Tnformation Socie SEVENTH FRAMEWORK
Technologies ty PROGRAMME
FP7-ICT-2009-4-248613

DIAMOND

Diagnosis, Error Modelling and Correction for Reliable Systems Design

Instrument: Collaborative Project

Thematic Priority: Information and Communication Technologies

fp7-diamond.eu

Definition of the Diagnostic Model
(Deliverable D1.2)

Due date of deliverable: June 30, 2011
Actual submission date: June 30, 2011

Start date of project: January 1, 2010 Duration: Three years
Organisation name of lead contractor for this deliverable: University of Bremen

Revision 1.7

Project co-funded by the European Commission within the Seventh Framework Programme (2010-2012)

Dissemination Level

PU | Public

PP | Restricted to other programme participants (including the Commission Services)

RE | Restricted to a group specified by the consortium (including the Commission Services)

Oogx

CO | Confidential, only for members of the consortium (including the Commission Services)




Notices
For information, contact Dr. Jaan Raik, e-mail: jaan@pld.ttu.ee.

This document is intended to fulfil the contractual obligations of the DIAMOND project con-
cerning deliverable D1.2 described in contract number 248613.

(© Copyright DTAMOND 201 1. All rights reserved.

ii @ Notices Definition of the Diagnostic Model



Table of Revisions

Version | Date Description and reason Author Affected  sec-
tions
1.0 February 24, 2011 | Initial structure G. Fey, R. | Allsections
Drechsler
1.1 April 7, 2011 Revised introduction and | A. Finder, A. | All sections
structure Silflow
1.2 April 19, 2011 TUG contribution R. Konighofer, | Sections 2.2, 3.1,
G. Hofferek and 4.1
1.3 April 28, 2011 LiU contribution U. Ingelsson Sections 2.3, 3.3,
4.2, 4.3, 5.2 and
53
1.4 May 8, 2011 IBM contribution E. Arbel Sections 2.4, and
4.3
1.5 May 11, 2011 TEDA contribution S. Scholefield Section 5.4
1.6 May 23, 2011 Preparation for internal review | G. Fey, A. | All sections
Finder, A.
Siilflow
1.7 May 31, 2011 Internal review changes E. Arbel All sections

Authors, Beneficiary

Rolf Drechsler, University of Bremen
Gorschwin Fey, University of Bremen

Alexander Finder, University of Bremen

André Siilflow, University of Bremen
Robert Konighofer, Graz University of Technology
Georg Hofferek, Graz University of Technology
Urban Ingelsson, Linkoping University

Eli Arbel, IBM

Jaan Raik, Tallinn University of Technology
Stephen Scholefield, TransEDA Systems Ltd
Artur Jutman, Testonica Lab

Executive Summary

This document presents an overview of the holistic diagnostic model applied in
DIAMOND. The diagnostic model can be considered the “backbone” of the DI-
AMOND infrastructure. DIAMOND considers different application domains —
diagnosis and correction — at different levels in the design flow — transaction, im-

plementation, and post-silicon.

The aim of the diagnostic model is to integrate those different views as much as
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possible, in order to capture the individual requirements by the different applica-
tions. The present deliverable describes the properties of the diagnostic model.
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1 Introduction and Overview

DIAMOND targets different application domains at different levels in the design
flow. The holistic diagnostic model can be considered the “backbone” of the DIA-
MOND infrastructure. The model connects the application level to the reasoning
engines as described in Deliverable D1.1 [4]. Figure 1 gives a general overview of
DIAMOND. The holistic diagnostic model is developed within Task T1.1 of WP1
and depends partially on the requirements and end-user needs described in Deliv-
erable D4.1 [8]. Figure 2, taken from the Description of Work [9], shows in more
detail how the diagnostic model couples the application domains — diagnosis and
correction — with the underlying reasoning engines. The status of the reasoning
engines has been described in Deliverable D1.3 [5]. The status of the applications
is considered by Deliverable D2.2a [6] and Deliverable D2.3a [7] that describe the
status on implementation-level diagnosis and the status on post-silicon and in-situ
diagnosis, respectively.

Requirements & DIAMOND
End-User Needs . Holistic Fault Model &
(T4.1) Reasoning Engines (WP1)

~~ ~~

DIAMOND Diagnosis & Correction (WP2, WP3)

Design Error Soft Error _In Situ_
Diagnosis Analysis Diagnosis
& Correction & Repair
DIAMOND Validation of the
Platform DIAMOND Flow
(T4.2) (WP4)

Figure 1: Overview of DIAMOND

The present deliverable describes the diagnostic model itself as a result of reach-
ing Milestone 1.1 Common Data Structure for the Diagnostic Model. The common
data structure for the diagnostic model has been developed by all partners and is
an abstraction of the diverse implementations, while individual implementations
of this abstraction are distributed between partners. This is justified by several ad-
ministrative and practical reasons: (a) some partners have private code, e.g., com-
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Figure 2: Diagnostic model within DIAMOND

panies, (b) some partners use an integration to legacy tools that where available
before DIAMOND started, and (c) the overhead for integrating the different im-
plementations that typically focus on certain aspects of the diagnostic model would
not yield any advance in theory or practice. Instead unifying the diagnostic model
into a holistic abstraction shows how the various analysis tasks are related and how
multiple abstraction levels as well as applications can be treated by common algo-
rithms. By this, potential for advancing theory or practice becomes visible and will
be exploited while DIAMOND progresses.

There exist several successful approaches that show how various analysis tasks are
related and how different abstraction levels can be treated by common algorithms:

e Latency analysis investigates both the effect of design errors and the effect
of soft errors in the corresponding abstraction level of designs.

o A fault management approach developed jointly by multiple partners handles
diagnosis and repair in the same way, regardless of whether the error is on
system-level, component-level, or gate-level, with varying level of efficiency
depending on the abstraction level.

e The High-Level Decision Diagram (HLDD) data structure is used both at
implementation level and at in-situ diagnosis. The HLDD-based critical path
tracing engine has been applied to design error localization and to calculation
of critical soft-error lists.

o Atthe system-level, the tool FOREnSiC is under development which includes
a common flow chart data structure for various diagnosis and correction
tasks.

Figure 3 conceptually shows the diagnostic model. The coarse structure is defined
by the overall application as shown on the left: based on some input data, the algo-
rithm is executed and returns some output to be used and interpreted by a designer.
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The data structures within the diagnostic model corresponding to these steps are
shown in the box. The input is given by information specifying the problem, e.g.,
information on the implementation of the circuit and the specification of expected
behavior. The algorithms within DIAMOND are based on reasoning engines that
need certain input parameters like the type of the application, i.e., localization or
correction, and on the types of faults to be addressed. Finally, the output may
be represented in various ways, depending on the application. For instance, fault
candidates may be returned from localization, while suggestions for repairs may
be returned by a correction algorithm. All of this information is stored within the
diagnostic model.

-
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Figure 3: Insight into the diagnostic model

- J

The rest of this document is also organized along the structure of the diagnostic
model: Sections 2 and 3 describe the different types of specifications and imple-
mentations, respectively, required at different abstraction levels. Section 4 explains
the holistic fault model. The infrastructure for representing results from diagnosis
and correction is described in Section 5. A summary is given in Section 6.
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2 Describing Specifications

For diagnosis or correction a specification is required in order to differentiate de-
sired behavior from incorrect behavior. The specification of intended behavior of a
design is defined by a formal description. These specifications are not required to
fully describe all desired behavior. For example, assertions or test vectors partially
describe the desired behavior, whereas a reference implementation gives a com-
plete description of the expected behavior. The requirements on the completeness
and the level of abstraction depend on the application. In the following, the dif-
ferent types of specifications and their application domains as considered within
DIAMOND are introduced.

Section 2.1 describes CPU models used as an abstract way to specify in-situ tests.
Section 2.2 introduces formal specification as a general way to formalize desired
behavior as a starting point for debugging. Trace-based specifications are consid-
ered in Section 2.3 as an incomplete but easily accessible specification. Finally,
resilience against faults occurring in field may be required and therefore be speci-
fied as described by Section 2.4.

2.1 Reference Models

The goal of CPU modeling methods that are developed within DIAMOND is to
provide automated test and diagnostic access to the particular components of a
target system. In the proposed scheme, a CPU core is used for running test and
diagnosis routines (apply diagnostic stimuli and capture responses) downloaded
from an external tester, thus playing the role of an internal (in-system) tester.

The reference model is not intended to fully describe the behavior of micropro-
cessor and peripheral modules, but rather to provide a semi-formal specification
of a small subset of CPU/peripheral functional blocks. However this specification
should contain enough information in order to automatically establish diagnostic
access to desired components. The mathematical basis for the model is the theory
of High Level Decision Diagrams (HLDDs) [15].

The diagnostic routines are typically fed trough the CPUs/SoCs debug port either
to the embedded memory or to the external memory of the system. In both cases
the access to the memories is provided by the means of the CPU/SoCs infrastruc-
ture including memory controllers and bus matrices. The full data path between
the external test controller and the component under diagnosis includes debug port,
CPU core, firmware running on the CPU, peripheral controllers, interconnection
structure between CPU, and target component (see Figure 4).
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Figure 4: Full data path between external test controller and component under diagnosis

Along the whole diagnostic path the same modeling concept is used. This approach
allows building a unified model with the ultimate goal of automatic generation and
feeding a sequence of test data trough the propagation chain mentioned above. The
key idea behind the proposed concept is to represent the system as a set of tightly
interrelated models. All such models can be combined together block by block
to represent the complete structure of a target system. Some model components
(e.g. debug port functionality) can be described at the behavioral (functional) level,
while others may also require structural (e.g. interconnect) or timing information
(e.g. memory devices, controllers).

A typical model of the system would contain only those components, functional
blocks, busses, ports etc., that are needed to be activated during propagation of test
and diagnostic data. We distinguish three groups of sub-models that form the final
specification of system:

1. The first group contains blocks that describe the functionality of the internal
modules of a CPU (such as CPU core, JTAG, debug module, bus matrix,
external bus interface, set of memory controllers and peripheral device con-
trollers).

2. The second group describes the functionality of a component which is di-
agnosed and encloses data for automatic initialization or configuration of
this component. For instance, this group can contain memory initialization
procedure, write access and read access protocols, configuration and timing
parameters (refresh rates, operating voltages, etc.).

3. The third group represents the information about the interconnection of dif-
ferent components in the system. This information could be automatically
extracted from the netlist files.

The sub-models of the first two groups are built using a semi-automated approach,
where the information from the documentation is converted by an engineer into a
special readable description language and then automatically transformed to a sys-
tem of HLDD graphs. The information of the third group could be automatically
extracted from the netlist files.

As it was mentioned above the goal of building a CPU model is to provide auto-
mated synthesis of the routines for test and diagnostic access. The input to the au-
tomation procedure is a unified model that contains descriptions of CPU/peripheral
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modules, component under diagnosis, and interconnection information. The out-
put is the synthesized test program. The central element of the test automation
procedure is a constraint solver. The constraint solver tries to find the path through
the system of HLDD graphs that starts from the target component, goes to the
corresponding peripheral modules of CPU, follows through processor core to its
debug module, and finishes on the external debug port (JTAG). In the end, the syn-
thesized test program will contain a sequence of stimuli that should be applied to
the external debug port for providing diagnostic access to desired components.

These reference models are a specific structure to specify the behavior of test in-
frastructure in a condensed way. The following formal specifications are a more
general way of specification not tied to a certain domain.

2.2 Formal Specifications

Another way to describe the desired behavior of an implementation is to use a for-
mal specification. The word formal means that the specification language has a
strictly defined semantics. Formal specifications provide a high flexibility regard-
ing their properties and applications. In contrast to reference models, they may be
(but do not need to be) incomplete. In contrast to trace-based specifications, they
do not enumerate desired behavior for different executions. Instead they define
properties that have to hold for all executions and inputs, thus providing the poten-
tial for higher coverage in verification. Formal specifications can be checked both
dynamically (for a concrete execution) and statically (for all executions simultane-
ously using tools like model checkers). Detected misbehavior is typically returned
as a sequence of input values for which the implementation violates the specifi-
cation. Besides verification, formal specifications are also used to unambiguously
communicate design intents. This avoids misunderstandings, e.g., between col-
laborating designers. Furthermore, they are used in property synthesis, where a
provably correct implementation is created automatically from its specification.

A simple and widely used way to specify behavior is to include assertions in the
implementation. An assertion is a predicate that is supposed to hold in every ex-
ecution at the location where it is placed. In their simplest form, assertions are
formulated in terms of features provided by the implementation language itself.
Many modern programming languages also provide mechanisms to check asser-
tions at runtime. An example is the assert () -macro of the programming language
C. The macro takes an arbitrary condition formulated in C-syntax as argument. If
the program is compiled with assertions enabled, the condition is evaluated when-
ever the execution reaches the assertion. If it evaluates to false, the program is
aborted with an error message pinpointing the location of the assertion violation.

Another widely used formal specification language is the Property Specification
Language (PSL) [1, 10]. PSL can be seen as an extension of Linear Temporal
Logic (LTL) [13]. Like LTL, PSL also provides temporal operators that allow
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specifying the timing of events. This does not only include cycle accurate descrip-
tions but also more general statements like, for instance, that some condition has
to be fulfilled eventually in the future (without saying exactly when), that some
predicate has to hold infinitely often in an infinite execution, or simply that it has
to hold always or never. This makes PSL perfectly suitable for specifying reac-
tive hardware designs. PSL became an IEEE standard (IEEE 1850 Standard for
Property Specification Language) in 2005.

In DIAMOND we are working with different kinds of formal specifications. For
instance, C-assertions are used to specify transaction-level models. They are also
supported as specification by the tool FOREnSiC, developed within Task 3.1. In
Task 2.1 we address debugging of formal specifications [12]. A debugging method
has been implemented for (a subset of) PSL in the tool RATSY [2].

2.3 Trace-based Specifications

In some cases a formal specification defined on all input sequences may not be
available. For instance, this is the case in a simulation based validation flow run-
ning the implementation against a test-bench. In such a case, a set of test vectors
may be used to partially describe the expected behavior. Due to the large size
of the search space, trace-based specifications typically suffer from low coverage
and correctness cannot be decided for the remaining input sequences. On the other
hand, test traces can be captured from post-silicon tests as well as from simulation-
based verification approaches. Thus, such a specification may be accessible more
easily than a formal specification.

A test trace is defined by a sequence of input assignments (i.e. a trace) together
with expected output responses of the Design Under Verification (DUV). Using
test traces, the DUV is verified by simulating all test traces and checking the
equivalence to the expected responses. Detected misbehavior is returned as a set
of failing test traces that are considered as input for fault localization and repair
algorithms.

Using such a test trace as discussed above, this test trace could also potentially be
used for post-silicon test and diagnosis, reusing the test-bench logic for applying
and evaluating the test to narrow down fault candidates. This would serve as a
complement to deterministic test data, generated by a commercial ATPG tool for
the design once it has been verified. Conceptually, the test trace from verification
and the test bench logic could also be re-used for in-situ test and diagnosis in the
context of embedding deterministic test data on the system containing the design,
such as described in Section 4.2 of Deliverable D2.3a [7]. Currently, only test
data determined by commercial ATPG tools is used for trace-based specifications
applied to in-situ test and diagnosis within DIAMOND.

The diagnostic model explicitly holds the test traces together with the correct ex-
pected output responses.
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2.4 Expected Error Detection and Correction

In addition to describing how the design should behave under normal operating
conditions, i.e. where the hardware works without any faults, specifications should
also describe design behavior in the presence of errors, such as those originated by
soft error hits. While design behavior can be described either by some formal
temporal language or by trace-based specifications, as described above, this is not
usually the case when describing error detection and correction behavior.

In order to specify built-in error detection and correction in the design, designers
have to first identify the latches which are important for correct design function-
ality, that is those latches which will probably cause silent data corruption or a
machine hang if hit by soft errors. For example, a program counter register may
be defined as such. Next, a decision has to be made regarding which action to take
in the case of a soft error hit on any given latch or register. Such decision may
involve choosing to protect latches with self correcting mechanisms, such as ECC
in register files, initiate recovery actions by restarting the machine to some previ-
ously stored checkpoint state, or checkstopping the design, i.e., moving the design
into a safe state.

The process described above may result in a list of latches, each of which is as-
signed with the required error detection and/or correction mechanism. Alterna-
tively, a list of error checkers which will be used in the implementation may also
be specified, in the form of exact names or by defining naming conventions for
describing different types of detection and correction mechanisms. This specifi-
cation can be used later on to verify whether different error protection metrics are
met, such as percentage of checked latches and type of checking for each. In ad-
dition, since recovery actions usually involve reseting the design to some known
state by initializing a predefined set of latches, any formal language which supports
propositional logic can be used in order to specify latch behavior during recovery
actions.

Once a specification for the expected error detection and correction behavior is
created, automated techniques can be used to verify whether the implementation
meets the error detection and correction expectations. For example, dynamic veri-
fication techniques, namely using error injection in simulation, can verify that soft
errors on protected latches are caught and, if appropriate, corrected automatically
by the implementation. Another use for error detection and correction specifica-
tion is to verify that there are no latches which are highly vulnerable to soft error
hits and are not protected in the implementation.

Definition of the Diagnostic Model Describing Specifications e 9
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3 Describing Implementations

During the design process of ICs the implementation progresses through several
levels of abstraction in a refinement flow. In this section, different abstraction lev-
els that are considered within DIAMOND and their storage within the diagnostic
model are described.

In more detail these are the transaction level in Section 3.1, the Register Transfer
Level (RTL) in Section 3.2, and post silicon descriptions in Section 3.3.

3.1 Transaction Level

The first models of a hardware design are typically not written in hardware descrip-
tion languages but rather defined on a higher abstraction level, namely the transac-
tion level. In Transaction Level Modeling (TLM) [3], details about the components
are separated from the details about their communication. Communication is mod-
eled via channels. Channels abstract away low-level details of the communication
(e.g., details about buffers, busses, etc.) and focus on modeling functionality (what
is transfered between which components). Similar terms, which are often used
synonymously with TLM, are System Level Modeling or Electronic System Level
(ESL) Modeling. The core idea is the same: the focus is on modeling functionality
and algorithmic structure while omitting low-level details like exact timing, bit-
widths, communication details and so on. In this document, these terms are used
synonymously as well.

On the transaction level, designs are typically modeled as software programs. A
program consists of functions, which in turn consist of statements. Functions
model different modules of the design or parts of the algorithm. Function calls can
be used to model communication between modules. Information can be passed
via parameters and return values or global data structures. Typical languages for
transaction level modeling are C, C++, or SystemC, which is an extension of C++
with a simulation kernel. These languages provide rich features like, for instance,
dynamic memory allocation, recursion, and a large set of available libraries, which
allow a design to quickly explore different design options on a high abstraction
level early in the development process. Since transaction level models are soft-
ware programs and thus executable, they can also be analyzed and dynamically
verified. This reduces the chances that suboptimal design decisions or concep-
tional errors are uncovered only after the implementation work has been done.
Another advantage of higher level models is that execution is typically much faster
than simulation on lower abstraction levels.

Definition of the Diagnostic Model Describing Implementations e 11



The diagnostic model stores transaction level implementations in terms of Control
and Data Flow Graphs (CDFG). For instance, the CDFG can then be refined to a
word-level netlist as used for implementations on the RTL.

3.2 Register Transfer Level

An implementation in RTL is a refinement of an implementation on transaction
level. Abstractions in RTL define the behavior of the circuit by specifying the
signal flow between registers and logical operations.

Typically, a description in RTL is given as source code in a formal HDL. This
is the basis for synthesizing logic level netlists in the subsequent design steps.
HDLs enable implementing a cycle accurate model of a circuit that can be used for
simulation to explore the behavior of the design. Alternatively, formal verification
is frequently applied on RTL. Two well-known representatives of HDLs are Verilog
and VHDL.

Most HDLs support Boolean and arithmetic operations to model the signal flow,
whereas registers are used to model the temporal behavior of the circuit. The
operations and registers are defined in modules which are ordered hierarchically.
Therefore, a single module may be instantiated multiple times in the same design.
Moreover, IP-Cores are often used to reduce time-to-market.

A simulator gives insight into the behavior of the design. While simulating a trace,
values of signals at particular time steps become observable and enable analyzing
the behavior of the implementation in detail. Due to the good observability of the
internal behavior of the implementation given on RTL, specific analysis tasks like
fault localization and in-situ fault analysis are supported.

The diagnostic model stores HDL implementations in terms of word-level netlists.
A simple synthesis is performed to derive the netlist from the HDL description. All
functional operations are synthesized into combinational circuitry and into storage
elements as inferred from the HDL description. No optimizations are performed
in this synthesis step to keep a one-to-one correspondence of netlist elements to
parts of the HDL description. The mapping between netlist and the original HDL
source is also stored to allow back-annotation of results to the source level.

3.3 Post-Silicon

A circuit layout would accurately describe hardware at the post-silicon stage. How-
ever, the localization and correction algorithms should not depend on such detailed
descriptions. Instead a certain abstraction is required to be comprehensible for a
designer or to be suitable for taking counter-measures after detecting faults.
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Therefore, a system in post-silicon is described as the set of resources it contains
(processing elements, memories, etc.) and structural information about how each
resource can be accessed from the outside of the system. In the diagnostic model,
a resource manager is associated to each system. Such a resource manager main-
tains a record of the status for each resource as a resource map and a system health
map (see Figure 5). The resources may be idle, busy or fault marked. A fault
marked resource is isolated from the functional operation of the system and no
tasks are scheduled on a fault marked resource. This information is maintained
in the resource map. The system health map keeps error statistics for each re-
source. Further details on diagnosis data and repair data are given in Section 5.2
and Section 5.3.

System
Resource ‘
Resource manager Resource ‘
Resource Resource
map
System
health map

Figure 5: System overview

Most in-situ diagnosis activities depend on a test set, consisting of test stimuli
inputs and expected test responses for identifying the faulty component. This test
set is pre-generated, based on gate-level descriptions of the system components.
Gate-level descriptions are refinements of RTL descriptions that are discussed in
Section 3.2. The test sets are generated from gate-level descriptions by state-of-
the-art ATPG tools. For each resource, the diagnostic model contains such a test
set.
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4 Modeling Faults

Section 3 defines different levels of abstraction of an implementation. For different
purposes different types of faults have to be modeled. For example, design bugs
on the transaction level are different from transient faults in the actual chip. All
these different types of faults are stored in the diagnostic model allowing to handle
them by similar algorithms.

This section provides a holistic fault model to embed different types of faults in-
dependent of the abstraction level and for all the different applications considered
within DIAMOND. Components are used to describe faulty parts of an implemen-
tation and may consist of, e.g., a single gate, a set of gates, or a statement in source
code. Thereby, a fault may be permanent (i.e. a component behaves faulty at all
time frames) or a fault may be intermittent (i.e. a component behaves faulty at
some but not all time frames). In this context, transient faults resulting from radia-
tion effects are intermittent faults restricted to a very short time frame. Moreover,
multiple components may be faulty simultaneously. Each of the following sections
defines its own component model to describe the specific faults in more detail.

The following description differentiates between design bugs in Section 4.1, per-
manent physical faults in Section 4.2, and intermittent physical faults in Sec-
tion 4.3.

4.1 Design Bugs

Design bugs are permanent. Therefore, an activation of the bug by a certain in-
put condition always results in the same faulty values that may propagate to an
observable point.

On the transaction level, designs are modeled as software programs. A program
consists of functions, which in turn consist of statements, and statements consist
of expressions. Hence, on the transaction level, a component may be

e a function,

e a statement, or

e an expression.
Typically, an RTL description consists of a set of modules that are ordered hier-

archically. The behavior of a single module is described by a set of statements
defining control flow and data flow.
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According to this, the portion of the RTL design affected by a bug is a set of
statements or modules. Typical components considered for diagnosis or correction
at this level are:

e modules,

e statements, or

e gates.
Typically, a more fine-grained component definition allows for more detailed error
localization and more focused error correction. On the other hand, a finer granu-
larity also increases the search space of possibly erroneous components. Hence,

there is no optimal component definition for design bugs. But there is a trade-off
between accuracy and efficiency.

4.2 Permanent Physical Faults

Permanent physical faults are different from bugs in the sense that permanent phys-
ical faults will not affect all instances of the design when manufactured in silicon
as bugs do. Furthermore, permanent physical faults may be introduced in manu-
facturing or in-field on silicon that has passed manufacturing test.

Permanent physical faults can affect the logic, memory elements and interfaces.
In Deliverable D2.3a [7], the following categorization of permanent faults was
presented.

A permanent physical fault in logic causes a faulty timing behavior or a faulty logic
behavior that may propagate to an observable point for a certain input sequence.
During in-situ monitoring, permanent physical faults may manifest as intermittent,
however at off-line test they should be detected as permanent.

A permanent physical fault in memories may be detected through parity errors, or
infinite ECC repair rate. In both cases a fault counter is required, e.g. leaky bucket,
which should be considered as an instrument.

A permanent physical fault in interfaces should manifest itself as permanent dur-
ing in-situ monitoring. Off-line tests of the interface should confirm this. There
are several ways to analyze the potential cause, e.g. loss of signal, loss of frame
synchronization, check-sum error, etc.

The resulting component model is composed of:

e memories
e interfaces

e logic structures
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4.3 Intermittent Physical Faults

Transient faults lead to soft errors which represent a common cause for intermittent
physical faults. Traditionally, soft errors were modeled only for latches or regis-
ters. However, in sub-micron technologies logic gates also become dominant from
the soft error vulnerability point of view. Hence, typical components considered
for diagnosis and correction in this level are:

e aregister

e asignal

The more general intermittent faults on the physical level can be modeled by
adding a special logic structure for these types of components and other compo-
nents affected by them. In the RTL level, intermittent faults caused by soft errors
can be modeled by adding multiplexing logic which is used to invert a signal or a
register value when a soft error hit is simulated for that component. Furthermore,
single event upsets, a common model for soft error hits, can also be modeled using
this approach by restricting the number of signal or register bit flips to only one at
each time frame. This is achieved by using a one-hot scheme on the multiplexer
selector bits used to model the soft errors.

In Deliverable D2.3a [7], the following categorization of intermittent faults was
presented. Similar to permanent faults, intermittent physical faults can affect logic,
memories, and interfaces. Intermittent physical faults in logic, memory, or inter-
faces may not be detected in off-line tests. A fault counter, e.g. leaky bucket, is
required to identify an intermittent physical fault in logic, memory, or interfaces.
Exceeding a threshold for the fault counter should be regarded as a permanent
fault.
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5 Representing Results

The results of localization and correction algorithms are returned on the compo-
nent model. For this purpose back-annotation from the algorithmic level to the
problem description is required as described in Section 5.1. Results as returned for
diagnosis and correction are described in Section 5.2 and Section 5.3, respectively.
Finally, an integration with a work-flow engine allows analyzing the different op-
tions returned by the algorithms as detailed in Section 5.4.

5.1 Back-annotation

The algorithms running on top of the reasoning engines do not directly operate on
the initial representation of the problem. Instead multiple transformations or syn-
thesis steps typically precede the application of the reasoning engine. Nonetheless,
the results of diagnosis and correction algorithms have to be represented on the
same level as the initial problem description. That is, the results on the algorith-
mic level have to be back-annotated to the initial description. For this purpose a
mapping structure is kept for relating data structures representing the problem in
the algorithm to the original description. For instance, in case of using solvers for
Satisfiability Modulo Theories (SMT) the low level constraints can be related to
HDL source code when debugging RTL implementations.

5.2 Diagnosis Data

Diagnosis and localization are applied on various abstraction levels and on differ-
ent types of faults. The diagnosis results depends on these parameters.

e For pre-silicon diagnosis — transaction level or implementation level debug-
ging — a fault candidate is a pair of a fault type and a component as described
in Section 4. To rank the set of fault candidates confidence values may be
computed which represent probabilities that a component is faulty, i.e. a fault
candidate.

o To assess whether a design handles transient faults as specified (see Sec-
tion 2.4). For this purpose vulnerability and latency values for a DUV may
be computed and related to components. Vulnerability analysis defines and
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classifies critical points in a system and thus shows ways which part of a sys-
tem should be made more robust. Latency analysis computes for how many
cycles a sequential circuit has to be analyzed at least or at the maximum.

e For post-silicon diagnosis, a fault candidate is a pair of a fault type and a
logic gate or an interconnect which may belong to embedded logic in an IC.
The confidence values for fault candidates will depend on the approach to
diagnosis, of which several exist in literature [11, 14, 16].

e For in-field diagnosis, a fault candidate is the identifier of a replaceable or
fault-markable component, and this will depend from design to design. A
resource map detailing such components in the system will be used for fault-
marking and book-keeping of fault candidates. The fault type is permanent
physical fault.

A system health map, consisting of an indicator representing fault marking
and a counter for transient physical faults for each component in the resource
map, will be maintained.

Examples illustrating a resource map and a system health map are given in
Table 1 and Table 2 respectively. A resource has one out of three states,
namely Idle, Active and Faulty. The status of a resource is given in the re-
source map. The system health map details the number of soft errors that
have been detected in a resource since the system was first brought into op-

eration.
Table 1: Example resource map Table 2: Example system health map
Resource ID | Status Resource ID | Number of errors
Resource 1 | Faulty Resource 1 0
Resource 2 Idle Resource 2 5
Resource 3 | Active Resource 3 0
Resource 4 | Active Resource 4 15
Resource 5 | Faulty Resource 5 17
Resource n Idle Resource n 0

5.3 Correction Data and Repair Data

Design bugs are corrected while physical faults are repaired.

A repair of a design bug in pre-silicon is the replacement of a faulty component
by another component fixing the design bug. For instance, a faulty statement in a
C-model is replaced by a correct one. For this purpose functional replacements are
annotated to components as a correction of a design bug.

For in-field repair, a repair to recover from a transient physical fault will be repre-
sented by the command to re-execute the affected task. A repair to recover from
a permanent physical fault will be represented by the command to re-execute the
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affected task on another processing element, if redundant processing elements are
available in the system.

5.4 Workflow

The workflow described in the following is not an integral part of the diagnos-
tic model, but shows one way of integrating with the standard design flow. This
workflow enables a designer to utilize the results stored in the diagnostic model.
The workflow itself is defined and implemented within WP 2 and WP 3 — only the
overall idea is described in this section.

The approach is to store the results in a relational database management system
(RDBMS) to scale up the amount of tests which can be automatically generated
and re-run. Each code change is recorded so that automatic error correction tech-
niques can be applied.

Based on this engine a designer can be enabled to analyze the suggested diagnostic
results and potential corrections one after another by applying the related code
change and undoing the change if the result is not satisfactory.
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6 Summary

In this deliverable the diagnostic model of the DIAMOND project is described as
a whole. Different views are integrated with respect to different applications. This
includes different descriptions for specifications and implementations as well as
different abstraction levels and applications. Furthermore, various types of faults
are addressed and results are stored for further use by a designer. The diagnostic
model unifies all of this information conceptually for storage within a single data
structure to be used by different reasoning engines.
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