

FP7-SMARTCITIES-2013
Project number: 609132
http://www.e-balance-project.eu/

e-balance

Deliverable D4.4

Implementation of an integrated communication platform

Editor: Daniel Garrido (UMA)

Dissemination level:
(Confidentiality)

PU

Suggested readers: Consortium/Experts

Version: 1.0

Total number of pages: 44

Keywords: Smart grids, communication platform, integration , evaluation

Abstract

This document describes the integration and evaluation process of the communication platform developed in

WP4. The integration describes the approach and steps taken into account to connect the different modules of

the communication platform, including a legacy device called GSmart. The integrated communication

platform is evaluated according to an expected behaviour defined in a set of test cards. The sets of test cards

are divided into two different categories. They are the functional testing (unit testing and integration testing)

and the non-functional testing (performance and security testing). The result of each test with respect to the

expected behaviour is described in a result card.

The tests have been implemented and evaluated using automated tools. The result obtained in the evaluation

process is described in this deliverable and shows that the communication platform meets the expected

behaviour.

Ref. Ares(2016)1020480 - 29/02/2016

e-balance Deliverable D4.4

Page 2 of (44) © e-balance consortium 2015

Disclaimer

This document contains material, which is the copyright of certain e-balance consortium parties, and may not

be reproduced or copied without permission.

All e-balance consortium parties have agreed to full publication of this document.

The commercial use of any information contained in this document may require a license from the proprietor

of that information.

Neither the e-balance consortium as a whole, nor a certain party of the e-balance consortium warrant that the

information contained in this document is capable of use, nor that use of the information is free from risk,

and accepts no liability for loss or damage suffered by any person using this information.

The information, documentation and figures available in this deliverable are written by the e-balance partners

under EC co-financing (project number: 609132) and does not necessarily reflect the view of the European

Commission.

Impressum

[Full project title] Balancing energy production and consumption in energy efficient smart neighbourhoods

[Short project title] e-balance

[Number and title of work-package] WP4 Communication platform

[Document title] Implementation of an integrated communication platform
[Editor: Name, company] Daniel Garrido, UMA

[Work-package leader: Name, company] Daniel Garrido, UMA

Copyright notice

 2015 Participants in project e-balance

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 3 of (44)

Executive Summary

This deliverable describes the integration process of the communication platform and the different modules

and algorithms developed in WP4. It also presents the evaluation carried out to test the correctness of the

implemented prototype.

The integration and evaluation approach is presented in Section 2. In this section, the different modules and

functionality integrated in the e-balance communication platform are presented:

 The integration/evaluation of the security modules described in D4.2

 The integration/evaluation of two programming languages wrappers that allow the e-balance

communication platform to be used from Java and Javascript

 The integration/evaluation of the external device GSmart

At the end of this section the evaluation methodology is presented. Both functional and non-functional

testing has been carried out by means of a set of tests. Each test is represented by a test card which defines

the expected behaviour of the system from a specific set of input.

All the tests are defined and carried out in Section 3. The evaluation has been divided into 4 main sets of

tests. In the first set described in Section 3.1, individual tests have been carried out taking into account a

single instance of the e-balance communication platform. In Section 3.2 stress tests are carried out in the

communication platform to evaluate the performance of the prototype in scenarios with a high number of

requests. Security tests are described in Section 3.3. Finally communication between different management

units is carried out in Section 3.4.

e-balance Deliverable D4.4

Page 4 of (44) © e-balance consortium 2015

List of authors

Company Author

UMA Jaime Chen

Eduardo Cañete

Daniel Garrido

IHP Krzysztof Piotrowski

Ievgen Kabin

INOV António Grilo

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 5 of (44)

Table of Contents

Executive Summary ... 3
List of authors .. 4
Table of Contents .. 5
List of Tables ... 6
List of Figures.. 7
Abbreviations .. 8
1 Introduction .. 9

1.1 Deliverable Position in the Project .. 9
2 Integration methodology .. 11

2.1 Tools and equipment setup ... 13
2.2 Integration details .. 14

2.2.1 Security module integration ... 14
2.2.2 Data interface wrappers ... 14
2.2.3 GSmart ... 16

2.3 Test definition ... 16
3 Test definition and evaluation .. 19

3.1 Single tests .. 19
3.1.1 Create Variable .. 19
3.1.2 Delete a variable .. 20
3.1.3 Basic Write .. 21
3.1.4 Basic Query ... 22
3.1.5 Subscribe to a normal Event .. 22
3.1.6 Unsubscribe from a normal Event ... 23
3.1.7 Subscribe to Periodic event.. 24
3.1.8 Unsubscribe from a Periodic event .. 25
3.1.9 Subscribe to NewVariableValueEvent .. 26
3.1.10 Unsubscribe from NewVariableValueEvent .. 27
3.1.11 Basic Query Latest Tuple .. 27
3.1.12 Variable GSMART read operation .. 28

3.2 Stress tests ... 29
3.2.1 Simple write stress test .. 29
3.2.2 Simple query stress test.. 30
3.2.3 Concurrent write/query test ... 31
3.2.4 Concurrent write test .. 32

3.3 Security tests ... 34
3.3.1 Access control test 1 .. 34
3.3.2 Access control test 2 .. 35
3.3.3 Management unit registration in the group management – obtaining the certificate from the

Certification Authority ... 37
3.3.4 Management unit registration in the group management – registration approach without proper

credentials .. 39
3.4 Test with multiple CMUs .. 40

3.4.1 Broadcast Query .. 40
3.4.2 Remote procedure emulation ... 40

4 Summary and conclusions .. 43
References ... 44

e-balance Deliverable D4.4

Page 6 of (44) © e-balance consortium 2015

List of Tables

Table 1: Test sets ... 13
Table 2: Test card template ... 17
Table 3: Result card template .. 17

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 7 of (44)

List of Figures

Figure 1: The position of deliverable D4.4 within the e-balance project .. 9
Figure 2: The e-balance network architecture ... 11
Figure 3: The setup of the test environment .. 13
Figure 4: Communication platform data access control .. 14
Figure 5: Java wrapper implementation details ... 15
Figure 6: Javascript wrapper implementation details .. 15
Figure 7: Integration architecture of the GSmart ... 16

file:///D:/MyDocs/Projekty/e-balance/Deliverables%20-%20Working/D4.4/e-balance_D4.4_Implementation_of_an_integrated_communication_platform_r1.doc%23_Toc444509323

e-balance Deliverable D4.4

Page 8 of (44) © e-balance consortium 2015

Abbreviations

CMU Customer Management Unit

DMU Device Management Unit

HAN Home Area Network

LV Low Voltage

LVGMU Low Voltage Grid Management Unit

MU Management Unit

MV Medium Voltage

MVGMU Medium Voltage Grid Management Unit

PS Primary Substation

SS Secondary Substation

TLS Top Level System

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 9 of (44)

1 Introduction

The goal of e-balance is to provide the infrastructure and management system necessary to support the future

smart grid. This new system is expected to replace the traditional electricity grid and will provide new

services that will allow a better control of energy consumption and production and as a result a better usage

of the network.

The communication platform that connects the different devices in the smart grid is designed and developed

in WP4. Task T4.1 surveys and proposes the networking layer that supports the e-balance energy balancing

system. In task T4.2 different security and privacy mechanisms have been studied in order to ensure that the

communication platform is secure. The data exchange middleware, the software in charge of handling

information exchange, was designed and implemented in task T4.3.

This document describes the integration process and the evaluation of the protocols and mechanisms studied

in previous tasks of this work package. This evaluation is composed of two different types of tests. On the

one hand, the different levels of the communication architecture (e.g. HV grid, MV grid, etc.) are evaluated

separately. This evaluation can be carried out in parallel to evaluate the correct implementation of each

communication component and to detect possible issues. On the other hand, the system is integrated in-lab to

a global communication platform and is evaluated with scenarios where management units at different levels

in the architecture hierarchy are involved (e. g. CMU, LVGMU, etc.).

In Section 2 the integration process is described. Each level of communication (architecture) is presented and

the different tests that have been carried out in each of them are described. The system has been evaluated by

means of expected results according to specific inputs. This expected behaviour has been modelled by means

of test cards. Section 3 describes all the test cards that have been used to evaluate the system. Section 4

describes the actual tests and results obtained based on the test cards defined. Finally, in Section 5,

conclusions are presented.

1.1 Deliverable Position in the Project

Figure 1 shows the position of this deliverable within the e-balance project. This deliverable is part of work

package WP4 – Communication Platform.

WP2

Use cases and socio-

economic aspects

WP3

System specification

WP4 - Communication platform WP5

Energy management

platform

WP6

System integration

D4.1

D4.2
D4.3 D4.4

Figure 1: The position of deliverable D4.4 within the e-balance project

e-balance Deliverable D4.4

Page 10 of (44) © e-balance consortium 2015

Deliverables D4.1 [1] and D4.2 [2] have studied the networking layer and the security and privacy

mechanisms respectively. From the output of these two deliverables a data exchange middleware has been

designed and implemented which was described in deliverable D4.3 [3]. This document describes the

evaluation of the communication platform developed in task T4.3 and described in D4.3. This evaluation is

carried out by means of in-lab tests taking into account the requirements defined in deliverable D2.4 [4].

Once the communication platform has been verified and tested, a more thorough in-site evaluation will be

carried out in WP6 together with the energy management platform developed in WP5.

This document is a report for the integration task. Thus, state-of-the-art and beyond state-of-the-art status are

not considered here. Instead, the focus is on reporting the different tests carried out to assure a correct

integration of the communication platform components. Nevertheless, state-of-the-art status and the

contribution beyond state-of-the-art can be queried in other WP4 deliverables.

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 11 of (44)

2 Integration methodology

This section summarizes the high level plan for the integration of the communication platform.

Figure 2, extracted from the deliverable D3.1 [5] shows the generic communication architecture of e-balance,

further described in deliverable D3.2 [6]. The e-balance architecture is composed of different hierarchy

levels. These levels communicate with each other by means of devices called management units (MUs)

represented in blue with the initials MU in Figure 2. The different MUs will communicate with each other

using the communication platform developed in WP4. This communication platform has been integrated

with the different protocols developed in this work package and is evaluated in this document. The

communication platform used is identical at each level. The applications running on top of the

communication platform define the behaviour of the MUs. Because of that, in this document the middleware

has been evaluated in a generic way without taking into account specific behaviour of each MU.

Figure 2: The e-balance network architecture

The software validation process has to confirm that it performs the user needs and intended uses, and that its

requirements can be consistently fulfilled. A validation process has static and dynamic elements. Static

features include the analysis of the documentation, implementation issues, manuals, etc. The dynamic

features include the experimentation of functional and non-functional properties.

Integration is an essential part in the process of software validation. In this deliverable we focus on the

integration and evaluation process of the e-balance communication platform.

At D2.4, the e-balance requirements were defined attending to the use cases. The design and implementation

of the communication platform, takes these requirements and use cases into account in order to carry out the

integration evaluation.

e-balance Deliverable D4.4

Page 12 of (44) © e-balance consortium 2015

Specifically, we distinguish the following integration validation areas as depicted in Table 1:

 Functional requirements: this area will validate functional properties of the communication

platform. These properties have been selected taking into account how they can help in the

development of applications using for the smart grid.

 Non-Functional requirements: this area will study non-functional aspects of the middleware

architecture and how these aspects affect important features such as security, performance, etc.

The validation criteria of the integration communication platform include the following aspects:

 How the e-balance API supports most of the interactions needed by the e-balance applications.

 Feasibility to express the interaction among applications (identification, broadcasting, group

communication…)

 How the communication platform can be used in different levels of the e-balance architecture

(LV, MV, CMU, …)

 Communication platform flexibility to allow reusability of the middleware in different devices,

platforms, operating systems, etc.

 Scalability support considered by-design

 Interoperability with external devices (e.g. GSmart)

 Possibility of using different programming languages

 Middleware efficiency

Taking these aspects into account, the software integration of the different components of the system has

been carried out in-lab using the tools and setup explained in Section 2.1. The following modules have been

tested and integrated in the e-balance middleware:

1. e-balance middleware module

2. Security module

3. e-balance wrappers

a. Javascript wrapper

b. Java wrapper

4. GSmart

The methodology used to test the different components of the system divides the set of tests in two different

categories.

 Functional testing: unit testing and integration testing.

 Non-functional testing: Includes performance and security testing.

Functional testing includes all the different tests carried out to verify that the system meets the expected

behaviour in terms of features offered. These tests include unit testing which tests individual operations and

integration testing which verifies the interaction between different components of the system.

On the other hand, non-functional testing focuses on a different set of requirements met by the system but

not directly related to its behaviour but rather to its operation. These sets of tests include all the tests related

to performance and security. The majority of the tests have been carried out using automated tools. For C#,

Visual studio test explorer included in Visual Studio has been used. JUnit framework has been used for Java.

The middleware GUI has been used as a help tool in order to verify the results of some of the tests.

The different tests have been described using a set of test cards and the results of the tests have been

described in result cards. The whole set of test cards have been divided into 4 main sections that is described

in Table 1.

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 13 of (44)

Table 1: Test sets

Type of test Test set Section Description

Functional test Unit testing 3.1 Individual data interface operations

Functional test Integration testing 3.4 Interaction between different management

units

Non-functional test Performance testing 3.2 Stress tests

Non-functional test Security testing 3.3 Security tests: data access control, middleware

access control

2.1 Tools and equipment setup

The communication platform has been implemented using C# and the ServiceStack framework [7] that runs

over Mono [8] and has been deployed in Beaglebone Black devices [9]. The Beaglebone Black devices have

been connected to the local area network by means of Ethernet cables.

The communication platform provides a set of REST web services that can be accessed from any device in

the same local area network. In order to simplify the development of applications in different programming

languages with the e-balance data interface, two different wrappers have been developed: a Javascript

wrapper and a Java wrapper. These two wrappers allow programs in Javascript and Java to use the e-balance

middleware respectively. In addition, each Beaglebone hosts a website that simplifies the use of some of

these web services and can be used to query different parameters.

Figure 3: The setup of the test environment

The tests consist of different interactions between the test program and the web services of the BeagleBone

as presented in Figure 3.

e-balance Deliverable D4.4

Page 14 of (44) © e-balance consortium 2015

2.2 Integration details

2.2.1 Security module integration

Figure 4: Communication platform data access control

The first set of security measures provided by the communication platform is the access control (Figure 4).

Only the users of the communication platform with the appropriate credentials are able to execute the

different web services provided by the platform. Prior to using the communication platform, the user must

authenticate in the system. With each subsequent request, information about the user is sent so that the

system can check if the user has the corresponding credentials to access the information. This functionality

has been integrated in the communication platform by means of request filters. Before processing requests,

filter requests are executed. In the access control request filter, permission is granted or denied based on the

provided credentials.

Other security and privacy related functions that have been integrated include also the security and privacy

module that is integrated as part of the Java wrapper offering its functions to the services in the energy

management platform. Further, in order to allow the secure group management module to work properly the

certification authority software was provided and running on a (remote) machine, allowing registration of

stakeholders and management units. For those two groups proper certificates are generated and are further

stored on the respective management unit and are used by the middleware to authenticate (prove the identity

of) the management unit (RSA hardware certificate of the management unit) or by the security and privacy

module in the energy management platform to authenticate the requests by the services of that specific

stakeholder (ECC stakeholder/service certificates). This registration process is the basis for all other security

related actions and the secure data exchange.

2.2.2 Data interface wrappers

Integration of applications developed in other programming languages or websites that run in conventional

web browsers is achieved by means of wrappers. Wrappers offer access to the data interface API of the e-

balance communication platform programmatically instead of having to use REST web services.

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 15 of (44)

2.2.2.1 Java wrapper

Figure 5: Java wrapper implementation details

Java programs can access the middleware by means of the Java wrapper. This wrapper hides the underlying

REST web service architecture and allows Java code to programmatically use the e-balance data interface

API. Figure 5 shows some implementation details of the Java wrapper. All requests are processed by the Java

request processor.

On the one hand on demand operations such as query and write are directly translated into calls to web

services hosted in the remote communication platform by the Java request processor. On the other hand,

events sent from the communication platform that are received in Java need special processing. The e-

balance communication platform is entirely based on a REST web service data interface and therefore events

are only sent to other web services. In order for a Java code to receive an event, a translation is needed from

a webservice to Java callback. The java wrapper internally hosts a lightweight web server implemented using

Jetty [10] that receives events and translates them to the appropriate Java callback. This allows users to

transparently use Java code to access all the functionality in the middleware.

2.2.2.2 Javascript wrapper

Figure 6: Javascript wrapper implementation details

As mentioned in Section 2.1 each Beaglebone device hosts a website that shows information about the

middleware state and also allows different parameters to be modified. In order to easily allow websites and

mobile devices to access the e-balance middleware a Javascript wrapper has been developed and integrated

in the e-balance system. Figure 6 shows some details about the Javascript wrapper implementation. The

Javascript wrapper has been implemented over the AngularJS [11] application framework. Each service

available in the Javascript wrapper is implemented as an asynchronous AJAX call to the middleware using

the $resource object provided by AngularJS.

e-balance Deliverable D4.4

Page 16 of (44) © e-balance consortium 2015

The website hosted in each BeagleBone uses this Javascript wrapper to monitor and control the local

middleware. Use of events is not supported at this moment in the Javascript wrapper.

2.2.3 GSmart

Figure 7: Integration architecture of the GSmart

The e-balance communication platform provides a single interface (data interface API) that all devices in the

system have to use to exchange information and obtain data. However, it is common in existing

infrastructures to deal with legacy code and equipment. These devices are not able to use or provide data by

means of the data interface. For these kinds of devices an adaptation module is used to adapt the provided

interface to the e-balance data interface. In the Bronsbergen demonstrator described in [12] the use of an

existing piece of equipment called GSmart is expected to be used. A GSmart is a server device that controls

sensors in the grid and provides its data by means of a set of SOAP web services. SOAP and REST web

services cannot directly communicate and there the use of an adaptation layer is needed. Figure 7 shows the

adaptation module implemented to allow communication between the GSmart and the communication

platform. The GSmart is accessed through the e-balance data interface API. A special variable called

GSMART has been created. The adaptation module receives requests that operate with this special variable

and instead of locally processing the request using communication platform local database the request is

translated to a SOAP request and redirected to the GSmart. When the response is received the SOAP

response is processed and its content is written in the special variable GSMART.

As a result the use of the GSmart external device is transparent to the developers which can obtain its data by

means of the common data interface API provided by the communication platform.

2.3 Test definition

The requirements of the communication platform have been tested by comparing obtained results to expected

results when specific inputs are fed into the system. This behaviour is controlled by a set of tests that are

specified in what is called a “test card”. A test card describes a test for a specific part of the system and

presents the details of it by describing the pre-conditions of the test, the input that the system is given and the

expected results. If the expected results and obtained results are the same, then the test is passed successfully.

Results of the tests are collected in what is called a “result card”. A result card describes the results and the

outcome of a particular test card. The evaluation process consists of defining a set of test cards and filling the

corresponding result cards based on the results obtained from the tests.

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 17 of (44)

Table 2: Test card template

Test card

Name/code/test case identifier TEST.<TEST_TYPE><TESTNUMBER>

E.g.: TEST.S001

TEST_TYPE: indicates the type of test.

Possible values are:

I: Individual tests (only one MU is involved)

M: Tests where multiple MUs are involved

S: Stress test

X: Security test

TESTNUMBER: unique id for each test (use at least 3 digits)

Objectives Goal of this test

Devices involved Devices involved in the use case. Figures or diagram are preferred

Pre-requirements Assumptions or pre-requirements needed to evaluate this test

Steps Steps to be carried out to evaluate this test

Expected result

Additional comments

Table 3: Result card template

Result card

Name/code/test case identifier TEST.<TEST_TYPE><TESTNUMBER>

E.g.: TEST.S001

TEST_TYPE: indicates the type of test.

Possible values are:

I: Individual tests (only one MU is involved)

M: Tests where multiple MUs are involved

S: Stress test

X: Security test

TESTNUMBER: unique id for each test (use at least 3 digits)

Results Detailed description of the outcome of this test, highlighting interesting

results or issues detected

Test outcome OK / FAIL

In case of FAIL create a new version of the test card (use the “Test

repetition number” field accordingly) and repeat the test once the issue has

been fixed. Indicate in this test card the test case identifier of the test card

where this test is repeated)

Additional comments

e-balance Deliverable D4.4

Page 18 of (44) © e-balance consortium 2015

Table 2 shows the test card template that defines the expected behaviour of each test. The obtained results

corresponding to each test card are described in a result card using the template shown in Table 3. In each of

these tables the fields are described in detail.

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 19 of (44)

3 Test definition and evaluation

This section defines the tests and describes the results of the evaluation. The integration evaluation has been

divided into 4 main sets of tests. In the first set described in Section 3.1, individual tests have been carried

out taking into account a single instance of the e-balance communication platform. These tests are used to

check the correctness of the different management units and/or sensors controlled by it without taking into

account interaction between different management units. This information is useful to detect possible

issues/bugs in the system in specific components and to study the performance of each MU in an isolated

manner before carrying out tests with multiple MUs. In Section 3.2 stress tests are carried out in the

communication platform to evaluate the performance of the prototype in scenarios with a high number of

requests. Security tests are described in Section 3.3. Finally communication between different management

units is carried out in Section 3.4. These tests study the communication and interaction between

management units/devices in different positions of the architecture hierarchy.

3.1 Single tests

3.1.1 Create Variable

Test card

Name/code/test case identifier TEST.I001

Objectives Check if the middleware is able to create a new variable called

“ENERGY_CONSUMPTION” with the following properties: ID,

TIMESTAMP and VALUE.

Devices involved Customer Management Unit (CMU)

Pre-requirements The user executing the test has access to the middleware due to the

appropriate credentials

A variable ENERGY_CONSUMPTION does not exist.

Steps 1. Call the web service offered by the middleware to create a variable

called “ENERGY_CONSUMPTION”

Expected result A message confirming that the variable was created.

Additional comments

Result card

Name/code/test case identifier TEST.I001

Results

e-balance Deliverable D4.4

Page 20 of (44) © e-balance consortium 2015

This screenshot shows the output received in the GUI when a request to

create a variable is sent to the middleware.

Test outcome OK

Additional comments

3.1.2 Delete a variable

Test card

Name/code/test case identifier TEST.I002

Objectives Check if the middleware is able to delete a variable previously created.

This test will try to delete a variable called

“ENERGY_CONSUMPTION”.

Devices involved Customer Management Unit (CMU)

Pre-requirements The user executing the test has access to the middleware due to the

appropriate credentials

A variable called ENERGY_CONSUMPTION exists.

Steps 1. Call the web service offered by the middleware to delete a variable

called “ENERGY_CONSUMPTION”

Expected result A message confirming that the variable was deleted.

Additional comments

Result card

Name/code/test case identifier TEST.I002

Results

This screenshot shows the output received in the GUI when a request to

delete the variable is sent to the middleware.

Test outcome OK

Additional comments

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 21 of (44)

3.1.3 Basic Write

Test card

Name/code/test case identifier TEST.I003

Objectives Check if the middleware allows to write data in a variable previously

created.

Devices involved Customer Management Unit (CMU)

Pre-requirements The user executing the test has access to the middleware due to the

appropriate credentials

The middleware contains a variable called ENERGY_CONSUMPTION

which has the following properties: ID, TIMESAMTP and VALUE.

Steps 1. Call the write web service to add the following tuple: [X,

CURRENT_TIME, 29]

Expected result The variable ENERGY_CONSUMPTION must contain the following new

tuple:

[X, CURRENT_TIME, 29]

Additional comments

Result card

Name/code/test case identifier TEST.I003

Results Screenshot obtained from the GUI, before the test is executed

Screenshot obtained from the GUI of the middleware:

Test outcome OK

Additional comments

e-balance Deliverable D4.4

Page 22 of (44) © e-balance consortium 2015

3.1.4 Basic Query

Test card

Name/code/test case identifier TEST.I004

Objectives Check reading an e-balance variable stored in the middleware

Devices involved Customer Management Unit (CMU)

Pre-requirements The user executing the test has access to the middleware due to the

appropriate credentials

The middleware contains a variable called ENERGY_CONSUMPTION

which has the following properties: ID, TIMESTAMP and VALUE.

Furthermore, the variable contains the following three tuples:

[Id, Timestamp, Value]

1, 1446563855, 34

2, 1446563860, 36

3, 1446563864, 38

Steps 1. Call the query web service to read information from the

ENERGY_CONSUMPTION variable.

Expected result An object with the following tuples

[1, 1446563855, 34]

[2, 1446563855, 36]

[3, 1446563855, 38]

Additional comments

Result card

Name/code/test case identifier TEST.I004

Results A data object with the following tuples:

[1, 1446563855, 34]

[2, 1446563855, 36]

[3, 1446563855, 38]

Test outcome OK

Additional comments

3.1.5 Subscribe to a normal Event

Test card

Name/code/test case identifier TEST.I005

Objectives Check if an e-balance application can subscribe to an event related to a

variable stored in the middleware.

Devices involved PC, Customer Management Unit (CMU)

Pre-requirements The user executing the test has access to the middleware due to the

appropriate credentials

The middleware contains a variable called ENERGY_CONSUMPTION

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 23 of (44)

which has the following properties: ID, TIMESTAMP and VALUE.

Furthermore, the variable contains the following three tuples:

[Id, Timestamp, Value]

1, 1446566867, 75

2, 1446566869, 31

3, 1446566871, 92

4, 1446566873, 29

Steps 1. Create the variable we want to subscribe to. E.g.: We want to

consult all the properties of the ENERGY_CONSUMPTION

variable which “value” property is higher than 40.

2. Define an event for the previously created variable where the

period with which we want to receive information of the variable

is indicated. E.g.: Every 10 seconds.

3. Create a handler to manage the information received periodically.

Note: The subscriber will only receive events if the condition specified in

the variable is satisfied.

Expected result Every 10 seconds receive the following tuples:

[1, 1446566867, 75]

[3, 1446566871, 92]

Additional comments

Result card

Name/code/test case identifier TEST.I005

Results A data object with the following tuples:

[1, 1446566867, 75]

[3, 1446566871, 92]

Test outcome OK

Additional comments The tuples were received every 10 seconds.

3.1.6 Unsubscribe from a normal Event

Test card

Name/code/test case identifier TEST.I006

Objectives The user executing the test has access to the middleware due to the

appropriate credentials

e-balance Deliverable D4.4

Page 24 of (44) © e-balance consortium 2015

Check if an e-balance application can unsubscribe from a normal event

related to a variable stored in middleware.

Devices involved PC, Customer Management Unit (CMU)

Pre-requirements The middleware contains an event subscribed to a variable called

ENERGY_CONSUMPTION. The event has the following properties:

 Variable Name: ENERGY_CONSUMPTION

 Checking Frequency: 10 seconds

 Properties: *

 Condition: value > 40

Steps

Expected result Stop receiving events.

Additional comments

Result card

Name/code/test case identifier TEST.I006

Results e-balance application stops receiving events.

Test outcome OK

Additional comments

3.1.7 Subscribe to Periodic event

Test card

Name/code/test case identifier TEST.I007

Objectives The user executing the test has access to the middleware due to the

appropriate credentials

Check if an e-balance application can subscribe to a periodic event related

to a variable stored in the middleware.

Devices involved PC, Customer Management Unit (CMU)

Pre-requirements The middleware contains a variable called ENERGY_CONSUMPTION

which has the following properties: ID, TIMESTAMP and VALUE.

Furthermore, the variable contains the following three tuples:

[Id, Timestamp, Value]

1, 1446566867, 75

2, 1446566869, 31

3, 1446566871, 92

4, 1446566873, 29

Steps 1. Create the variable we want to subscribe to. E.g.: We want to

consult all the properties of the ENERGY_CONSUMPTION

variable which “value” property is lower than 40.

2. Define a periodic for the previously created variable where the

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 25 of (44)

period with which we want to receive information of the variable

is indicated. E.g.: Every 20 seconds.

3. Create a handler to manage the information received periodically.

Note: The subscriber will always receive periodics. Even, if the condition

specified in the variable is not satisfied.

Expected result Every 20 seconds receive the following tuples:

[2, 1446566869, 31]

[4, 1446566873, 29]

Additional comments

Result card

Name/code/test case identifier TEST.S007

Results A data object with the following tuples:

[2, 1446566869, 31]

[4, 1446566873, 29]

Test outcome OK

Additional comments The tuples were received every 20 seconds.

3.1.8 Unsubscribe from a Periodic event

Test card

Name/code/test case identifier TEST.I008

Objectives Check if an e-balance application can unsubscribe from a periodic related

to a variable stored in the middleware.

Devices involved PC, Customer Management Unit (CMU)

Pre-requirements The user executing the test has access to the middleware due to the

appropriate credentials

The middleware contains a periodic subscribed to a variable called

ENERGY_CONSUMPTION. The event has the following properties:

 Variable Name: ENERGY_CONSUMPTION

 Checking Frequency: 20 seconds

 Properties: *

 Condition: value < 40

e-balance Deliverable D4.4

Page 26 of (44) © e-balance consortium 2015

Steps

Expected result Stop receiving periodic updates.

Additional comments

Result card

Name/code/test case identifier TEST.I008

Results e-balance application stopped receiving periodic updates

Test outcome OK

Additional comments

3.1.9 Subscribe to NewVariableValueEvent

Test card

Name/code/test case identifier TEST.I009

Objectives Check if an e-balance application can subscribe to a

NewVariableValueEvent related to a variable stored in the middleware.

Devices involved PC, Customer Management Unit (CMU)

Pre-requirements The user executing the test has access to the middleware due to the

appropriate credentials

The middleware contains a variable called ENERGY_CONSUMPTION.

Steps 1.Subscription to the NewVariableValueEvent:

2.Write data into the ENERGY_CONSUMPTION variable:

Expected result To receive – by means of an event – data stored in the

ENERGY_CONSUMPTION variable, just in the moment an external actor

stores a new value in this variable. The received data will have the

following form:

[Id, Timestamp, Value]

[5, Y, 323]

Y will be the timestamp used in the moment of storing the information.

Additional comments

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 27 of (44)

Result card

Name/code/test case identifier TEST.I009

Results [Id, Timestamp, Value]

[5, 1446652432, 323]

Test outcome OK

Additional comments

3.1.10 Unsubscribe from NewVariableValueEvent

Test card

Name/code/test case identifier TEST.I010

Objectives Check if an e-balance application can unsubscribe from a

NewVariableValueEvent.

Devices involved PC, Customer Management Unit (CMU)

Pre-requirements The user executing the test has access to the middleware due to the

appropriate credentials

The middleware contains a NewVariableValueEvent on a

ENERGY_CONSUMPTION variable.

Steps

Expected result Stop receiving NewVariableValue events.

Additional comments

Result card

Name/code/test case identifier TEST.I010

Results e-balance application stops receiving NewVariableValue events although

new values are written in the ENERGY_CONSUMPTION variable.

Test outcome OK

Additional comments

3.1.11 Basic Query Latest Tuple

Test card

Name/code/test case identifier TEST.I011

Objectives Check that an e-balance variable stored in the middleware can be queried.

Devices involved Customer Management Unit (CMU)

e-balance Deliverable D4.4

Page 28 of (44) © e-balance consortium 2015

Pre-requirements The user executing the test has access to the middleware due to the

appropriate credentials

Steps 1. Create an empty variable called “TestVariable”

2. Execute QueryLatestTuple and check that no result is returned

3. Write a value VALUE1 to the variable “TestVariable”

4. Execute QueryLatestTuple and check that VALUE1 is received

5. Write a value VALUE2 to the variable “TestVariable”

6. Execute QueryLatestTuple and check that VALUE2 is received

7. Delete variable “TestVariable”

Expected result All tests must be executed successfully

Checks carried out in steps 2, 4 and 6 must be successful.

Additional comments

Result card

Name/code/test case identifier TEST.I011

Results

This screenshot shows the result of an automated test

Test outcome OK

Additional comments

3.1.12 Variable GSMART read operation

Test card

Name/code/test case identifier TEST.I012

Objectives Check that the e-balance special variable GSMART can be queried. The

information in this variable is actually information provided by an external

device called GSmart.

Devices involved Low Voltage Management Unit (LVGMU)

GSmart

Pre-requirements The user executing the test has access to the middleware due to the

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 29 of (44)

appropriate credentials

Steps 1. Query the special variable GSMART by means of the LVGMU

web application. It contains a helper webpage that automatically

makes the request.

Expected result The operation must return a Success operation code. Meaningful

information from the GSmart must be obtained.

Additional comments The obtained latency in the request will be measured

Result card

Name/code/test case

identifier

TEST.I012

Results

Test outcome OK

Additional comments A high latency (18 seconds) has been experienced. The cause of it comes from

the performance of the GSmart, not from the e-balance communication platform.

3.2 Stress tests

3.2.1 Simple write stress test

Test card

Name/code/test case identifier TEST.S001

Objectives Execute 1000 write queries one after the other.

Devices involved Customer Management Unit (CMU)

Pre-requirements The user executing the test has access to the middleware due to the

appropriate credentials

Steps 1. Create an empty variable called TestVariable with one attribute

named “Value” which is of type Integer

2. Execute 1000 (not concurrent) write operations over this variable

as fast as possible. The value that will be written in the variable

will increment after each write operation.

Expected result A variable that contains the following values (property “value”):

0

e-balance Deliverable D4.4

Page 30 of (44) © e-balance consortium 2015

1

2

3

…

999

Additional comments

Result card

Name/code/test case identifier TEST.S001

Results

A screenshot from the GUI shows that the 1000 values have been stored as

expected

Test outcome OK

Additional comments

3.2.2 Simple query stress test

Test card

Name/code/test case identifier TEST.S002

Objectives Execute 1000 query operations one after the other.

Devices involved Customer Management Unit (CMU)

Pre-requirements There exists a variable called TestVariable with a property named “value”

of type integer with 1000 distinct values from 0 to 999 (TEST.S001 creates

this pre-requirement)

The user executing the test has access to the middleware due to the

appropriate credentials

Steps 1. i = 0;

2. Query TestVariable with the following condition (value == i)

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 31 of (44)

3. i++

4. if(i < 1000) go to step 2

Expected result Each query must return only one value. Values returned by the 1000

queries must be:

0

1

…

999

Additional comments

Result card

Name/code/test case identifier TEST.S002

Results

This screenshot shows the result of an automated test

Test outcome OK

Additional comments

3.2.3 Concurrent write/query test

Test card

Name/code/test case identifier TEST.S003

Objectives Execute two threads, one querying and the other writing a variable in the

middleware. 1000 operations will be executed by each thread.

Devices involved Customer Management Unit (CMU)

Pre-requirements The user executing the test has access to the middleware due to the

appropriate credentials

Steps A thread writes values in a variable called “TestVariable”. This variable

has one property named “value” of type int. Unique values from 0 to 999

e-balance Deliverable D4.4

Page 32 of (44) © e-balance consortium 2015

will be written. A trace message is shown every time a value is written.

A thread queries all the values in the “TestVariable” written so far. A trace

message is shown with the values that have been queried.

Expected result Write and read operations are concurrently executing.

Traces show that write operations go from 0 to 999

Traces show that read operations return the N results with values going

from 0 to N where N is the value shown in the last write trace. For

example, if the last write operation wrote a 10 the query operation must

return 10 values ranging from 0 to 9.

Additional comments

Result card

Name/code/test case identifier TEST.S003

Results

This screenshot shows the result of an automated test. Lines with an R

show the result of a query operation. Lines showing a W show the different

write operations together with the value written in each operation.

Test outcome OK

Additional comments

3.2.4 Concurrent write test

Test card

Name/code/test case identifier TEST.S004

Objectives Execute two threads that perform 1000 write operations in the same

variable.

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 33 of (44)

Devices involved Customer Management Unit (CMU)

Pre-requirements The user executing the test has access to the middleware due to the

appropriate credentials

Steps Two threads write values in a variable called “TestVariable”. This variable

has one property named “value” of type int. The first thread writes unique

even numbers from 0 to 1998. The second one writes unique odd numbers

from 1 to 1999. A trace message is shown every time a value is written.

Expected result 2000 values are written in the variable “TestVariable”. Values go from 0 to

1999.

Additional comments Each thread executes one write each 200 ms

Result card

Name/code/test case identifier TEST.S004

Results

This screenshots shows the result of an automated test. Threads are called

1W and 2W. Each line indicates the id of the thread and the value written.

E.g. 1W0 means that thread 1W writes a 0 value.

Test outcome OK

Additional comments

e-balance Deliverable D4.4

Page 34 of (44) © e-balance consortium 2015

3.3 Security tests

3.3.1 Access control test 1

Test card

Name/code/test case identifier TEST.X001

Objectives Test the data interface API with different credentials

Devices involved Customer Management Unit (CMU)

Pre-requirements The tool “cURL” is installed in the system

The credentials used for the user and admin tests already exist in the

system

Steps 1. Generate requests using cURL to query/write/query/periodic with

no credentials

2. Generate requests to query/write/query/periodic with user

credentials

3. Generate requests to query/write/query/periodic with admin

credentials

Expected result Normal users and admins are given access to the web services. Users

without credentials are disallowed to use the web services

Additional comments

Result card

Name/code/test case identifier TEST.X001

Results

No operations are allowed without credentials

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 35 of (44)

Operations are allowed when using normal user or admin credentials

Test outcome OK

Additional comments

3.3.2 Access control test 2

Test card

Name/code/test case identifier TEST.X002

Objectives Test administration web services with different credentials

Devices involved Customer Management Unit (CMU)

Pre-requirements The tool “cURL” is installed in the system

The credentials used for the user and admin tests already exist in the

system

Steps 1. Generate requests using cURL to

createVariable/clearVariable/deleteVariable with no credentials

2. Generate requests to createVariable/clearVariable/deleteVariable

with user credentials

3. Generate requests to createVariable/clearVariable/deleteVariable

with admin credentials

Expected result Only admins are given access to these web services. Users without

credentials or normal users are disallowed to use these web services

Additional comments

e-balance Deliverable D4.4

Page 36 of (44) © e-balance consortium 2015

Result card

Name/code/test case

identifier

TEST.X002

Results

No operations are allowed without credentials or with normal user credentials

Operations are allowed when admin credentials are used

Test outcome OK

Additional comments

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 37 of (44)

3.3.3 Management unit registration in the group management – obtaining the certificate

from the Certification Authority

Test card

Name/code/test case identifier TEST.X003

Objectives Check if the registration process is working correctly. In this test the focus

is on the registration step one – obtaining the certificate from the

certification authority.

Devices involved Customer Management Unit (CMU) – device that wants to register at the

CA.

Certification Authority (CA) server.

Pre-requirements At the CA proper means (credentials) for authorising the generation of the

certificate are configured: user/password or token.

Steps 1. The CMU connects to the CA and provides the CMU information and

credentials.

2. The CA verifies the credentials and generates (and stores) the certificate,

in case the results of the tests were positive.

3. The CMU receives an acknowledgement message and stores the

outcome of the operation (CA certificate, CMU certificate).

Expected result Using the authorized credentials the CMU receives the certificates

Additional comments

Result card

Name/code/test case identifier TEST.X003

e-balance Deliverable D4.4

Page 38 of (44) © e-balance consortium 2015

Results

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 39 of (44)

Test outcome OK

Additional comments

3.3.4 Management unit registration in the group management – registration approach

without proper credentials

 Test card

Name/code/test case identifier TEST.X004

Objectives Check if the registration process is working correctly. In this test the focus

is on the protection against registration approach without proper

credentials.

Devices involved Customer Management Unit (CMU) – device that wants to register at the

CA

Certification Authority (CA) server.

Pre-requirements At the CA proper means (credentials) for authorising the generation of the

certificate are configured: user/password or token.

Steps 1. The CMU connects to the CA and provides the CMU information and

credentials.

2. The CA verifies the credentials and generates (and stores) the certificate,

in case the results of the tests were positive.

3. The CMU receives an acknowledgement message and stores the

outcome of the operation (CA certificate, CMU certificate).

Expected result Using unauthorized credentials causes the operation to fail

Additional comments

Result card

Name/code/test case

identifier

TEST.X004

Results

Test outcome OK

Additional comments

e-balance Deliverable D4.4

Page 40 of (44) © e-balance consortium 2015

3.4 Test with multiple CMUs

3.4.1 Broadcast Query

Test card

Name/code/test case identifier TEST.M001

Objectives Execute a broadcast query that will retrieve information from those child

CMUs that depend on an LVGMU. In this test, the LVGMU has three

children and will retrieve 50 data tuples from each one.

Devices involved LVGMU, Customer Management Unit (CMU)

Pre-requirements The user executing the test has access to the middleware due to the

appropriate credentials. There are three CMUs (children) registered in the

LVGMU. Each CMU contains a variable called

ENERGY_CONSUMPTION which has 50 data tuples.

Steps 1. Call the “QueryFromChildren” API function to get information of

the ENERGY_CONSUMPTION variable from all the CMUs

(children) registered in a LV (caller).

Expected result All three children will return 50 data tuples

Additional comments

Result card

Name/code/test case identifier TEST.M001

Results

Test outcome OK

Additional comments

3.4.2 Remote procedure emulation

Test card

Name/code/test

case identifier

TEST.M002

Objectives Emulate a remote procedure call by means of the e-balance middleware which follows a

data-centric approach.

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 41 of (44)

Two different MUs are involved in this test. The LVGMU will call a remote procedure

located in the CMU. Variables TEST2 and TEST1 act as input and ouput parameters

respectively.

Devices

involved

LVGMU, CMU

Pre-

requirements

The user executing the test has access to the middleware through the appropriate

credentials.

Two MUs (a CMU and a LVGMU) are configured to communicate with each other.

Variables TEST1 and TEST2 already exist.

CMU runs on a BeagleBone Black device

LVGMU runs on a conventional PC

Steps 1. An application hosted in the LVGMU writes different values (from 0 to 999) to a

variable “TEST2” located in the CMU

2. The CMU subscribes to changes in TEST2. When a change is detected, an event

is notified. The application obtains the value from the event, increments the value

by 1 and writes the result to a variable “TEST1” located in the LVGMU.

3. The LVGMU subscribes to changes in TEST1. When a change is detected, an

event is notified. The app obtains the value from the event and prints the result.

Expected result The LVGMU sends values from 0 to 999 and obtains values from 1 to 1000 respectively

The CMU receives values from 0 to 999 and generates values from 1 to 1000 respectively

Additional

comments

The LVGMU sends values with a period of 200ms

Result card

Name/code/test case identifier TEST.M002

e-balance Deliverable D4.4

Page 42 of (44) © e-balance consortium 2015

Results Output from the LVGMU program

Output from the CMU program

All output has been analysed and the results obtained are similar to the

expected ones.

Test outcome OK

Additional comments

Deliverable D4.4 e-balance

© e-balance consortium 2015 Page 43 of (44)

4 Summary and conclusions

This document presents the integration and evaluation tasks for the communication platform designed and

implemented in WP4. It describes the integration process of the different modules developed in WP4,

namely the communication platform, security mechanisms, programming languages wrappers to allow

communication with other programming languages and some external devices such as the GSmart, provided

by EFA which is a device used to control the grid sensors and measurements. A set of tests have been

defined and evaluated, according to a set of tests cards which define the expected behaviour of the system

when a specific input is provided. These tests have been used to check the correctness of the prototype

implementation of the communication platform. They are also useful to validate new changes and future

updates in the system.

e-balance Deliverable D4.4

Page 44 of (44) © e-balance consortium 2015

References

[1] A. Grilo, et al., “Deliverable D4.1 – Detailed network stack specification and implementation”, Public

deliverable of e-balance project, FP7-Smartcities-2013, Project number 609132, 2015.

[2] K. Piotrowski, et al., “Deliverable D4.2 – Detailed security and privacy specification and

implementation”, Public deliverable of e-balance project, FP7-Smartcities-2013, Project number

609132, 2015.

[3] D. Garrido, et al., “Deliverable D4.3 – Detailed middleware specification and implementation”, Public

deliverable of e-balance project, FP7-Smartcities-2013, Project number 609132, 2015.

[4] J.J Peralta, et al., “Deliverable D2.4 – Stakeholder requirements”, Public deliverable of e-balance

project, FP7-Smartcities-2013, Project number 609132, 2014.

[5] M. Gerards, M. Jongerden, et al., “Deliverable D3.1 - High Level System Architecture Specification”,

Public deliverable of e-balance project, FP7-Smartcities-2013, Project number 609132, 2014.

[6] K. Piotrowski, et al., “Deliverable D3.2 – Detailed System Architecture Specification”, Public

deliverable of e-balance project, FP7-Smartcities-2013, Project number 609132, 2015.

[7] ServiceStack framework. https://servicestack.net/

[8] Mono. Cross platform, open source .NET framework. http://www.mono-project.com

[9] Beaglebone Black. http://www.beagleboard.org

[10] Jetty java web server. http://eclipse.org/jetty

[11] AngularJS application framework. http://angularjs.org

[12] M. Geers et al., “Deliverable D6.1 – Specification of the demonstrators”, Public deliverable of e-

balance project, FP7-Smartcities-2013, Project number 609132, 2014.

https://servicestack.net/
http://www.mono-project.com/
http://www.beagleboard.org/
http://eclipse.org/jetty
http://angularjs.org/

