

e-balance

Deliverable D5.5

Integration of the energy management platform

Editor: Marijn Jongerden and Marco Gerards (University of Twente)

Dissemination level:
(Confidentiality)

PU

Suggested readers: Consortium/Experts

Version: 1.0

Total number of pages: 54

Keywords: smart grids, energy management platform, integration

Abstract

This document provides an overview of how the different modules of the e-balance energy management

platform, which have been developed within Work Package 5, are integrated.

The integration of each software module has been evaluated through a set of functional tests. The tests are

described in the form of test cards. The results of the tests are given in the corresponding result cards. The

results show that the different modules perform as expected after integration.

e-balance Deliverable D5.5

Page 2 of (54) © e-balance consortium 2013-2017

Disclaimer

This document contains material, which is the copyright of certain e-balance consortium parties, and may not

be reproduced or copied without permission.

All e-balance consortium parties have agreed to full publication of this document.

The commercial use of any information contained in this document may require a license from the proprietor

of that information.

Neither the e-balance consortium as a whole, nor a certain party of the e-balance consortium warrant that the

information contained in this document is capable of use, or that use of the information is free from risk, and

accept no liability for loss or damage suffered by any person using this information.

The information, documentation and figures available in this deliverable are written by the e-balance partners

under EC co-financing (project number: 609132) and does not necessarily reflect the view of the European

Commission.

Impressum

[Full project title] Balancing energy production and consumption in energy efficient smart neighbourhoods

[Short project title] e-balance

[Number and title of work-package] WP5 Energy Management Platform

[Document title] Integration of the energy management platform
[Editor: Name, company] Marijn Jongerden and Marco Gerards, University of Twente

[Work-package leader: Name, company] Marco Gerards, University of Twente

Copyright notice

 2013-2017 Participants in project e-balance

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 3 of (54)

Executive Summary

This deliverable gives an overview of how the different parts that have been developed within the various

Work Package 5 tasks are integrated in the e-balance energy management platform.

In Work Package 5 we have developed the different software modules for the energy balancing and energy

resilience features, as well as the security and privacy mechanisms, which ensure the proper data access for

these modules. All these modules are integrated in the energy management platforms in order to obtain an

operational system that can be deployed in the demonstrators.

This document provides the description of the interfaces between the different modules. Additionally, the

tests that are performed to check the operation of the modules in the integrated system are listed in the form

of test cards. The results of the tests are listed as well, in the form of corresponding result cards.

In Section 2 we discuss how the energy management platform is built upon the middleware that was

developed in Work package 4. This section also describes how the mechanisms for secure data access of the

energy balancing modules are integrated. In Section 3 the integration of the energy balancing modules is

described. Section 4 describes the integration of the energy resilience modules. In all of these sections the

corresponding tests and test results are listed. The document is concluded in Section 5.

e-balance Deliverable D5.5

Page 4 of (54) © e-balance consortium 2013-2017

List of authors

Company Author

University of Twente Marijn Jongerden

Marco Gerards

James Piggott

University of Malaga Daniel Garrido

Jaime Chen

Eduardo Cañete

IHP Krzysztof Piotrowski

Ievgen Kabin

Peter Langendörfer

EFACEC Filipe Campos

Francisco Basadre

Eduardo Rodrigues

Alberto Rodrigues

Alberto Bernardo

INOV Mário Nunes

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 5 of (54)

Table of Contents

Executive Summary ... 3
List of authors .. 4
Table of Contents .. 5
List of Figures.. 6
Abbreviations .. 7
1 Introduction .. 9
2 Integration of energy management platform with communication platform middleware 10

 Integration of the Java Wrapper and energy management services .. 10 2.1

 Integration of the security and privacy module ... 11 2.2

 Interface description .. 11 2.2.1

 Tests and results ... 12 2.2.2

 Integration of the balancing module with the communication platform middleware 14 2.3

 Create and write to variables ... 14 2.3.1

 Polling variables .. 14 2.3.2

 Subscribe to variable event handlers ... 15 2.3.3

3 Integration of the energy balancing modules ... 17
 Integration of balancing logic with device controller ... 17 3.1

 Interface description .. 17 3.1.1

 Tests and results ... 18 3.1.2

 Integration of balancing logic with the prediction module ... 23 3.2

 Interface description .. 23 3.2.1

 Tests and results ... 24 3.2.2

4 Integration of the grid resilience modules .. 27
 Integration of LV NH Power Flow, DER Power Flows and other components 27 4.1

 LV NH Power flow – Interface .. 27 4.1.1

 LV NH Power flow .. 32 4.1.2

 LV NH Power flow – Tests and results ... 34 4.1.3

 Integration of self-healing FDIR and communication platform .. 37 4.2

 Interface description .. 37 4.2.1

 Electrical network topology ... 38 4.2.2

 Tests and results ... 38 4.2.3

 Integration of VOS, OPF and communication platform ... 41 4.3

 Interface description .. 41 4.3.1

 Underlying Communication .. 42 4.3.2

 Tests and results ... 43 4.3.3

 Integration of LV Grid Resilience Modules .. 47 4.4

 LV Fault Management - LV Fault Prevention - Dynamic Voltage Control 47 4.4.1

 Integration of LV Fraud, LV Quality and LV Fault Management modules 48 4.4.2

5 Conclusions .. 53
References ... 54

e-balance Deliverable D5.5

Page 6 of (54) © e-balance consortium 2013-2017

List of Figures

Figure 1: Position of deliverable D5.5 within the e-balance project. .. 9
Figure 2: Sketch of the Java Wrapper and its placement in the software architecture 10
Figure 3: Energy management platform and communication middleware integration. 11
Figure 4: The security and privacy module within the Java Wrapper instance ... 11
Figure 5: UML diagram of the integration of the balancing logic with FPAI ... 18
Figure 6: Sequence diagram of prediction module interaction .. 24
Figure 7: NH Power Flow components architecture ... 27
Figure 8: LV Network Data – snapshot workflow .. 29
Figure 9: LV Network Data – snapshot data ... 29
Figure 10: Power flow execution using snapshots .. 30
Figure 11: LV Power flow results image ... 31
Figure 12: LVGMU application blocks ... 32
Figure 13: Power Flow C/Java Integration .. 33
Figure 14: Relevant electrical network for FDIR tests .. 38
Figure 15: Component architecture ... 43
Figure 16: Efacec’s “G Smart” extended with Dynamic Voltage Control software on a PC 47
Figure 17: Sequence diagram of the communication between the Voltage Control PC and the G Smart 48
Figure 18: Integration of grid resilience modules in the G Smart ... 49

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 7 of (54)

Abbreviations

AMI Advanced Metering Infrastructure

API Application Programming Interface

CMU Customer Management Unit

COM Common Connector

DA Distributed Automation

DBMS Data Base Management System

DER Distributed Energy Resource

DER-MU Distributed Energy Resource Management Unit

DMU Device Management Unit

DOPF Distributed Optimal Power Flow

DoW Description of work

DSM Demand Side Management

DSO Distribution System Operator

EAN European Article Number

EC European Commission

ES Energy Supplier

ESCO Energy Service Company

FDIR Fault Detection, Isolation and Restoration

FTP File Transfer Protocol

GMU Grid Management Unit

GSS Grid Support Service

GUI Graphical User Interface

GW Gateway

HV High Voltage

ICT Information and Communication Technologies

IEC International Electrotechnical Commission

IED Intelligent Energy Device

IP Internet Protocol

KPI Key Performance Indicator

LAN Local Area Network

LV Low Voltage

LV-FAN Low Voltage Field Area Network

LVGMU Low Voltage Grid Management Unit

MAIFI Momentary Average Interruption Frequency Index

MGCC Microgrid Central Controller

MV Medium Voltage

MV-FAN Medium Voltage Field Area Network

MVFDL Medium Voltage Fault Detection and Location

MVGMU Medium Voltage Grid Management Unit

NC Normally Closed

NO Normally Open

NPF Neighbourhood Power Flow

OPF Optimised Power Flow

PC Personal Computer

PL Power line

PLC Power Line Communications

PS Primary Substation

PV Photovoltaic panel

QoE Quality-of-Experience

QoS Quality of Supply

RES Renewable Energy Sources

RFMesh Radiofrequency Mesh

RTU Remote Terminal Unit

SAIDI System Average Interruption Duration Index

e-balance Deliverable D5.5

Page 8 of (54) © e-balance consortium 2013-2017

SM Smart Meter

SPDT Single-pole Double Throw

SS Secondary Substation

TL-GMU Top Level Grid Management Unit

TSDB Time Series Data Base

TSO Transmission System Operator

UC Use Case

VOS Validation of Optimised Solutions

VPN Virtual Private Network

WLAN Wireless Local Area Network

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 9 of (54)

1 Introduction

In order to get a step closer to the operating demonstrators, the different features that have been developed

within Work package 5 need to be integrated. This document gives an overview of how the different

software modules are integrated, and lists the tests that were performed to check that the modules work as

expected.

Figure 1 shows the position of this deliverable within the e-balance project. This deliverable is part of work

package WP 5 – Energy Management Platform.

Figure 1: Position of deliverable D5.5 within the e-balance project.

Deliverable 5.2 [1] provides the algorithms for energy balancing and the algorithms for predicting the

electricity production and consumption. Deliverable D5.3 [2] provides the algorithms for the various

resilience and self-healing mechanisms. Deliverable D5.4 [3] provides the needed security and privacy

mechanisms. In this deliverable (D5.5) all this work comes together and is integrated in the energy

management platform. As this document describes integration work and results, it does not extend the state-

of-the-art and due to this the beyond-state-of-the-art subsection is not included in his deliverable.

Moreover, as various algorithms make use of the middleware developed in WP4 [4], we decided not only to

integrate modules developed in WP5 but to do first integration steps und tests also with the communication

platform middleware. This goes beyond the originally planned scope of the integration work in WP5 but

reduces effort of the integration of the demonstrators. In more clear words we anticipated part of tasks to be

done in WP6.

The document is structured as follows. In Section 2 the interface to the middleware is described, as well as

the security and privacy mechanism for accessing the data stored in the middleware. Sections 3 and 4, give

an overview of how the different modules are integrated, for the Energy Balancing modules and Grid

Resilience modules, respectively. Sections 2, 3 and 4, all list the various tests that have been performed to

check the integration of the different modules, and show the results of the tests. Finally, the document is

concluded in Section 5 with an outlook towards the integration of the different management units for the

demonstrators.

e-balance Deliverable D5.5

Page 10 of (54) © e-balance consortium 2013-2017

2 Integration of energy management platform with

communication platform middleware

This section describes the integration of the modules responsible for interactions between the communication

platform and the energy management platform. This is an important part of the work done in Task T5.5,

since the energy management platform actually relies on the communication platform that provides the glue

for all the distributed energy management logic located on the different management units. The direct

connection between the management logic and the communication platform middleware is realised using the

Java Wrapper (see Figure 2).

Additionally, as part of the interaction between these two parts of the e-balance system, the security and

privacy module is located within the Java Wrapper. Thus, this section also describes the integration of this

module within the energy management platform.

Java Wrapper

Security and Privacy ModuleJava Wrapper Core
Java

function
calls

Java functional Data Interface

Data Interface

Credentials

Java energy management platform service

C# communication platform middleware

Figure 2: Sketch of the Java Wrapper and its placement in the software architecture

The Java Wrapper is instantiated for each energy management service running in the particular management

unit. Thus, for each service there is also a new instance of the security and privacy module with the

credentials corresponding to the service provider (stakeholder) and the service itself.

 Integration of the Java Wrapper and energy management services 2.1

As described in deliverable D4.3, smart grids systems are complex systems with a heterogeneous set of

devices communicating with each other. Furthermore, all these devices have to communicate within a

hierarchical structure in a secure way and under different roles.

In order to facilitate the development of applications on the top of e-balance system a middleware has been

designed and implemented to provide an abstraction layer that hides the communication related details. This

middleware provides developers a simple way of programming applications for the e-balance system and at

the same time it manages the complex underlying communication network.

Applications run on top of the middleware using the API provided to exchange information. Figure 3

describes the communication architecture that each management unit running the energy management

platform application uses.

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 11 of (54)

Figure 3: Energy management platform and communication middleware integration.

The communication platform middleware offers a simple API based on REST web services. As mentioned

previously, the energy management platform has been implemented in Java. In order to simplify the

communication between instances of the energy management platform running in different management

units, a Java wrapper has been developed. The Java wrapper allows Java applications to use the

communication middleware with functional operations rather than having to use web services. More details

about the Java wrapper and its communication with the communication platform can be found in deliverable

D4.4.

The data in the energy management platform is represented as variables. All the energy management

platform instances manipulate variables either locally or remotely. The following sections summarise the

different variables that the energy management platform instances exchange.

 Integration of the security and privacy module 2.2

 Interface description 2.2.1

The security and privacy module is implemented in Java and is realised as a Class with a given interface,

defining the functions (methods) provided by the Class. These functions allow adding the security and

privacy related aspects to the data access requests issued by the service (signing the request – for

authentication and encrypting the values for confidentiality). This influences the internal structure of the

request and is de facto transparent for the service itself.

The detailed description of the functions provided by the security and privacy module class are defined in

deliverable D5.4 [3]. These functions are used by the Java Wrapper Core from the Java Wrapper instance

created for the specific service (see Figure 4). Each energy management service has its own instance of the

Java Wrapper and, as a result, also its individual instance of the security and privacy module. Thus,

independent from the number of different services running on a management unit, each service has its own

security and privacy module and its own security credentials and context.

Java Wrapper

Security and Privacy ModuleJava Wrapper Core
Java

function
calls

Java functional Data Interface

Data Interface

Credentials

Figure 4: The security and privacy module within the Java Wrapper instance

e-balance Deliverable D5.5

Page 12 of (54) © e-balance consortium 2013-2017

 Tests and results 2.2.2

The following tests were performed using test applications emulating the behaviour of a service – issuing a

data access request (reading and writing a defined variable), as well as using a test application testing the

right content of the request structure to be sent further to the communication platform middleware, according

to the known context (security credentials).

 Testing the signature generation for a data access request issued by a service 2.2.2.1

Test card

Name/code/test case identifier TestSignature

Objectives Test the process of generating the signature for a data access request

Devices involved Management Unit (CMU or LVGMU or MVGMU or TLGMU)

Pre-requirements The keystore file with credentials used for the test service is created prior

the test.

Simple test application that instantiates the Java Wrapper and generates a

test request using the Java Data Interface is available.

Steps 1. Create the service (test application) with its instance of Java

Wrapper.

2. The service issues the test read requests.

3. The request structures that are generated by the Java Wrapper are

verified according to the known context (credentials).

Expected result The request structure is correct and the signature can be positively

verified for the provided certificate by the test application analysing the

request structure.

Additional comments

Result card

Name/code/test case identifier TestSignature

Results

Test positive for a series of 1000 requests for given credentials

(keystores). In total 5 different credentials were used (200 requests per

each).

 Testing the data encryption 2.2.2.2

Test card

Name/code/test case identifier TestEncryption

Objectives Test the data encryption (individual values of the variable) realised using

the Java Wrappers with the security and privacy modules with individual

credentials

Devices involved Management Unit (CMU or LVGMU or MVGMU or TLGMU)

Pre-requirements The keystore with credentials used for the test service is created prior the

test.

Simple test application that instantiates the Java Wrapper, initialises the

data encryption block in the security and privacy module and generates a

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 13 of (54)

test write request using the Java Data Interface is available.

Steps 1. Create the test service application with its instance of Java

Wrappers.

2. The service initialises the data encryption block in the security

and privacy module with known initialization data.

3. The services issue the test write requests.

4. The request structures that are generated by the Java Wrapper are

verified according to the known context (credentials).

Expected result The value written to the variable is correct according to the context (used

initialization data) and can be decrypted by the test application analysing

the request structure.

Result card

Name/code/test case identifier TestEncryption

Results

Test positive for a series of 1000 requests for given credentials

(initialisation data). In total 5 different credentials were used (200

requests per each).

 Testing the instantiation of the integrated secure Java Wrapper 2.2.2.3

Test card

Name/code/test case identifier TestJavaWrapperSecurity

Objectives Test the data instantiation of the individual Java Wrappers with the

security and privacy modules with individual credentials

Devices involved Management Unit (LVGMU or MVGMU or TLGMU)

Pre-requirements The keystores with credentials used for the individual instantiations

(services) are created prior the test and the keystore files are available.

Simple test applications that instantiate the Java Wrapper pointing at the

respective keystores that generate a test request using the Java Data

Interface available.

Steps 1. Create two services (test applications) with their instances of

Java Wrappers.

2. The services issue the test requests.

3. The request structures, which are generated by the Java Wrapper,

are verified according to the known context (credentials).

Expected result Two services are instantiated and the issued requests are correctly signed

and the signatures can be verified by the test application analysing the

request structure.

e-balance Deliverable D5.5

Page 14 of (54) © e-balance consortium 2013-2017

Result card

Name/code/test case identifier TestJavaWrapperSecurity

Results Test positive for a series of 10 requests for the given service credentials

(keystore).

 Integration of the balancing module with the communication 2.3

platform middleware

The communication platform middleware is required to support a number of complex interactions in order

for the balancing logic to be able to carry out a balancing cycle. Three general tests were devised to check

the validity of the Java wrapper (API) and its ability to allow the balancing cycle to communicate with the

middleware.

 Create and write to variables 2.3.1

Test card

Name/code/test case identifier testVariableCreationWrite

Objectives Test if the balancing logic can create and write values to a variable in the

middleware using the asynchronous API

Devices involved CMU

Pre-requirements An instance of the middleware and the CMU-Server is running

Steps Start CMU-Server and middleware

Start balancing module

Balancing module creates new variable in the middleware through the

java wrapper. If callback successful

Write a series of values to the variable in the middleware through the

java wrapper.

Expected result If callback from both types of operations returns then test is successful

Result card

Name/code/test case identifier testVariableCreationWrite 3

Results Test successful.

 Polling variables 2.3.2

Test card

Name/code/test case identifier testRetrieveValues

Objectives Test if the balancing module can retrieve values stored in the

middleware. Test includes retrieving latest values, values corresponding

to time interval or value condition

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 15 of (54)

Devices involved CMU

Pre-requirements An instance of the middleware and the CMU-Server are running

Steps Start CMU-Server and middleware

Start balancing module

Retrieve last value entered into the variable

Retrieve all value between two timestamp dates

Retrieve all values permitted by a condition that evaluates to true

Expected result For each of the three tests the correct values are returned

Additional comments This test makes use the synchronous API as only the local middleware

instance is tested. As such there is no callback from asynchronous

operation

Result card

Name/code/test case identifier testRetrieveValues

Results Test successful.

 Subscribe to variable event handlers 2.3.3

Test card

Name/code/test case identifier testVariableSubscription

Objectives Test if the balancing module can subscribe to a variable in the

middleware. After successful subscription the event handler in the Java

wrapper needs to respond to changes in the middleware and activate

balancing logic.

Devices involved 2 CMUs and 1 CMU-Server

Pre-requirements 2 instances of the middleware and the CMU-Server are running

Steps Start CMU-Server and middleware

Start balancing module

Subscribe to variable and wait for callback

Respond when subscription activates event handler

Expected result Subscribe callback successful and event handler respond to new values

being written to the middleware by another CMU

Additional comments This test can be performed in parallel to testRetrieveValues

Result card

Name/code/test case identifier testVariableSubscription

e-balance Deliverable D5.5

Page 16 of (54) © e-balance consortium 2013-2017

Results Test successful.

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 17 of (54)

3 Integration of the energy balancing modules

This section is based on [5].

 Integration of balancing logic with device controller 3.1

The Flexiblepower Alliance Interface (FPAI) is a common interface for smart appliances. Several drivers

that use this interface have been implemented by the Flexiblepower Alliance Network (FAN) and this

implementation is also called FPAI. It is used as the device controller within e-balance since it is expected to

become a standard in the near future. The FPAI aims to become the common language between Demand

Side Management (DSM) software and appliance drivers. FPAI is an open, Java/OSGi-based platform,

which distinguishes itself by the approach it uses to decouple the DSM application from the appliance

drivers.

Rather than trying to come up with a single common intermediate representation that fits poorly everywhere,

FPAI proposes to introduce four languages. FPAI does not describe specific device classes, such as washing

machines, EVs and microCHPs, yet instead describes classes of flexibility. These flexibility classes fit

conceptually between the DSM view of resources and the perspective of appliance developers. In the sense

of flexibility, washing machines may be class-wise equal to EVs (both have to “run” within a certain time

interval) and microCHPs may be equal to heat pumps (both describe a thermostatic control problem). The

device driver developer chooses the most suitable flexibility, or control space class from the available set.

For every device model, this binding needs to be developed once.

Energy applications using the control space classes should respond to a control space update with an

allocation of the corresponding type. Together, the family of messages that describes the control spaces and

allocations is FPAI’s Energy Flexibility Interface (EFI). The balancing module is an energy application that

implements the FPAI interfaces. The balancing module (see D5.2) makes control decisions for the smart

appliances that are controlled by FPAI.

 Interface description 3.1.1

The balancing logic is split up into a core and a platform-specific adapter. The implementation of the

balancing logic is decoupled from FPAI, and works without FPAI and OSGi (although it does need to be

embedded into some environment). The balancing logic depends only on the Java standard library, and

Google’s Protocol Buffers serialization library. Although there are many similarities between the set of

devices which are supported by energy application platforms, the exact definition of the semantics of devices

varies widely; at this moment, a shared model seems impractical. Consequently, we consider the control

space specific code to be part of the platform adapter. In this way, we should be able to target the port to

other (Java-based) energy application platforms and to multiple versions of FPAI, with limited risk of

interference.

In Figure 5 we present the UML diagram of the balancing logic to FPAI.

e-balance Deliverable D5.5

Page 18 of (54) © e-balance consortium 2013-2017

Aggregator

Client

Client

Aggregator

Observer

Client$Callback

ControlSpace

Adapter

TrianaAggregatorImpl

TrianaAggregator

EfiControllerManager

Comm

Client

CommClient

$IClient

Client

$CommContext

ControlSpaceAdapter

$ITrianaAggregator

Planner

Aggregator

$Callback

TrianaAggregatorImpl

$AggregatorCallback

ProfileSteering

Planner

IDDP

Planner

CommServer

CommServer

Child

Aggregator

$Child

Planner

$IChild

ProfileSteering

Planner$Child

IDDPPlanner

$Child

PlannerChild

Uncontrolled

CSA

Buffer

CSA

TimeShifter

CSA

Unconstrained

CSA

CommServer

$IAggregator

ObjectComm

Server

ObjectComm

Server$Child

CommServer

Child$IChild

Aggregator

$ChildCallback

ObjectComm

Client

FPAI entry point

FPAI binding for

TRIANA

Aggregator

$ParentClient

Callback

ClientCallback

Figure 5: UML diagram of the integration of the balancing logic with FPAI

 Tests and results 3.1.2

Tests were performed to test the integration of the balancing logic with FPAI. With these tests we check

whether the correct FPAI control actions are given according to the optimal planning.

 Testing control of an FPAI buffer device 3.1.2.1

Test card

Name/code/test case identifier testRunMinimum

Objectives Check if the balancing logic can create a planning for an FPAI Buffer

device and can control it. Verify if the buffer reaches the minimum

required on time.

Configure FPAI with an FPAI Buffer device and use the balancing logic

to make a planning. Verify if the planning reaches the minimum time the

device should be on.

Devices involved CMU

Pre-requirements FPAI is configured with a buffer device

Steps 1. The communication with FPAI is set up.

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 19 of (54)

2. The balancing logic creates a planning for this device with

several constraints (e.g., minimum required on time).

3. FPAI is controlled using this planning.

4. The control actions of FPAI are checked for feasibility.

Expected result The FPAI control actions are feasible.

Result card

Name/code/test case identifier testRunMinimum

Results Test successful.

 Testing planning for a FPAI buffer device 3.1.2.2

Test card

Name/code/test case identifier testRunAtLowestCost

Objectives Configure FPAI with an FPAI Buffer device and use the balancing logic

to make a planning. Verify if the planning is optimal.

Check if the balancing logic can create an optimal planning for an FPAI

Buffer device and can control it. Verify if the buffer is used such that the

total costs are minimised.

Devices involved CMU

Pre-requirements FPAI is configured with a buffer device

Steps 1. The communication with FPAI is set up.

2. The balancing logic creates a planning for this device with

several constraints (e.g., minimum required on time).

3. FPAI is controlled using this planning.

4. The control actions of FPAI are checked for optimality.

Expected result The FPAI control actions are optimal.

Additional comments

Result card

Name/code/test case identifier testRunAtLowestCost

Results Test successful.

e-balance Deliverable D5.5

Page 20 of (54) © e-balance consortium 2013-2017

 Testing start costs for FPAI buffer device 3.1.2.3

Test card

Name/code/test case identifier testStartCost

Objectives Configure FPAI with an FPAI Buffer device and use the balancing logic

to make a planning. Verify if the planning takes start-up costs (e.g.,

energy for starting the device) into account, such that longer runs are

preferred above small runs.

Devices involved CMU

Pre-requirements FPAI is configured with a buffer device

Steps 1. The communication with FPAI is set up.

2. The balancing logic creates a planning for this device with

several constraints (e.g., minimum required on time).

3. FPAI is controlled using this planning.

4. The control actions of FPAI are checked for optimality.

Expected result The FPAI control actions are optimal.

Additional comments

Result card

Name/code/test case identifier TestStartCost

Results Test successful

 Testing planning for a FPAI timeshiftable and an increasing cost function 3.1.2.4

Test card

Name/code/test case identifier testPriceInc

Objectives Configure FPAI with a device from the FPAI Timeshiftable class. Make

a planning for an increasing cost function, and verify if the result is

optimal.

Devices involved CMU

Pre-requirements FPAI is configured with a time-shiftable device.

Steps 1. The communication with FPAI is set up.

2. The balancing logic creates a planning for this device with

several constraints (e.g., deadline of the device) and uses a cost

function that has a minimum at the beginning of the planning

horizon.

3. FPAI is controlled using this planning.

4. The control actions of FPAI are checked for optimality.

Expected result The FPAI control actions are optimal for the cost function given in this

test.

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 21 of (54)

Additional comments This test and the tests below use different cost functions to avoid false

positives.

Result card

Name/code/test case identifier TestPriceInc

Results Test successful.

 Testing planning for a FPAI timeshiftable and a decreasing cost function 3.1.2.5

Test card

Name/code/test case identifier testPriceDec

Objectives Configure FPAI with a device from the FPAI Timeshiftable class. Make

a planning for a decreasing cost function, and verify if the result is

optimal.

Devices involved CMU

Pre-requirements FPAI is configured with a time-shiftable device.

Steps 1. The communication with FPAI is set up.

2. The balancing logic creates a planning for this device with

several constraints (e.g., deadline of the device) and uses a cost

function that has a minimum at the end of the planning horizon.

3. FPAI is controlled using this planning.

4. The control actions of FPAI are checked for optimality.

Expected result The FPAI control actions are optimal for the cost function given in this

test.

Additional comments

Result card

Name/code/test case identifier TestPriceDec

Results Test successful.

e-balance Deliverable D5.5

Page 22 of (54) © e-balance consortium 2013-2017

 Testing planning for a FPAI timeshiftable and valley cost function 3.1.2.6

Test card

Name/code/test case identifier testPriceValley

Objectives Configure FPAI with a device from the FPAI Timeshiftable class. Make

a planning for a cost function with the minimum at the middle of the

planning horizon, and verify if the result is optimal.

Devices involved CMU

Pre-requirements FPAI is configured with a time-shiftable device.

Steps 1. The communication with FPAI is set up.

2. The balancing logic creates a planning for this device with

several constraints (e.g., deadline of the device) and uses a cost

function that has a minimum at the middle of the planning

horizon.

3. FPAI is controlled using this planning.

4. The control actions of FPAI are checked for optimality.

Expected result The FPAI control actions are optimal for the cost function given in this

test.

Additional comments

Result card

Name/code/test case identifier testPriceValley

Results Test successful.

 Testing the planning for a FPAI unconstrained device and constant cost function 3.1.2.7

Test card

Name/code/test case identifier testRunContinuously

Objectives Configure FPAI with a device from the FPAI Unconstrained class. Make

a planning for a constant cost, and verify if the result is optimal.

Devices involved CMU

Pre-requirements FPAI is configured with an Unconstrained device.

Steps 1. The communication with FPAI is set up.

2. The balancing logic creates a planning for this device with a

constant cost function.

3. FPAI is controlled using this planning.

Expected result The FPAI control actions are optimal for the cost function given in this

test.

Additional comments

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 23 of (54)

Result card

Name/code/test case identifier testRunContinuously

Results Test successful.

 Testing the planning for a FPAI unconstrained device and an intermittent cost function 3.1.2.8

Test card

Name/code/test case identifier testRunIntermittent

Objectives Test if the balancing logic can plan an FPAI Unconstraint device with a

cost function that toggles between high and low and control it

accordingly.

Devices involved CMU

Pre-requirements FPAI is configured with an Unconstrained device.

Steps 1. The communication with FPAI is set up.

2. The balancing logic creates a planning for this device with a

cost function that toggles between high and low.

3. FPAI is controlled using this planning.

Expected result The FPAI control actions are optimal for the cost function given in this

test.

Additional comments

Result card

Name/code/test case identifier testRunIntermittent

Results Test successful.

 Integration of balancing logic with the prediction module 3.2

The prediction module uses smart meter measurements to predict a power profile for the upcoming 24 hours.

This power profile is used as input by the balancing logic in the CMU to determine where the flexibility

needs to be deployed, and is aggregated by the LVGMU (and other management units) to determine if

problems may occur in the electricity grid.

 Interface description 3.2.1

At household level (CMU) smart meter power measurements are retrieved every 10 seconds via the P1 port.

These values include both controllable and uncontrollable device loads. The information is used by the

prediction module to predict a power profile.

The smart meter information is gathered by the balancing module and stored for a period of 24 hours in a

sliding window array. This array holds 96 floating point values, each corresponding to a 15 minute time

interval. After every 15 minutes the average power consumption is calculated and stored. Every 15 minutes

e-balance Deliverable D5.5

Page 24 of (54) © e-balance consortium 2013-2017

the balancing module sends out this array of 96 values to the prediction module through the Middleware and

requests a forecast for the next 24 hours. The prediction module listens to any changes written to the

Middleware through an event handler and then proceeds to create and return a new forecast. The Middleware

stores this forecast. The balancing module is subscribed to changes in the Middleware through an event

handler and retrieves the values. This forecast is used by the balancing algorithm to adjust the planning

profile.

The integration of the balancing module and the communication through the Middleware with other modules

is shown in the sequence diagram given in Figure 6.

Figure 6: Sequence diagram of prediction module interaction

 Tests and results 3.2.2

The following tests are used to check the integrity of the Prediction Module after integration.

In the first test below the prediction module is tested for the acceptance of 4 days’ worth of simulated

consumption data. For each of the data points a prediction value should be returned

Test card

Name/code/test case identifier testPredictionValueAndVolume

Objectives Tests if the Prediction Module returns 384 double values after 384 values

have been input

Devices involved 1 CMU

Pre-requirements Instance of prediction module is running, test is run independently of all

other modules

Steps Start the prediction module

Select ‘Run JUnits’ when prompted.

JUnits will respond whether tests were run correctly.

Expected result For each of the 384 input doubles corresponding to four days of test data

a double should be returned

Additional comments This test does not check the value of the returned double itself

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 25 of (54)

Result card

Name/code/test case identifier testPredictionValueAndVolume

Results Test successful.

The additional test below checks the systems long-term integrity by having it loop over the 4 days’ worth of

test data until 10,000 predictions have been made. This corresponds to 104 days.

Test card

Name/code/test case identifier testLongTermIntegrity

Objectives This test checks whether the prediction module continues to work over

the long-term. As the neural network continues to learn with every new

input value there is chance an unbalanced system occurs.

Devices involved 1 CMU

Pre-requirements Instance of prediction module is running, test is run independently of all

other modules.

Steps Start the prediction module

Select ‘Run JUnits’ when prompted.

Run the test testPredictionValueAndVolume in a loop until 10.000

predictions have been made

JUnits will respond whether tests were run correctly.

Expected result An array of size 10.000 should be filled with prediction values

Additional comments This test does not check the value of the returned double itself

Result card

Name/code/test case identifier testLongTermIntegrity

Results Test successful.

Test Prediction Module will in practice need to learn from stored historical data and afterwards return a

prediction value when a consumption value is sent. This switchover is a potential integrity problem and is

checked with the following test.

Test card

Name/code/test case identifier testLearningAndPredicting

Objectives This test checks whether the prediction module can learn from stored

historical data stored in a CSV file and return a potentially unlimited

number of prediction value (doubles)

Devices involved 1 CMU

Pre-requirements Instance of prediction module is running, test is run independently of all

e-balance Deliverable D5.5

Page 26 of (54) © e-balance consortium 2013-2017

other modules.

Steps Start the prediction module

Select ‘Run JUnits’ when prompted.

Load historical data from CSV file.

Use this data to make the .nnet learn.

Run the test testPredictionValueAndVolume in a loop until 10,000

predictions have been made

JUnits will respond whether tests were run correctly.

Expected result All historical examples should be used random is used.

An array of size 10,000 should be filled with prediction values

Additional comments This test does not check the value of the returned double itself, only the

integration of the software

Result card

Name/code/test case identifier testLearningAndPredicting

Results Test successful.

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 27 of (54)

4 Integration of the grid resilience modules

This section describes the integration of the grid resilience modules in the existing products.

 Integration of LV NH Power Flow, DER Power Flows and other 4.1

components

 LV NH Power flow – Interface 4.1.1

The Neighbourhood Power Flows (NPF) module creates a characterisation of the LV grid operation state, in

order to provide an overall grid state awareness, aiming at providing data for a GUI that is suitable for

authorised users, toward improving LV grid resilience. To achieve this purpose the NPF module provides a

synchronised snapshot of the LV grid conditions.

The involved architecture components are: LV Grid Management Unit (LVGMU), LV grid Sensors and

Smart Meters – as described in Figure 7.

Household

Secondary
SE

Comms PLC RF

LV Grid

SmartMeter
SmartMeter

SmartMeter

Sensor

LVGMU

G Smart
Application

Server WS

Figure 7: NH Power Flow components architecture

The LVGMU interfaces with the field interface module that is responsible for acquiring real-time or near

real-time data at the field level.

The Smart Meters are geographically distributed along the feeder of the secondary substation, being

deployed in a geographic neighbourhood. The communication between the Smart Meters and the secondary

substation gateways are via various means of communication, like Radio Frequency (RF) or Power Line

Carrier (PLC), among other communication means.

State of art Smart Meters are equipment with advanced measure capability, being capable of acquiring

voltage, current, power, power factor and energy measures. Based on these measures, built-in implemented

algorithms populate more complex data structures, like load diagrams, voltage diagrams, instantaneous

values, events or daily energy closing reports. A load or voltage diagram is a mechanism that some Smart

e-balance Deliverable D5.5

Page 28 of (54) © e-balance consortium 2013-2017

Meters have included in their firmware, where measurement (energy, voltage) data can be stored cyclically

(e.g. every 15 min, 30 min or 60 min). The data is stored in a non-volatile memory data device, like a

FLASH RAM. The storage capability depends of the non-volatile memory size, capture cycle and number of

measured channels to capture.

The LV grid Sensors spread through the LV grid can detect current alarms and transmit information data to

the G Smart (communication module), which can trigger an alarm or action.

The integration between the G Smart and the Smart Meters uses the standardised Device Language Message

Specification (DLMS) protocol. The integration between the G Smart and the application server uses

WebServices. The G Smart receives data from the Smart Meters and transforms that data into another format

according to Simple Object Access Protocol (SOAP)/eXtensible Markup Language (XML).

The application server WebServices (WS) has the capability to handle the following information data:

 Instantaneous values: measured values at the request time (Voltage, Current, Energy);

 Voltage or load diagrams: array of measures between a time internal (Voltage, Energy produced,

Energy consumed).

The NPF on the LVGMU implements an Unbalanced Power Flow (UPF) algorithm, which consists of a

generalised approach based on an efficient and robust three-phase branch-oriented backward-forward

procedure.

The algorithm is able to deal with 4-wire unbalanced LV systems and needs time synchronised data, in order

to compute results with precision. This means that the power flow cannot be executed with non-synchronised

input data.

Real-time data from Smart Meters collection by the G Smart (by performing a poll over all Smart Meters) is

infeasible. It is worth mentioning that the used communications, namely PLC, does not provide enough

bandwidth so that synchronised time precision data could be assured for polling a large set of Smart Meters.

Therefore, the used mechanism to gather data from Smart Meters is load diagrams or voltage diagrams. A

load or voltage diagram comprises a specific time series of sampled data obtained or calculated by the Smart

Meter, at precise intervals.

The Efacec LVGMU implements a unique algorithm that is a “LV Network Data Snapshot“, where the input

is the target time and the output is a data snapshot for all the Smart Meters of the LV network.

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 29 of (54)

LVGMU

Application Server userG SmartSmartMeter 1

SmartMeter n

Webservice : Load Diagram Data

Figure 8: LV Network Data – snapshot workflow

This mechanism implemented on the LVGMU provides a snapshot with a resolution depending of the Smart

Meter period cycle. For a Smart Meter configuration sample of 15 minutes, 4 synchronised snapshots per

hour will be available, which can be requested anytime, as long as the necessary data remain stored on the

Smart Meter. This feature represents an added advantage, related with the necessity of spending

communication bandwidth only when the snapshots are requested. Figure 8 depicts the load/voltage diagram

polling requests over all Smart Meters, which allow G Smart to gather all synchronised data.

A snapshot created on the LVGMU can be stored and persist for future query. These snapshots can be used

just for data visualisation on a diagram or geo-referenced map, as shown in Figure 9.

Figure 9: LV Network Data – snapshot data

e-balance Deliverable D5.5

Page 30 of (54) © e-balance consortium 2013-2017

Once a data snapshot is performed, as a result of received and gathered data from the Smart Meters, it can be

used for enabling LV grid power flow calculations. Yet, to execute a power flow the network electric model

is also necessary. The electric model describes the network configuration, at that time, identifying with detail

the major components. The components capable of being configured to the power flow are:

 Secondary substation: used to specify the secondary substation considered as starting point of the

electrical network;

 Transformer: used to specify a transformer in the electrical network;

 Bus-bar: used to specify a bus-bar in the electrical network;

 Node: used to specify a node in the electrical network;

 Line: used to specify a line in the electrical network, including its catalogue characteristics;

 Distribution cabinet: used to specify a distribution cabinet in the electrical network;

 Generator: used to specify a generator in the electrical network;

 Capacitor: used to specify a capacitor bank in the electrical network;

 Load: used to specify a load in the electrical network;

 Storage: used to specify an energy storage device in the electrical network;

 Switch: used to specify a circuit switch in the electrical network;

 Smart Meter: used to allocate Smart Meter equipment to a node/bus-bar/transformer

/load/storage/capacitor.

The persisted snapshot data and model are the inputs to the power flow algorithm, which will be executed at

the user’s request or, alternatively, it can be requested by an external event trigger.

The outcome of the power flow is kept in persistent memory and can be queried for post analysis, upon user

request, as described in Figure 10.

Snapshot data n

Power flow

Snapshot data 2

Snapshot data 1
P,Q,U

Snapshot model n

Snapshot model 2

Snapshot model 1 Eletric model

Power flow
Results

Figure 10: Power flow execution using snapshots

The output results can be visualised on the LVGMU as a data table, which can be exported to PDF format,

but it also can be visualised in an electric diagram, as shown in Figure 11.

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 31 of (54)

Figure 11: LV Power flow results image

The outcome results of the power flow are:

 Power flows calculation success status;

 Totals / transformer:

o total active power (P) generation;

o total reactive power (Q) generation;

o total P consumption;

o total Q consumption;

o total P losses per-phase;

o total Q losses per-phase;

o maximum and minimum voltage magnitude values on phases R / S / T;

 Values on nodes / bus-bars:

o voltage;

 Line results:

o rating;

o current:

o P and Q losses;

o voltage;

e-balance Deliverable D5.5

Page 32 of (54) © e-balance consortium 2013-2017

 LV NH Power flow 4.1.2

The integration between the Application server and G Smart is done using WebServices, on a Hypertext

Transfer Protocol (HTTP) using a client/server approach and FTP.

The building blocks of the LVGMU, as demonstrated in Figure 12, are composed by the following blocks:

 DataBase Management System (DBMS): is the relational database for data model persistence;

 Time Series DataBase (TSDB): is the time series database, where all the received field data is stored

in persistent memory;

 APP: is the business logic layer, where all the logic is implemented;

 FTP: is the FTP server to receive the data reports from the G Smart;

 Webserver: HTTP web server that will implement services and the GUI;

 WebService (WS) Client: Client WebServices to connect to the G Smart web server.

LVGMU Application
 Server

House
Level

LV Level G Smart

FTP Webserver WS Client

App

DBMSTSDB

data

Configuration

SmartMeter

Data Layer

Logic Layer

Interface Layer

Figure 12: LVGMU application blocks

The DBMS module is the data store for the main configuration data, like the network model, and is also

important for logging the system activity. The configuration data will have items such as:

 asset configuration;

 network connectivity configuration;

 relations between network topology elements;

 user activity audit log

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 33 of (54)

The TSDB is the data store for time series data. The data points that are stored have origin on Smart Meters’

load diagrams.

The APP block is the business logic implemented in the application server. An application server is a

software framework that provides services and Application Programming Interface (API), in order to

implement business logic. In this case, the business logic is implemented using the J2E API. The

implemented business logic has the following services:

 Database access with persistency API;

 Database cache system;

 Internet Protocol version 4 (IPv4) high performance data memory cache;

 Application logic interface for web services;

 Application logic to compute the snapshot;

 Application logic to compute the power flow;

The power flow logic is implemented in C language and the APP block is developed in Java language, so it

was necessary to bind the C language to Java, using the JNA (Java Native Access). Figure 13 depicts such

integration.

Linux

JAVA

App

Powerflow LIB

JNA

Powerflow Shared Lib

Figure 13: Power Flow C/Java Integration

The FTP block is a common FTP server. In this case, the FTP server if used on Linux OS and it will be used

to receive XML reports from the G Smart. When the LVGMU requests data from the G Smart – the request

can be asynchronous – the response will be sent to the FTP server repository.

The webserver block has two types of interfaces: GUI and interfaces to other components. For the GUI, the

webserver implements the JSF web specification in order to implement and deliver the GUI web pages to the

LV grid operator.

The webserver implements technical interfaces for:

 SOAP WebServices (WS): this technology is used to implement the interface between the core logic

and the G Smart equipment. It implements an API to:

o Report status;

o Receive report.

The WS clients are the frameworks that provide data access to the G Smart webserver. For the G Smart, it

implements the API to request a load diagram from a Smart Meter.

e-balance Deliverable D5.5

Page 34 of (54) © e-balance consortium 2013-2017

 LV NH Power flow – Tests and results 4.1.3

The following tests were performed with the LV power flow on the LVGMU. The tests were executed with

LV network schematic designed only for test purpose.

 Testing the LV network import 4.1.3.1

Test card

Name/code/test case identifier ImportLVSchema

Objectives Import a LV network schema for a LV test network

Devices involved LVGMU

Pre-requirements Have a network schema

Steps On LVGMU:

 Go to Energy -> Powerflow

 Click on Import data, and import the schema

Expected result Result on screen shall be success

Additional comments -

Result card

Name/code/test case identifier ImportLVSchema

Results Successful import of a network with : 8 Smart Meters, 14 nodes, 14 bus-

bar, 2 transformers, 1x feeder, 11 lines, 17 loads, 8 generators, 1 energy

storage

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 35 of (54)

 Testing the LV network Snapshot creation 4.1.3.2

Test card

Name/code/test case identifier CreateLVSnapshot

Objectives To create a snapshot of the LV network, for the model and data

Devices involved LVGMU, G Smart

Pre-requirements LVGMU shall have the Secondary substations configured, the LV

network imported and an established connection to a G Smart

Steps On LVGMU:

 Go to Energy -> Powerflow -> Secondary Sub. list

 Choose the secondary substation, choose create snapshot and

choose the snapshot time.

Expected result Result on screen shall be success.

Additional comments -

Result card

Name/code/test case identifier CreateLVSnapshot

Results Success

 Testing the LV network Snapshot visualisation 4.1.3.3

Test card

Name/code/test case identifier VisualiseSnapshot

Objectives After a snapshot was created the data can be visualised on LVGMU

Devices involved LVGMU

Pre-requirements A snapshot shall be created with success

Steps On LVGMU:

 Go to Energy -> Powerflow -> Network snapshot

 Choose a snapshot and click start. When the execution state

shows it has finished, click on telemetry data

Expected result Result on screen shall be success.

Additional comments -

Result card

Name/code/test case identifier VisualiseSnapshot

Results Success

e-balance Deliverable D5.5

Page 36 of (54) © e-balance consortium 2013-2017

 Testing the LV network Power flow creation and visualisation 4.1.3.4

Test card

Name/code/test case identifier Snapshot4PowerFlow

Objectives After a snapshot was created the snapshot can be the input for the power

flow.

Devices involved LVGMU

Pre-requirements A snapshot shall be created with success

Steps On LVGMU:

 Go to Energy -> Powerflow -> Network snapshot

 Choose a snapshot and click power flow.

Expected result Result on screen shall be success.

The power flow visualization shall have data for the power flow results

in table format and in schematic format.

The power flow shall converge.

Additional comments -

Result card

Name/code/test case identifier Snapshot4PowerFlow

Results Success the power flow did converge.

Image of a snapshot result in table format:

Image of a snapshot result in schematic format:

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 37 of (54)

 Integration of self-healing FDIR and communication platform 4.2

When a fault occurs in an MV feeder, an overcurrent protection commands the substation circuit breaker

disconnecting the feeder in order to isolate the faulted area. Automatic reclosing functions at the substation

are then triggered in order to eliminate temporary faults.

If the fault subsists after the reclosing cycle then the Fault Detection, Isolation and Restoration (FDIR)

function should run in order to locate the fault, isolate the minimum area that encloses the fault, and then

restore service to clients that are outside the isolated area.

This section describes the integration tests between Medium Voltage Grid Management (MVGMU) and Top

Level Grid Management Unit (TLGMU) within the scope of FDIR functionality.

 Interface description 4.2.1

The FDIR function is triggered at the end of the reclosing cycle, and runs only if the tripped feeder breaker

remains open.

This function uses information coming from fault detectors deployed along the network, supplied to

MVGMU as telemetered data points. FDIR joins this information with the knowledge of the network

topology in order to locate the fault. Then FDIR executes commands to open tele-controlled switches that

will isolate the fault.

The upstream service restoration, accomplished by simply closing the tripped breaker, is always a safe

operation since it is assumed that the load to be restored upstream the fault is smaller than the load that has

been cut by the breaker trip.

Downstream restoration is a more complex operation as requires the estimation of the load downstream the

fault and the knowledge of the availability of backup lines and transformers to supply energy to clients in

that area. The relevant data, like active power (P) and reactive power (Q) at backup transformers, is delivered

to the MVGMU as telemetered data points. This information, together with the network data model

knowledge, let the MVGMU validate alternative configurations to supply energy to clients downstream the

fault, by running a DOPF algorithm. Once the final network configuration is computed, MVGMU commands

available tele-controlled switches in order to reconfigure the network.

After running the FDIR algorithm and reconfiguring the network, the MVGMU exports information about

the performed actions to the TLGMU, in order to let Dispatch operators know that the fault has been

e-balance Deliverable D5.5

Page 38 of (54) © e-balance consortium 2013-2017

automatically handled. This interface to the TLGMU supports the following features at the operator’s

workstation:

 In the alarm list, the alarm for a breaker trip event that has been handled by FDIR function at

MVGMU shows a “FDIR” icon. This informs the operator that the fault that caused the breaker trip

has been automatically located and isolated by the MVGMU and that the service has already been

restored to clients outside the isolated area;

 From the “FDIR” icon in the alarm list, the operator is able to consult the actions that have

automatically been performed by the FDIR function running at the MVGMU. This includes the

switching order corresponding to the network reconfiguration and the identification of fault locators

that became active after the fault.

 Electrical network topology 4.2.2

The tests are performed on the ‘Batalha’ feeder of the ‘S. Jorge’ HV/MV Substation.

The network topology relevant for the tests is presented in Figure 14. In this figure the Normally Open

switches are represented as red squares while Normally Closed switches are represented as green squares.

All represented switches are tele-controlled and have fault detectors.

Figure 14: Relevant electrical network for FDIR tests

The system was modelled according to the electrical characteristics of the equipment existing in these

substations and feeders. Here is present the most relevant modelled data:

 Transformers Load Capacity:

o S. Jorge: TP1 = 40 MVA, TP2 = 40 MVA;

o Azóia: TP = 20 MVA,

 Tests and results 4.2.3

The tests are performed running scripts which simulate changes in telemetered data points.

Ocra

Feeder

Breaker

Ocr1

Ocrb

Ocr2
Batalha

S. Jorge

Ocrc

22160 Ocr3 520

0008

Azóia

S. Antão

Ocrd

266

286 Ocr4 Ocr5

S. Mamede

Feeder

Breaker

686

Feeder Breaker

TP

TP1

TP2

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 39 of (54)

Test card

Name/code/test case identifier OutOfService

Objectives Verify that when the FDIR function is Out Of Service, no action is

automatically performed by MVGMU after a breaker trip

Devices involved MVGMU, TLGMU

Pre-requirements Operator logged in at TLGMU workstation

FDIR function initially out of service

Steps 1 - Open the “S. Jorge Automatisms” and the network schematic

diagrams.

2 - Run a telemetry script which simulates (by this order)

1 - Begin of Batalha feeder breaker reclosing cycle

2 - Batalha breaker trip

3 - (close breaker / open breaker – recloser automatism)

4 - Active fault indicators: Ocra, Ocr1

5 - End of Batalha feeder breaker reclosing cycle

Expected result - The FDIR status indication shows “Out of Service”

- No FDIR icon is shown next to the alarm relative to the Batalha feeder

breaker trip

- No network reconfiguration took place after the breaker trip

Additional comments

Result card

Name/code/test case identifier OutOfService

Results Test successful.

Test card

Name/code/test case identifier In/OutOfServiceControl

Objectives Verify that from a TLGMU workstation it is possible to control whether

the FDIR function of MVGMU is in or out of service

Devices involved MVGMU, TLGMU

Pre-requirements Operator logged in at a TLGMU workstation

FDIR function initially out of service

Steps 1 - Open the “S. Jorge automatisms” synoptic and identify the FDIR

“Out of Service” status indication.

2 – Click with mouse right button on the status indication, choose the “In

service” option and execute the action from the displayed command

window.

Expected result The MVGMU’s FDIR status indication shows “In Service”

Steps Click with right button on the status indication, choose the “Out of

service” option and execute the action from the displayed command

window.

Expected result The FDIR status indication shows “Out of Service”

Additional comments

e-balance Deliverable D5.5

Page 40 of (54) © e-balance consortium 2013-2017

Result card

Name/code/test case identifier In/OutOfServiceControl

Results Test successful.

Test card

Name/code/test case identifier Fault-Ocr1-Ocr2

Objectives Verify correct fault location, isolation and restoration when a fault

occurs in a line segment between Ocr1 and Ocr2 switches

Devices involved MVGMU

Pre-requirements FDIR function In Service

All feeder breakers closed. All switches in normal position.

Feeders Load (telemetry data simulation):

S.Jorge TP1: 11.9 MW, 3.6 MVar,

S.Jorge TP2: 9.8 MW, 3.5 MVar

Azóia TP: 6.1 MW, 3.9 MVar

Batalha: 3.0 MW, 0.8 MVar, 56.5 A

S.Mamede: 5.2 MW, 1.4 MVar, 92.5 A

S.Antão: 2.8 MW, 0.9 MVar, 53.5 A

Steps Run a telemetry script which simulates (by this order)

1 - Begin of Batalha feeder breaker reclosing cycle

2 - Batalha breaker trip

3 - (close breaker / open breaker – recloser automatism)

4 - Active fault indicators: Ocra, Ocr1

5 - End of Batalha feeder breaker reclosing cycle

Expected result The following switching actions have been automatically performed on

the network:

1 – Open Ocr1, Open Ocr2, Open Ocrb (fault isolation)

2 – Close Batalha feeder breaker (upstream restoration)

3 – Close 668 (downstream restoration)

The network configuration should be as follows:

- Ocra-Ocr1 fed by S.Jorge TP1 through Batalha feeder

- Ocr2 to 686 fed by S.Jorge TP2 through S.Mamede feeder

- Ocr1-Ocrb-Ocr2 isolated

Additional comments

Result card

Name/code/test case identifier Fault-Ocr1-Ocr2

Results Test successful.

Test card

Name/code/test case identifier SwitchingOrder

Objectives Verify that the details of the actions automatically performed at

MVGMU can be consulted by an operator at a TLGMU workstation.

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 41 of (54)

Devices involved MVGMU, TLGMU

Pre-requirements Run test scenario Fault-Ocr1-Ocr2

Steps In the alarm list of TLGMU workstation verify that the Batalha breaker

trip alarm has an “FDIR” icon.

Press the mouse right button on this icon and choose the “View

switching order”

Expected result A window is displayed showing the following information:

- Identification of the feeder breaker that tripped

- Trip time

- Switching order showing the actions automatically executed by

MVGMU:

o RESET fault indicators for Ocra and Ocr1 switches

o Network reconfiguration actions:

 Open Ocr1, Open Ocr2, Open Ocrb (fault isolation)

 Close Batalha feeder breaker (upstream restoration)

 Close 668 (downstream restoration)

Each switching order line shows the date when the corresponding action

was automatically executed by MVGMU.

Additional comments

Result card

Name/code/test case identifier SwitchingOrder

Results Test successful.

 Integration of VOS, OPF and communication platform 4.3

 Interface description 4.3.1

The Optimized Power Flow (OPF) module’s main objective is to determine the optimal MV grid topology,

which minimises the grid active power losses and consequently it’s operating costs. The primary task is to

find a set of system states, including switch state, within a region defined by the operating constraints such as

voltage limits and branch flow limits. The secondary task is to optimise a cost function within this region.

Typically, in OPF, the dispatch of active power is considered constant, which means that the power input

from the transmission grid and the distributed power generation, are considered constant. The results

obtained by this module must comply with operational constraints such as equipment operating limits,

system security limits and radial operation of the grid.

Four modes of operation defined for the OPF module can be selected by the distribution system operator in

the configurations parameters application, namely:

 Mode 1 ─ Reconfiguration mode that searches for the optimal grid configuration. In this mode, the

OPF module will consider the available switches in order to determine the optimal grid topology.

 Mode 2 ─ Power flow optimization mode, which determines the optimal state variables without

considering the reconfiguration of the distribution grid (i.e. switches are not considered controllable

variables). In this case, the OPF will provide the optimal states for transformers and capacitor banks

taps and the coordination with DER units in order to ensure that the MV grid voltages are within

limits.

 Mode 3 ─ Runs both reconfiguration and power flow optimization. This mode combines the

optimization objectives of Mode 1 and Mode 2.

e-balance Deliverable D5.5

Page 42 of (54) © e-balance consortium 2013-2017

 Mode 4 ─ Restoration mode, where the OPF will find alternative grid configurations which

minimise the power not supplied after fault isolation.

Depending on the OPF mode of operation, the grid configuration will be optimised considering an objective

function, which is a definition of how the solution state is to be evaluated and includes a mean of penalizing

small changes of controls, in order to avoid unnecessary changes. Two different objective functions can be

selected:

 Minimise the sum of active power losses (total or specifically for a given MV grid).

 Minimise the sum of active power not supplied. This objective function is selected in Mode 4.

Within the scope of this section, the integration tests are focused mainly on OPF and Validation of

Optimised Solutions (VOS) functions concerning the minimisation of active power losses and user

interaction. The minimisation of power not supplied is also covered in section 4.2.

The main objective of the Validation of Optimised Solutions (VOS) application is to determine a

reconfiguration procedure according to the optimal reconfiguration scheme determined by the OPF module.

OPF only determines the actions that must be made to improve the actual configuration and not necessarily

the correct order of doing it. Therefore, the VOS module is responsible for determining an automated

reconfiguration sequence, ensuring the operational safety of the distribution grid during the sequence steps.

From the user perspective, OPF calls the VOS module transparently.

The solution found by the algorithm is presented in a tabular form in results application. It is possible to

navigate from this tabular to others application like browser and diagrams with the tool “Go To Equipment”.

 Underlying Communication 4.3.2

The system uses the communication platform (CP) on top of relevant communication protocols (see Figure

15).

The CP offers a publish / subscribe paradigm to link software components, hiding the individual connections

between applications from the components, transforming the logical design of the system. The following

diagram gives an idea of how this changes the design process, each component being designed as a consumer

or provider of bus based services.

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 43 of (54)

Figure 15: Component architecture

The information is exchanged between components in the form of events, these events being defined in the

system.

The events are published by one component to inform any subscribing component of the changes originating

in or processed by the publishing component. This allows the subscribing component to update itself.

However, this does not provide a synchronised ‘initial state’ where the subscriber can start from. A

DataRequest is, as the name implies, a request for data and thus a DataRequest naturally is made by a

subscriber and processed by a publisher. A DataRequest can be viewed as a data service.

The subscribing component may make a DataRequest for two reasons:

 to collect the actual information for a limited set of objects without trying to maintain a model

covering all possible objects, for example a tabular interface showing objects following a user

defined filter

 to synchronise a complete model to enable the subscribing component to perform its function well

synchronised with the rest of the system

 Tests and results 4.3.3

Integration testing was supported by a simplified network configuration scheme created specifically for this

objective.

Test card

Name/code/test case identifier Restoration

Objectives Obtain a list of controls that minimise the power not supplied after fault

isolation.

Devices involved TLGMU

Pre-requirements Operator logged in at TLGMU workstation

Component Architecture

Node A Node B

COMPONENTS

Communication Platform

 Data interface

e-balance Deliverable D5.5

Page 44 of (54) © e-balance consortium 2013-2017

Steps 1 - Open the configuration´s power application

2 - Run a “Restoration” considering the equipment fault “Line 1” of

network test.

Expected result - The table of results shows a sequence of controls that allow performing

the minimisation of the power not supplied after fault isolation.

Additional comments

Result card

Name/code/test case identifier Restoration

Results Test successful.

Test card

Name/code/test case identifier Power flow optimization mode

Objectives Obtain a list of optimal states for transformers and capacitor banks taps

Devices involved TLGMU

Pre-requirements Operator logged in at a TLGMU workstation

Steps 1 - Open the configuration´s power application.

2 – Choose the options:

o Minimise the sum of active power losses

o Control transformers and capacitor bank taps

Expected result - The table of results shows the list of controls that allow achieving the

optimal states for transformer and capacitors bank taps.

Additional comments

Result card

Name/code/test case identifier Power flow optimization mode

Results Test successful.

Test card

Name/code/test case identifier Reconfiguration

Objectives Obtain a list of controls that determine the optimal grid topology.

Devices involved TLGMU

Pre-requirements Operator logged in at a TLGMU workstation

Steps 1 - Open the configuration´s power application.

2 – Choose the option “Reconfiguration”

o minimise the sum of active power losses

o control only switches.

Expected result - The table of results shows the sequence of switching actions allowing

to move safely to the new optimised grid topology

Additional comments

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 45 of (54)

Result card

Name/code/test case identifier Reconfiguration

Results Test successful.

Test card

Name/code/test case identifier Navigation

Objectives Navigate between windows

Devices involved TLGMU

Pre-requirements Operator logged in at a TLGMU workstation

Steps 1 - Open the results table.

2 – Select the tool “Navigate to equipment”

3 – Choose the equipment in the results table.

4 - Press the mouse right button on this equipment and choose the

“Apply Equipment”

5 – Go to the diagram, press the mouse right button and choose “Apply

Application.”

Expected result - The chosen equipment is selected in the diagram.

Additional comments

Result card

Name/code/test case identifier Navigation

Results Test successful.

Test card

Name/code/test case identifier Highlight

Objectives Find in the results tabular the equipment

Devices involved TLGMU

Pre-requirements Operator logged in at a TLGMU workstation

Steps 1 – In the diagram choose the equipment.

2 – Select the tool “Highlight” and choose the desired colour.

3 - Press the mouse right button on this equipment and choose the

“Apply Highlight” option.

5 – Go to the table results and check that the line corresponding to the

same equipment is highlighted in the same colour (first column

background colour).

Expected result - The line corresponding to the same equipment is highlighted in the

same colour (first column background colour).

Additional comments

e-balance Deliverable D5.5

Page 46 of (54) © e-balance consortium 2013-2017

Result card

Name/code/test case identifier Highlight

Results Test successful.

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 47 of (54)

 Integration of LV Grid Resilience Modules 4.4

 LV Fault Management - LV Fault Prevention - Dynamic Voltage Control 4.4.1

 Interface description 4.4.1.1

A dynamic voltage control algorithm, for Low Voltage (LV) power distribution grids to which various micro

and mini producers are connected – designated in the literature as Distributed Generators (DG) – was

previously described in D5.3.

The objective of the algorithm is to maximise the DG production, but it may also enforce fairness among DG

producers, taking into account the contract limitations with power grid operators or regulators and while

keeping voltage levels within the standard operational limits in all coupling points of the power grid.

This algorithm will be implemented in an external PC, conceptually seen as an extension of the Efacec’s

implementation of the LVGMU (G Smart), as described in section 5.1.2 of D6.1, and shown with adaptations

in Figure 16.

G-SMART

A
PI

Control PC

Dynamic Voltage

Control software

EB
A

LA
N

C
E A

PI

IP

Web
Services

Figure 16: Efacec’s “G Smart” extended with Dynamic Voltage Control software on a PC

The following WebServices are defined in the interface between the Control PC and the G Smart:

 Request data values from meters (S01):

This service contains as parameters one or more meter IDs and returns the Voltage, Current

and Power Factor measured by the meters who’s IDs were included in the request.

 Send set points to Inverter (B35):

This service contains as parameters one or more inverter IDs and the correspondent set

points to change the power produced by each one of the identified Inverters.

 Read produced power from Inverter (S35):

This service contains as parameters one or more inverter IDs and obtains as response the

power currently produced by each one of the identified Inverters.

An example of the utilization of WebServices in the integration of the Dynamic Voltage Control (DVC)

module with the G Smart is shown in the sequence diagram of Figure 17.

e-balance Deliverable D5.5

Page 48 of (54) © e-balance consortium 2013-2017

G-SMARTDynamic Voltage

Control PC

Web
Services

S01(SM1, SM2)

(V1,I1,PF1, V2,I2;PF2)

Inverters
DG1, DG2

Smart Meters
SM1,SM2

B35(DG1,P1, DG2, P2)

S35(DG1, DG2)

(DG1,Px, DG2,Py)

Figure 17: Sequence diagram of the communication between the Voltage Control PC and the G Smart

In the first message (S01) the Control PC asks the Smart Meters connected at each output of the Distributed

Generators DG1 and DG2 the respective Voltage, Current and Power Factor values.

Based on the values read from the Smart Meters the Control PC calculates the power generated at each DG

and decides the set point values which should be sent in order to evaluate how the electrical network will

behave. This is done using the service B35, with set points P1 and P2 respectively for DG1 and DG2.

To check if the set point commands were correctly received by the DGs, the service S35 can be used, as

shown in Figure 17.

This sequence of messages is repeated until the Control PC obtains all the information needed, as described

in the Dynamic Voltage algorithm in D5.3.

 Tests and results 4.4.1.2

The first set of tests was performed to assess the correct communication between the Control PC and the G

Smart WebServices. All services are working well.

The next sequence of tests was performed to test the response of the inverters to the set points received.

These tests showed a slight difference between the values sent and returned, requiring a calibration of the

measurements.

 Integration of LV Fraud, LV Quality and LV Fault Management modules 4.4.2

The LV Fraud, LV Quality and LV Fault Management modules were developed and integrated in the G

Smart software, as shown in Figure 18.

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 49 of (54)

Figure 18: Integration of grid resilience modules in the G Smart

 Interface description 4.4.2.1

The G Smart grid resilience modules have as inputs data from the LV Sensors and Smart Meters, which are

spread through the LV Network. The used protocol for the communication between those LV devices

(sensors or Smart Meters) and the G Smart is the DLMS/COSEM over GPRS, PLC or RF Mesh as the

physical media.

Internally the G Smart uses a real time data and an event bus as means for the internal application software

modules. Through this bus it is possible to receive or transmit data or events between all internal modules.

The G Smart internal bus abstracts all protocol communication details, such as: DLMS/COSEM, NTP,

WebServices or others that can be used. A WebServices interface over TCP/IP is also available for data read

or write and on event processing.

The grid resilience modules need the following input data from the LV Devices (sensors and Smart Meters):

Inputs Description
Current Inst. L1 Current instantaneous value in the phase L1

Voltage Inst. L1 Voltage instantaneous value in the phase L1

Active Power Inst. L1 Active power instantaneous value in the phase L1

Current Inst. L2 Current instantaneous value in the phase L2

Voltage Inst. L2 Voltage instantaneous value in the phase L2

Active Power Inst. L2 Active power instantaneous value in the phase L2

Current Inst. L3 Current instantaneous value in the phase L3

Voltage Inst. L3 Voltage instantaneous value in the phase L3

Active Power Inst. L3 Active power instantaneous value in the phase L3

e-balance Deliverable D5.5

Page 50 of (54) © e-balance consortium 2013-2017

Capture Time Capture time of the last current streetlight average value

Current Streetlight Last current streetlight average value

Voltage Streetlight Last voltage streetlight average value

Clock Clock
Load Profile Load Profile
Billing Profile Daily Billing

QoS data Smart Meters quality of service data

The module outputs are written in the internal Real Time Database and are available for WebServices and

local GUI, which may represent local or remote clients. The output data is:

Outputs Description
Alarms Alarms from the grid resilience modules

QoS data QoS data and reports

LV Measures LV Measurements of grid variables – e.g. voltage, current, etc.

Setpoint controls Setpoint controls from voltage control algorithm

 Tests and results 4.4.2.2

Test card

Name/code/test case identifier MeasurementRequest

Objectives Test measurements requests

Devices involved LVGMU

Pre-requirements Configure one LV sensor and one Smart Meter;

Configure grid resilience modules to poll sensors and Smart Meters

measurements every minute.

Steps Open the device debug console to monitor the communication trace;

Change the acquired measured values in the Smart Meter and Sensors.

Expected result In the communication trace, the measurements are correctly requested

and processed;

In the real time database, the measurements are updated;

In the grid resilience modules (through debug messages), the

measurements are received correctly;

The GUI must show the correct measurements update.

Additional comments

Result card

Name/code/test case identifier MeasurementRequest

Results Test successful.

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 51 of (54)

Test card

Name/code/test case identifier LVFaultManagement

Objectives Test the LV Fault Management module

Devices involved LVGMU

Pre-requirements Configure one LV sensor.

Steps Open the device debug console to monitor the communication trace;

Change the acquired measures values in the sensor to induce an alarm in

the LV Fault Management module;

Open the GUI and see if the alarm was generated.

Expected result The GUI must indicate that the new alarm is generated;

In the real time database, the alarms are generated.

Additional comments

Result card

Name/code/test case identifier LVFaultManagement

Results Test successful.

Test card

Name/code/test case identifier LVQuality

Objectives Test the LV Quality module

Devices involved LVGMU

Pre-requirements Configure one Smart Meter

Steps Open the device debug console to monitor the communication trace;

Change the acquired measures values in the Smart Meter to induce a set

of QoS events;

Open the GUI and see if the QoS alarms were generated.

Expected result The GUI must indicate that the new alarm is generated;

In the real time database, the alarm is generated.

Additional comments

Result card

Name/code/test case identifier LVQuality

Results Test successful.

e-balance Deliverable D5.5

Page 52 of (54) © e-balance consortium 2013-2017

Test card

Name/code/test case identifier LVPrevention

Objectives Test the LV Fault Management (Fault Prevention) module.

Devices involved LVGMU

Pre-requirements Configure one microgeneration Smart Meter.

Steps Open the device debug console to monitor the communication trace;

Change the measured values in the Smart Meter to induce a high voltage

alarm in the LV Fault Management module;

Expected result The LV Fault Management module detects and identifies the high

voltage;

The communication trace shows that a power setpoint is sent from the

LV Fault Management module to the Smart Meter.

Additional comments

Result card

Name/code/test case identifier LVPrevention

Results Test successful.

Test card

Name/code/test case identifier LVFraud

Objectives Test the LV Fraud module outputs.

Devices involved LVGMU

Pre-requirements Configure 3 Smart Meters;

Steps Open the device debug console to monitor the communication trace;

Change the energy consumption for one of the Smart Meters.

Expected result The GUI must indicate that the fraud alarm is generated.

Additional comments

Result card

Name/code/test case identifier LVFraud

Results Test successful.

Deliverable D5.5 e-balance

© e-balance consortium 2013-2017 Page 53 of (54)

5 Conclusions

In this deliverable we described the results of the work done when we integrated the modules of the energy

management platform. This especially means that the defined and executed tests are provided in form of test

and result cards. In addition the software modules for energy balancing and security and privacy have been

integrated with the communication platform middleware developed in WP4, an integration step that was

originally planned to be done as part of WP6. The energy balancing modules will be used in the

Bronsbergen demonstrator within Work Package 6. The energy resilience modules have already been

integrated in the commercial products of the consortium partner EFACEC. This will simplify their

integration in the real world demonstrator at Batalha, i.e. also this will reduce effort in WP6.

e-balance Deliverable D5.5

Page 54 of (54) © e-balance consortium 2013-2017

References

[1] J. J. Peralta, et al, "Deliverable D5.2 - Detailed specification, implementation and evaluation of energy

balancing algorithms," Public deliverable of e-balance project, FP7-Smartcities-2013, Project number

609132, 2015.

[2] A. Bernardo, et al, "Deliverable D5.3 - Energy resilience and self-healing," Public deliverable of e-

balance project, FP7-Smartcities-2013, Project number 609132, 2016.

[3] K. Piotrowski, et al, "Deliverable D5.4 - Detailed specification, implementation and evaluation of

security and privacy means," Public deliverable of e-balance project, FP7-Smartcities-2013, Project

number 609132, 2015.

[4] D. Garrido, et al, "Deliverable D4.3 - Detailed middleware specification and implementation," Public

deliverable of e-balance project, FP7-Smartcities-2013, Project number 609132, 2015.

[5] H. Toersche, "Effective and Efficient Coordination of Flexibility in Smart Grids", unpublished PhD

thesis, 2016.

[6] K. Piotrowski, et al, "Deliverable D3.2 - Detailed System Architecture Specification," Public deliverable

of e-balance project, FP7-Smartcities-2013, Project number 609132, 2015.

