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Executive Summary

This document, which is an update to Deliverable D1.3 [4], presents an overview
of the reasoning engines and dynamic techniques developed within DIAMOND.
These formal, semi-formal, and dynamic reasoning engines are the core of the
diagnosis, correction, and analysis approaches. Different types of engines are re-
quired, e.g., to trade reasoning power for resource requirements. Fine-tuning the
reasoning engines for particular applications is necessary to achieve the required
efficiency and the expected quality of results. This deliverable summarizes the
work of Tasks T1.2 and T1.3 of work package WP1.

List of Abbreviations

ATPG - Automated Test Pattern Generation
BDD - Binary Decision Diagrams
CPU - Central Processing Unit
ESL - Executable Specification Language
FP7 - European Union’s 7th Framework Programme
FSM - Finite State Machine
HDL - Hardware Description Language
HLDD - High-Level Decision Diagrams
JTAG - Joint Test Action Group (a standard test access port - IEEE 1149.x)
LHS - Left-hand side
MBD - Model-Based Diagnosis
RHS - Right-hand side
RTL - Register-Transfer Level
SAT - Satisfiability
SMT - Satisfiability Modulo Theories
SoC - System on Chip
SUT - System Under Test
TAP - Test Access Port
TDI - Test Data In
UUT - Unit Under Test
WP - Work package

iv • Summary Report on Reasoning Engines and
Dynamic Techniques



Table of Contents

Table of Revisions ................................................................................... iii

Authors, Beneficiary ................................................................................ iii

Executive Summary ................................................................................. iii

List of Abbreviations ............................................................................... iv

Table of Contents .................................................................................... v

1 Introduction and Overview .................................................................. 1
1.1 Cooperations ............................................................................ 2
1.2 Status Labels for Activities......................................................... 2

2 Formal Reasoning Engines .................................................................. 5
2.1 Activity: Model-based Diagnosis for Specification Debugging ....... 5
2.2 Activity: Certificate Extraction from Quantified Non-Boolean For-

mulas........................................................................................ 5
2.3 Activity: Diagnostic Test Pattern Generation ................................ 6
2.4 Activity: Formal Latency Analysis .............................................. 6
2.5 Activity: Interfacing High-Level Descriptions with RT-Level En-

gines......................................................................................... 6
2.6 Activity: Latches Vulnerability Estimation ................................... 7
2.7 Activity: Error Checker Coverage Analysis .................................. 8
2.8 Activity: HLDD-Based Modeling Framework .............................. 8

3 Semi-Formal Reasoning Engines.......................................................... 11
3.1 Activity: Symbolic Execution ..................................................... 11
3.2 Activity: Concolic Execution...................................................... 12
3.3 Activity: Dynamic Slicing with Mutation-Based Repair................. 13
3.4 Activity: Three-Valued Latency Analysis ..................................... 14
3.5 Activity: Latch Coverage of Error Detection Logic ....................... 15
3.6 Activity: Latches Vulnerability Estimation ................................... 15

4 Dynamic Techniques........................................................................... 17
4.1 Activity: High-Level Decision Diagram Simulation Engine............ 17
4.2 Activity: Evaluation of Debugging Algorithms ............................. 17
4.3 Activity: Simulation-Based Latency Analysis ............................... 18
4.4 Activity: Assertain Simulation, Hardware Accelerated Simula-

tion, and Formal Engine .............................................................. 18
4.5 Activity: Processor Centric Reasoning Framework ........................ 19
4.6 Activity: HLDD-Based Diagnostic Access Modeling Concept........ 19

5 Summary........................................................................................... 23

6 References......................................................................................... 25

Report on Reasoning Engines and
Dynamic Techniques

Table of Contents • v



vi • Table of Contents Report on Reasoning Engines and
Dynamic Techniques



1 Introduction and Overview
This deliverable is an update of Deliverable D1.3 [4]. To keep the contents self-
explanatory a few parts of the general introduction are repeated in the following.
Descriptions of activities refer to the previous deliverable where possible.

The approaches for diagnosis and correction that are developed within DIAMOND
are implemented on top of different types of reasoning engines. Figure 1 gives a
general overview of DIAMOND. Tools and concepts are developed within WP2
and WP3. Deliverables D2.2a [6], D2.3a [7], D3.2a [11], and D3.3a [12] describe
tools and concepts that are currently under development. The diagnostic model, as
defined in Deliverable D1.2 [10], connects the application level to the reasoning
engines. Thus, the tools and concepts are implemented on top of the reasoning
engines that are specified and created within WP1. Therefore the main objective
is to provide reasoning capabilities as explained in the Description of Work [9].
Different types of reasoning engines are applied within DIAMOND:

• formal engines with strong reasoning capabilities, but potentially large re-
source requirements regarding run time and memory,

• dynamic engines with limited reasoning capabilities, but requirements in run
time and memory are typically linear in the size of the input, and

• semi-formal engines that allow to shift from fully formal to purely dynamic
engines and, by this, provide a trade-off between reasoning capabilities and
resource requirements.

Different applications have varying requirements and lead to slightly different
structures of the underlying problems. Therefore the reasoning engines can be
tuned to a particular application and such tuning is necessary to achieve the re-
quired quality of results and acceptable efficiency of the computation. Moreover,
the adaptation of certain types of reasoning engines is required to evaluate the
trade-offs between the engines with respect to a particular application in the re-
search project. Consequently, all parts of this reasoning infrastructure are devel-
oped to address the requirements stated in Deliverable D4.1 [8]. The main issues
addressed on the level of reasoning engines are scalability, extended diagnosis sup-
port, and support for analyzing resilience of designs to soft errors.

A first status on the reasoning engines and dynamic techniques has been reported
in D1.3 [4]. To be complete, also activities that already had the status DONE are
listed in this document. However, to avoid repetition we refer to the preceding
deliverable in corresponding sections.

This document is structured by the type of the reasoning engines in correspondence
to the task structure of WP1, as outlined in the Description of Work [9]. As a con-
sequence, the different types of reasoning engines used for a single application are
reported in the respective subsections. The partners contributing to the work are
briefly named in the header of each of the following sections. Subsection 1.1 gives
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Figure 1: Overview of DIAMOND

a brief overview on cooperation between partners within WP1. The status labels
for activities are explained in Subsection 1.2. Then, individual activities are re-
ported in more detail. Section 2 reports the activities on formal reasoning engines
under development, corresponding to the work performed within Task T1.2. The
next two sections describe activities performed within Task T1.3, i.e., Section 3 re-
ports the activities on semi-formal reasoning engines, and the progress on dynamic
engines is reported in Section 4. Finally, a summary is given in Section 5.

1.1 Cooperations
TUT, TUG, and UNIB are jointly developing the tool FoREnSiC. FoREnSiC is a
prototype tool to automate error localization and correction for system level speci-
fications in C. A first open-source release is planned to the end of 2011. FoREnSiC
is not only one engine but represents a set of several engines used to implement
various debugging techniques. Furthermore, cooperation within WP1 has taken
place between IBM and UNIB on the formal reasoning engines for the analysis
of soft errors. The partners TUT and TL collaborated on reasoning engines for
simulation with High Level Decision Diagrams (HLDDs).
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1.2 Status Labels for Activities
For each activity the current status of the whole activity or of subtasks of the ac-
tivity is reported by one of the following labels:

• TO BE DONE – detailed specification and implementation have not been
started, yet

• IN PROGRESS – specification and implementation have been started, evalu-
ation may have started already

• DONE – the activity has been completed, i.e., an evaluation of the approach
has been done, academic partners have published results, industrial partners
have decided how to use the results in their workflow
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2 Formal Reasoning Engines
In this section the activities related to formal reasoning engines are reported. As
explained in the introduction, these engines have been adopted to fit the needs of
the applications considered within DIAMOND. The development of these engines
was mainly driven by IBM, TL, TUG, TUT, and UNIB.

2.1 Activity: Model-based Diagnosis for Specification

Debugging
This activity was already finished when Deliverable D1.3 Status on the reasoning
engines and dynamic techniques [4] was submitted. A description can be found
there.

Status of this activity: DONE

2.2 Activity: Certificate Extraction from Quantified Non-

Boolean Formulas
As we have outlined in Section 2.2 of Deliverable D3.2a [11], we have developed
a method to state repair problems as quantified non-Boolean formulas. The signals
for which we want to find repairs are existentially quantified in these formulas. By
computing certificates for these signals, we effectively compute valid repairs.

We have shown a preliminary proof-of-concept method to extract certificates from
the relevant class of formulas [17]. This method was based on Binary Decision
Diagrams (BDDs) and reduction of the problem to propositional logic. As this
proved to be very inefficient, we have since then worked on improving the reason-
ing engine for certificate extraction.

We transform the problem into an interpolation problem, along the lines of [18].
Furthermore, we avoid the costly reduction to propositional logic by directly inter-
polating in first-order logic with equality and uninterpreted functions [20, 16]. Pre-
liminary experiments show significant improvement over the BDD-based method.
A more thorough practical investigation and an extension to multiple signals being
repaired simultaneously is ongoing work within WP3.

Report on Reasoning Engines and
Dynamic Techniques

Formal Reasoning Engines • 5



Status of this activity:

• Certificate extraction by interpolation: DONE

• Extension to multiple signals to be repaired (theory): DONE

2.3 Activity: Diagnostic Test Pattern Generation
The HLDD-based sequential ATPG engine was already DONE in Deliverable D1.3
Status on the reasoning engines and dynamic techniques [4]. The description of
this activity can be found there. The engine has been updated with the formal proof
of untestable faults [24] and it will be applied to diagnostic test pattern generation
for design error diagnosis in task T2.2 of WP2.

Status of this activity: DONE

2.4 Activity: Formal Latency Analysis
Latency analysis is a technique to support localization and correction of bugs and
transient faults. For the computation of latency formal, semi-formal, and dynamic
techniques have been applied. The status of these activities was IN PROGRESS
when Deliverable D1.3 [4] was handed in. A detailed description about the con-
tents of the activities can be found there.

Meanwhile, several extensions to this technique have been developed. First of all,
a latency analysis of various circuits turned out that the maximal latency in many
cases was hard to compute. Therefore, a loop detection technique has been added
to determine whether the analyzed circuits contain sequential loops such that the
maximal latency can be infinite. Furthermore, the analysis has been extended such
that it can be applied selectively to parts of a circuit, e.g., memory elements or
certain signals. This further supports a designer in understanding observed behav-
ior. Additionally, a structural analysis has been performed which identifies shortest
structural paths between two signals to find lower bounds and determines sequen-
tial loops efficiently. Results have been published in [15].

Status of this activity: DONE
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2.5 Activity: Interfacing High-Level Descriptions with

RT-Level Engines
The increasing complexity of circuit and system design is forcing design to move
to higher programming languages above RTL, like ESL and C-based HDL. Thus,
often a "golden model" is written in ANSI-C or a software-like language. The
typical approach is then to convert this "golden model" into a hardware description
language like VHDL or Verilog. Verifying equivalence, to determine if the C and
HDL designs are consistent, is essential.

This activity is focussing on equivalence checking of timed HDL designs and un-
timed C programs. Both the C specification and the HDL implementation are
translated into an intermediate representation. For this purpose, the C specifica-
tion is mapped to a Finite State Machine (FSM) such that we are not restricted to
unwind the specification to a bounded number of iterations of loops in the design.
Moreover, the C specification is not restricted to be cycle accurate.

However, verifying equivalence between the high-level specification and the RTL
implementation is an extremely hard problem. To reduce the size of the equiva-
lence checking problem, we are looking for cutpoints. Cutpoints represent parts
within both designs (the specification and the implementation) which are assumed
to be equivalent such that the verification can be reduced using the cutpoints as
starting points. Potential cutpoints are determined using simulation and verified by
equivalence checking. On top of this reasoning engine for equivalence checking,
diagnosis and repair algorithms will be created within WP2 and WP 3, respec-
tively.

Status of this activity:

• Equivalence check between timed C and untimed HDL descriptions: DONE

• Determination of cutpoints: DONE

2.6 Activity: Latches Vulnerability Estimation
Latch vulnerability estimation is aimed to provide information regarding how a
given latch is protected against soft errors. The use of formal analysis methods
for this purpose allows getting a formal proof regarding the robustness of latches,
rendering them fully protected and thus excludable from further checks, e.g. based
on error injections. In case a formal proof regarding the robustness of a given latch
cannot be obtained, either due to imperfect error protection or due to computational
limitations, an approximation of latch vulnerability related to other latches can still
be obtained using formal methods. As stated in D1.3 [4], this activity was divided
into two corresponding parts: 1) proving latch robustness using formal methods
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and 2) estimating latch vulnerability using efficient state space exploration tech-
niques. The status of each sub-activity is described in the following.

• Finding robust latches and proving their robustness formally: A method
based on formal verification was co-developed by IBM and the University
of Bremen. The method works by using two copies of the design, where a
fault model for single event upsets is introduced into one of the copies while
the second one is left clean as a reference. A property construction asserting
that under the same inputs and a single injection imposed by the fault model
both models will produce the same outputs is also added to the model. Then
a SAT-based model checker with interpolation is used for checking the prop-
erty for each latch in the design. Latches for which the property passes are
proven to be robust. Other latches are classified as non-robust if the injection
becomes observable at output or unbounded robust if a soft error hit on them
cause state corruption which is not observable on the outputs.

• Latch vulnerability using formal analysis: A model for estimating latch vul-
nerability using reachability analysis and 3-valued abstraction has been par-
tially defined by IBM and the University of Bremen.

Status of this activity:

• Finding robust latches and proving their robustness formally: DONE

• Latch vulnerability using formal analysis (theory): DONE

2.7 Activity: Error Checker Coverage Analysis
A tool for identifying internal error checkers based on library conventions, as well
as based on supplied user input was developed as part of the latch coverage analysis
development (see Section 3.5). Once identified, internal error checkers are used
for generating the model for the formal robustness analysis method mentioned in
Section 2.6, specifically in the property construction.

In addition, an approach for decomposing the design into small pieces of logic,
based on error checking windows, was developed. An error checking window is
defined as the of piece logic (including latches) which is protected by a particular
error checker. Once an error checker is identified and its error checking window
is extracted, a formal engine can be used on the error checking window in order to
check whether soft error hits on the latches inside the window cause the checker to
fire. This approach is orthogonal to the type of error checking and allows proving
latch coverage of various types of error checkers. A method for identifying error
checking windows of parity-based checkers is being developed under WP2.

Status of this activity: DONE.
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2.8 Activity: HLDD-Based Modeling Framework
Most parts of this activity have been implemented as and therefore shifted to
“Semi-Formal Reasoning Engines”. This is descirbed in Section 4.6. The results
have been published in [22].

Status of this activity: DONE.
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3 Semi-Formal Reasoning En-
gines

The status of the semi-formal reasoning engines within DIAMOND is summarized
in this section. These engines were developed by IBM, TUG, TUT, and UNIB.

3.1 Activity: Symbolic Execution
Symbolic execution is a program analysis technique which allows to reason about
program correctness under certain conditions. This information about the correct-
ness of the program is used to perform automated error localization and correction
on the transaction level. The basic idea and goals for a symbolic execution engine
have already been introduced in Deliverable D1.3 [4]. To avoid repetition, this
section discusses improvements over the status as reported in Deliverable D1.3
only.

The following sub-activities have been identified in Deliverable D1.3. Meanwhile,
they are all done.

• Model suitable for symbolic execution: DONE

• Prototypical front-end for early experimentation: DONE

• More powerful front-end based on the gcc compiler and the GIMPLE inter-
mediate language1: DONE

• Symbolic execution engine for simple programming constructs using the the-
ory of linear integer arithmetic as an underlying reasoning theory: DONE

• Back-end which allows to apply implementation level diagnosis techniques
on the system-level: DONE

• Extensions to support more complex programming constructs and theories:
DONE

Apart from that, some optimizations have been performed. For the purpose of
error localization and correction, not only the behavior of the original program
has to be analyzed. It also has to be analyzed how the program would behave if
certain components of the program could be replaced. In principle, this can be
done in the following way. Let LHS = RHS; be an assignment with its left-hand

1http://gcc.gnu.org/wiki/GIMPLE
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side (LHS) and right-hand side (RHS). Assume further that the RHS is considered
as a component c which may be faulty. The assignment can be modified to

if(assume_correct(c)) LHS = RHS; else LHS = repair_c();

before performing symbolic execution. Here, assume_correct indicates whether
the component c is assumed to be correct or faulty. repair_c is a yet unknown
function which can return any value. The goal of error localization is to find out
which components are assumed to be faulty, the goal of error correction is to find
suitable implementations of the functions repair_c for the incorrect components.
In order to enable this, both branches have to be analyzed. Depending on the
number of components in the program, this can blow up the number of execution
paths dramatically. Symbolic execution analyzes the program path-by-path, so it
is crucial for the performance to avoid this blow-up.

A simple solution is to make the symbolic execution engine handle potentially
faulty components of the program in a special way. The engine behaves as if
component c always returns some unknown value r. Additionally, it stores the fact
that r = LHS if the component c is assumed to be correct.

The symbolic execution engine has been implemented from scratch as a part of
the transaction-level diagnosis and repair tool FoREnSiC (see also Deliverable
D2.1 [5]). Since FoREnSiC is going to be released as an open-source software,
it will be shared with the community to stimulate further research in the fields of
program analysis, error localization, and correction.

3.2 Activity: Concolic Execution
The concolic execution engine serves the same purpose as the symbolic execution
engine: it is able to analyze a program for correctness under certain conditions,
which is necessary to be able to perform automatic diagnosis and repair. The main
concepts, the goals, and the differences to symbolic execution have already been
presented in Deliverable D1.3 [4]. This section reports the improvements regarding
the concolic execution engine with respect to Deliverable D1.3 [4] only.

The following sub-activities have been identified in Deliverable D1.3. Meanwhile,
they are all done.

• Experiments with the concolic execution tool CREST [2], resulting in a pro-
totypical extension that is able to check whether a given expression is a valid
repair for a given faulty statement: DONE

• Instrumentation based on CREST, which in turn uses CIL [21]: DONE

• Concolic execution engine supporting simple programming constructs and
the theory of linear integer arithmetic using CREST’s search strategies for
execution paths; using (parts of) the symbolic execution engine for symbolic
execution (cf. Section 3.1): DONE

• Extensions to support more complex programming constructs and theories:
DONE
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Figure 2: Dynamic slicing based error diagnosis flow

The performance optimization described in Section 3.1 has been performed for the
concolic execution engine as well. This engine has not been developed totally from
scratch, it is an extension of the concolic testing tool CREST [2], an open-source
tool. CREST can only use the SMT-Solver Yices [13] with linear integer arithmetic,
and it cannot handle potentially faulty components. It was extended to support also
other SMT-Solvers such as Z3 [3] as well as SMT-Lib 2 [1] compliant solvers,
bit-vector arithmetic, and to identify and analyze potentially faulty components.
The concolic execution engine is part of FoREnSiC and will be shared with the
community to trigger more research in the field.

3.3 Activity: Dynamic Slicing with Mutation-Based Re-

pair
Figure 2 explains the error diagnosis process implemented in the dynamic slicing-
based method. First, the FoREnSiC tool is applied to generate the flow graph
representation of the program. All the test cases are simulated on the program
flow graph and the obtained responses are compared to the golden output values of
the tests which are provided for the diagnosis tool. Then, for the output variables
receiving erroneous simulation values in the failed test cases, dynamic program
slices are calculated. We refer to such slices as the failed slices. Each statement
(i.e. node in the flow graph of the program) gets a score that shows the number
of failed slices in which it was included. Statements are ranked according to the
score. The ones with a higher score are considered to be more likely the root causes
of errors in the design.
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Table 1: List of mutation operators for repair
Mutation operators C operators/examples

AOR (arithmetic operator replacement) +,−,∗,/,%
ROR (relational operator replacement) ==, ! =,>,<,>=,<=

LCR (logical connector replacement) &&, ||
ASOR (assignment operator replacement) +=,−=,∗=,/=,% =,=

UOR (unary operator replacement) +,−,∼, !
Bitwise operator replacement <<,>>,&, |,̂
Bitwise assignment operator replacement <<=,>>=,& =, |=,̂ =

Increment/decrement operator replacement x++,++ x,x−−,−− x
Number mutation (decimal digit replacement
in integers, floats, and array indexes)

0 . . .9

Constant replacement (unary minus, unary
plus, zero)

+C,0,−C

After dynamic slicing, mutation-based repair of error candidates is performed.
Mutation is a process, where syntactically correct functional changes are inserted
into the program. Traditionally, mutations are performed by perturbing the behav-
ior of the program in order to see if the test suite is able to detect the difference
between the original program and the mutated versions. The effectiveness of the
test suite is then measured by computing the percentage of detected, or killed, mu-
tations. Here, we apply mutation operators for repairing erroneous circuits. The
goal is to develop an error-matching-based repair approach, which would be capa-
ble of modeling realistic design errors. Moreover, it is crucial to select a limited
number of mutation operators, because the perturbation and simulation of erro-
neous design implementations with a large number of error locations and mutant
operators would become prohibitively time-consuming.

Table 1 presents the set of mutation operators which were implemented in the error-
matching based repair method that we developed. The mutation operators include
replacement of C language operators, which have been divided into several groups:
arithmetic operators, relational operators, assignment operators, unary operators,
etc. In addition, number mutations are performed by replacing each decimal digit
in the numeric values one-by-one with other decimal values. This includes both,
integer and floating point numbers and it covers also array indexes. Also, constants
are mutated by inserting unary operators + and - as well as replacing the constants
by zero.

Status of this activity:

• Dynamic slicing based diagnosis engine: DONE

• Mutation-based repair engine: DONE
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3.4 Activity: Three-Valued Latency Analysis
In analogy to the formal latency analysis described in Section 2.4, the technique
introduced in D1.3 [4] has been extended.

Status of this activity: DONE.

3.5 Activity: Latch Coverage of Error Detection Logic
A tool for performing latch coverage analysis of error detection logic has been
implemented. Based on internal error checkers, the tool is able to list all latches
which are not connected to any error checker. In addition, a specification lan-
guage has been developed for enabling users to classify error checkers into several
pre-defined types. This classification is used by the tool for generating valuable
reliability-related statistics about the design. These include estimations on design
exposure to silent data corruption events and other checkstopping events.

Status of the activity: DONE.

3.6 Activity: Latches Vulnerability Estimation
In addition to the formal analysis technique described in Section 2.6, semi-formal
techniques for latch vulnerability estimation have also been developed in order
to cope with large designs which the formal method cannot handle. At the core
of the semi-formal method lies the notion of logical masking: The more logical
masking a latch has, the less vulnerable it is to soft errors. Thus the purpose
of the vulnerability method is to compute the logical masking of each latch in
the design with respect to primary design outputs or designated state bits. This
is accomplished by approximating error-propagation probabilities of each latch
by means of performing observability analysis. A method based on computing
latch-to-latch observability using BDDs was implemented. By building a latch
dependency graph and annotating the graph edges with the computed probabilities,
multi-cycle error propagation probabilities could be computed. This approach is
suitable for moderately-sized designs, as the BDD-based computation sometimes
is a bottleneck of the computation. A more robust approach was developed as well,
based on the method published in [19]. This method computes local observability
given input patterns generated from simulation. We have extended this method
to take into account internal error checkers as well as designated state bits during
the vulnerability estimation process. In addition, we extended the algorithm by
allowing a user to specify simple inputs constraints (e.g. one-hot) so that the tool
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can generate input patterns by itself. This allows users to perform vulnerability
estimation early in the design cycle, regardless of input patterns availability.

Status of this activity: DONE.
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4 Dynamic Techniques
Dynamic engines are a powerful approach to analyze very large systems. Addi-
tionally, dynamic engines are applied to further utilize results returned from other,
more powerful engines. The dynamic engines and reasoning frameworks were
designed and implemented by TEDA, TL, TUT and UNIB.

4.1 Activity: High-Level Decision Diagram Simulation

Engine
This activity is finished and the details were already presented in Deliverable D1.3
Status on the reasoning engines and dynamic techniques [4].

Status of this activity: DONE

4.2 Activity: Evaluation of Debugging Algorithms
One way towards generalizing the results of debugging algorithms is the use of
fault models to assess the performance of an algorithm for certain types of design
bugs. In [14], an extensible fault model that describes different bugs in SystemC
descriptions has been presented to evaluate debugging algorithms from a qualita-
tive perspective.

Since simulation-based procedures are used in different areas of application, e.g.,
debugging, testing, compiling, a simulation-based algorithm has been developed in
a first case study, to evaluate the presented fault model. By focussing the attention
of a user on a subset of a design which is expected to contain faulty code, the ob-
jective of the simulation-based procedure is the reduction of the debugging effort.
Thus, for a given design in SystemC, counterexamples are simulated to generate
so-called traces. Each trace represents a subset of program statements (in other
words: a subset of the design) and is expected to contain faulty code. Otherwise
no counterexample should be generated. The intersection of all traces still includes
and localizes the faulty part of the design. However, this assumption is restricted
only to single bugs in a design. The principle of this algorithm is shown in Figure
3. The results of this activity have been presented in [14].

Status of this activity: DONE
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Figure 3: Simulation-based debugging

4.3 Activity: Simulation-Based Latency Analysis
In general, simulation-based procedures are able to efficiently handle large sys-
tems. The disadvantage of simulation is incompleteness in the sense that for large
systems not all input sequences can be considered in reasonable time. In addi-
tion to the formal and semi-formal approaches (see Section 2.4 and Section 3.4), a
simulation-based procedure has been developed and investigated for latency anal-
ysis. Compared to Deliverable D1.3 [4], and similar to the formal latency analysis,
the simulation-based procedure has been extended with loop-detection and a se-
lective application to parts of a circuit.

Status of this activity: DONE

4.4 Activity: Assertain Simulation, Hardware Acceler-

ated Simulation, and Formal Engine
TransEDA has developed a sophisticated simulation, hardware-accelerated simu-
lation, and formal engine flow in their product Assertain that are described in the
following.

Assertain Simulation The core Assertain platform combines both dynamic sim-
ulation and a formal engine to provide a two-step diagnosis. The entire Assertain
platform has been re-written to provide an N-step diagnosis so that partner tools
can be added into the flow at different stages of the validation. The N-step diag-
nosis is built on a new work-flow engine so that any number of diagnostic steps
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can be built up as an XML script and run by the work-flow engine in sequence.
A specific diagnosis techniques can be targeted at specific code segment on Step
One, another technique on Step Two and another on Step Three – and so on.

The Assertain platform has been re-written to accept XML inputs to initiate a tool
set and report the output of the tool set to a central database. Most of the core
modules have been re-coded and work is under way to integrate stand-alone tools
by means of XML in WP2 and WP3.

Hardware Accelerated Simulation TransEDA has spent time integrating their
Assertain simulation environment with the Cadence Extreme Simulator2 with ac-
tive clients in France and India. The technique inserts instrumentation into the
hardware simulation environment and tracks the code coverage and other metrics
performed by the standard Assertain dynamic engine - but at a very much faster
speed. TEDA has successfully integrated the Cadence Extreme Simulator and
work has been done on integrating the Cadence Palladium Simulator. A deeper
analysis and evaluation of the simulator is ongoing work in WP2 and WP3.

Integration with a Formal Engine TransEDA uses the formal engine from AerieL-
ogic3 of France. This engines forms the second part of the two-step integration
flow. The formal engine will be completely integrated into the N-step flow in WP2
and WP3.

Status of this activity:

• Assertain simulation for the N-step work-flow platform : DONE

• Hardware accelerated simulation : DONE

• Integration of formal engine (interface definition): DONE

4.5 Activity: Processor Centric Reasoning Framework
A detailed description of this activity was given in D1.3, when the status was
IN PROGRESS. Now the activity is finalized and the results have been published
in [23].

Status of this activity:

• Modeling workflow: DONE

• Synthesis workflow: DONE

2http://www.cadence.com
3http://www.aerielogic.com
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Figure 4: Test access path modeling and activation

4.6 Activity: HLDD-Based Diagnostic Access Modeling

Concept
This activity is tightly connected with the activity in Section 4.5 described in de-
tail in D1.3 [4]. The main goal is to develop a modeling framework that supports
the reasoning framework from the previous activity. Tight cooperation with TUT
enabled TL to utilize an efficient modeling framework – HLDD graphs – for auto-
matic synthesis of diagnostic access path in System on Chip (SoC) based systems.
The following text gives a short overview of the modeling methodology while de-
tails and experimental results are given in [22] and [23].

The test access routine is aimed at set-up of the communication between the exter-
nal tester and the microprocessor in the SoC via the debug port (JTAG connector
on the board). The second goal of the test access is to establish connection between
the microprocessor and the Unit Under Test (UUT). All the test routines are typi-
cally fed trough the CPUs/SoCs debug port, either to the embedded memory or to
the external system memory on the board. In both cases the access to the memories
is provided by the means of the SoCs infrastructure including memory controllers
and bus matrices. The full data path between the external test controller and the
UUT includes the debug port, CPU core, firmware running on the CPU, peripheral
UUT controllers, interconnection structure between the SoC, and the target UUT.
Modeled components of the System Under Test (SUT) form a test path that begins
at JTAG port of the SUT and ends in UUT as shown in Figure 4.

This long data propagation chain has to be properly handled for both test appli-
cation and test access (propagation) purposes. In general, the test access requires
tuning the respective controller in the SoC to communicate with the specific UUT.
If the appropriate controller is missing, the test application routine should also
handle the data transfer protocol of the UUT. Essentially, a device controller has to
be synthesized in software. Such a test access routine is also a part of the system
model and a subject of automatic synthesis based on the target UUT model and the
instruction set of the CPU core.
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Figure 5: Data path for a part of IEEE 1149.1 TAP

Let us consider the structure depicted in Figure 5 as a simplified system to be
modeled for test access purposes. Figure 5 presents a part of the standard Test
Access Port TAP that consist of TAP controller state machine and scan register
that is connected to respective data register. Data is shifted into the scan register
through the serial Test Data In (TDI) bus when TAP controller state is “Shift-DR”.
The TAP controller “Controls” output is equal to 4 (Controls = 4) when the state is
“Shift-DR”. The load from the scan register into the data register is initiated when
the TAP controller state is “Update-DR” (Controls = 8). Storing of data from the
data register to the scan register is done when the TAP controller state is “Capture-
DR” (Controls = 3). The TAP controller enters the reset state “Test-Logic-Reset”
when the TRST signal is enabled. In the same state the data register obtains its
reset value. The HLDD-model of the described structure (Figure 5) is shown in
Figure 6.

Status of this activity: DONE.
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Figure 6: Model (HLDDs) for structure in Figure 5
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5 Summary
A range of different types of reasoning engines is being developed within DIA-
MOND. While the general reasoning framework is independent of the application,
demands on efficiency and quality of results require to adopt engines for the partic-
ular applications. The formal, semi-formal, and dynamic engines of DIAMOND
cover all aspects from transaction level down to post-silicon and in-situ diagno-
sis. These engines address diagnosis, correction, and repair as planned in the De-
scription of Work [9]. Applications for diagnosis and repair running on top of the
reasoning engines are under development within WP2 and WP3, respectively.
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