certain back-ends require additional inputs. This may include test vectors with ex-
pected outputs or other forms of specifications, hardware implementations to check
equivalence with, or the string representation of the C program. These additional
needs are not drawn in the figure for simplicity. The value of FOREnSiC must not
only be seen in the back-ends but also in the infrastructure it provides. New de-
bugging methods can be added easily in form of new back-ends. The following
sections explain the different parts of the architecture and the different back-ends
in more detail.

The Front-End

The front-end is based on the GNU Compiler Collection (GCC) plug-in API ver-
sion 4.5.0 and hooks into the GIMPLE pass [9]. The front-end processes the input
program as a tree in low level GIMPLE SSA (Static Single Assignment) form. The
compiler is invoked without the linking stage, so it is possible to process programs
without a main function or with undefined functions.

The front-end should work on 32-bit and 64-bit platforms. The input program has
to be a correct ANSI C (C90) program, including the GNU dialect of ISO C90. If
the compiler finds an error, no model is built. Warnings are ignored by the plug-in.
Currently only one input file is supported.

Besides the GCC-based front-end, FORENSIC also contains a more primitive front-
end which does not handle the full ANSI C language. This primitive front-end was
important in the early phases of the tool development. It allowed the development
process to start with the implementation of the back-ends already before the more
robust GCC-based front-end was ready. Meanwhile, this primitive front-end is
obsolete.
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The Internal Model

This section explains briefly how a program is represented inside FORENSIC. The
front-end transforms the program into this internal representation. The back-ends
then use these data structures for automated debugging.

The model of the program contains information about global variables and their
types. Moreover, for every function, it stores its parameters and local variables
with their type. The actual body of a function is represented as a flowgraph. Ev-
ery node represents a statement, edges between the nodes express the control-flow.
The flowgraph distinguishes nodes representing operations and nodes representing
conditions. The former have only one successor, the latter have two. For every
statement, its string representation as well as information about the location of the
statement in the input file is stored. This allows to back-annotate results and to
present information about error locations and corrections to the user. For every
statement, the model contains also an abstract syntax tree. This is a tree-like de-
composition of the statement into its operators and operands. This abstract syntax
tree allows for easier analysis and evaluation of statements. The representation
of data types distinguishes primitive types and compound types such as structs or
unions. Every type can also occur as pointer or array of this type. For non-primitive
types the location of their definition is stored as well.

The Equivalence Checking Back-End

The equivalence checking back-end implements the equivalence checking method
explained in Section 2.2 together with its diagnosis capabilities. In contrast to the
other back-ends of FORENSIC, the C program serves as a specification (for a hard-
ware design) and not as the debugging subject here. The hardware design may
be given in Verilog or VHDL at the register transfer level. In the C program, this
back-end does not support compound types such as structs and unions, as well as
pointers. These are reasonable assumptions for programs which model hardware
designs. The user can place special annotation in the C program to indicate that
certain variables are inputs of the design. The inputs and outputs of the C specifi-
cation are matched with that of the hardware design via their names.

The Symbolic Back-End

The symbolic back-end implements the diagnosis method introduced in Section 3.1.
This section focuses on a few implementation aspects of the diagnosis engine.

The diagnosis engine can be operated in two different modes, a conservative mode
and a progressive one. The two modes differ in how they treat incompleteness in
program analysis. In the conservative mode, the program is only considered correct
if a termination of the program can be enforced without an assertion violation.
In the progressive mode, the program is deemed correct if all known assertion

Transaction-Level Diagnosis Integration and Implementation e 21



violations can be avoided. Note that this has the effect that also endless loops are
considered as correct behavior. The conservative method may miss diagnoses, the
progressive mode may find too many diagnoses. Both have their merits. Diagnoses
are computed in order or increasing cardinality. Usually, diagnoses with lower
cardinality are considered to be more likely and helpful. This means that, when
aborting the computation before all diagnoses have been computed, only less likely
diagnoses are missed. The diagnosis engine provides a number of parameters with
which its behavior can be fine-tuned and adjusted for a particular problem instance.

The Simulation-Based Back-End

This back-end implements the debugging method described in Section 4.1. As an
input, it takes a (potentially incorrect) C program and a set of input vectors with
corresponding expected output vectors. An alternative to the expected outputs is to
feed the back-end with a reference implementation. In this case, the expected out-
puts are computed by simulating the reference implementation with the provided
inputs first. Special annotations can be used to define which program variables are
inputs or outputs of the program.

Error localization proceeds as follows. First of all, the program is instrumented
with calls to special functions. These functions store which statements have been
executed. Furthermore, they keep track of the variables that have been read or
written in each statement during the execution of the program. This information is
needed in order to compute a slice of the execution. The instrumented version of
the program is now compiled using a standard compiler and executed repeatedly
using the provided test vectors. An execution is classified as failed if the produced
output values do not match the expected ones, or if an assertion has been violated
during the execution. The execution is classified as passed otherwise. The slices
are computed and the rank of the different nodes of the flowgraph are calculated
as explained in Section 4.1. The nodes with the highest ranks are presented to the
user as most likely fault candidates.
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6 Summary

This document summarizes the main achievements in Task T2.1 Transaction-Level
Diagnosis, which is part of WP2 in the DIAMOND project. This is the final deliv-
erable for this task. Together with the deliverables D2.2b and D2.3b, it contributes
to milestone M2.2 Prototypes of diagnosis tools implemented.

The presented transaction-level diagnosis techniques include formal, semi-formal,
and dynamic techniques. All categories of techniques have their strengths and
weaknesses regarding reasoning power and scalability. The formal techniques in-
clude methods to diagnose over-constrained formal specification and to diagnose
inconsistencies between hardware descriptions and their transaction-level specifi-
cation. The semi-formal methods locate errors in transaction-level models of the
hardware, based on symbolic or concolic execution of the model. The dynamic
techniques use program slicing to obtain more accurate information about poten-
tial error locations. Finally, a fault management infrastructure for multi-processor
system-on-chips is presented, and an implementation of various error localization
techniques in the tool FORENSIC is discussed.

Concerning Task 2.1, the Description of Work [6] requires to develop specifica-
tion debugging techniques, to deal with high-level models in C or in SystemC, to
develop formal, semi-formal, and dynamic techniques, and to make use of the rea-
soning engines developed in WP1. This deliverable explains how these objectives
haven been addressed.
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