

FP7-SMARTCITIES-2013
Project number: 609132
http://www.e-balance-project.eu/

e-balance

Deliverable D5.4

Detailed specification, implementation and evaluation of security and privacy means

Editor: Krzysztof Piotrowski (IHP)

Dissemination level:
(Confidentiality)

PU

Suggested readers: Consortium/Experts/other reader groups

Version: 1.0

Total number of pages: 22

Keywords: Security, Privacy, Smart Grid

Abstract

This deliverable describes the security and privacy solution for the e-balance system. The focus of this

document is on the modules that implement the security and privacy protocol for the Energy Management

Platform that relies on the basic security mechanisms provided by the Communication Platform. The

modules from both platforms cooperate with each other to achieve the goal of protecting the data according

to the definition of the data owner.

Ref. Ares(2015)4940050 - 09/11/2015

e-balance Deliverable D5.4

Page 2 of (22) © e-balance consortium 2015

Disclaimer

This document contains material, which is the copyright of certain e-balance consortium parties, and may not

be reproduced or copied without permission.

All e-balance consortium parties have agreed to full publication of this document.

The commercial use of any information contained in this document may require a license from the proprietor

of that information.

Neither the e-balance consortium as a whole, nor a certain party of the e-balance consortium warrant that the

information contained in this document is capable of use, or that use of the information is free from risk, and

accept no liability for loss or damage suffered by any person using this information.

The information, documentation and figures available in this deliverable are written by the e-balance partners

under EC co-financing (project number: 609132) and does not necessarily reflect the view of the European

Commission.

Impressum

[Full project title] Balancing energy production and consumption in energy efficient smart neighbourhoods

[Short project title] e-balance

[Number and title of work-package] WP5, Energy Management Platform

[Document title] Detailed specification, implementation and evaluation of security and privacy means

[Editor: Name, company] Krzysztof Piotrowski, IHP

[Work-package leader: Name, company] Marco Gerards, UTWE

Copyright notice

 2015 Participants in project e-balance

Deliverable D5.4 e-balance

© e-balance consortium 2015 Page 3 of (22)

Executive Summary

The security aspects of the energy grid are gathering more and more attention in the recent years. This is

mainly due to the fact that the energy grid is part of the critical infrastructure and it shall be protected from

any interference that can disturb its working, especially if this interference is an intentional act. The security

aspects actually become critical in the era of smart grid, where the exchanged data controls the state of the

grid (sometimes in real-time) and it is sometimes even easier to interfere with this data exchange due to the

scale of the communication. The system level protection helps to protect the smart grid from external attacks.

In addition, guaranteeing privacy is of utmost importance when it comes to user acceptance. This deliverable

focusses on user data protection as this is probably the most important aspect for the system users. In this

document we will provide the detailed description of the security and privacy protocol that is used in the e-

balance system to control the access to the data of the users according to their defined policy. This

deliverable builds up on the basic and standard security mechanisms that can be used to protect the devices

and the communication, as presented in deliverable D4.2. It is assumed that the protection on the system

level is present and thus, the context for the security and privacy protocol described in this document is

defined.

This document describes the way the data gathered and generated by the system is exchanged between the

system users. It provides the implementation details for the blocks that are involved in the security and

privacy protocol. These blocks are located in the communication platform – the data access control module,

as well as in the energy management platform – the security and privacy module.

The operations involved by the protocol are also evaluated with respect to the computational overhead. In

order to measure this impact we have implemented the main mechanisms in C programming language and

measured the computational effort required by these operations.

e-balance Deliverable D5.4

Page 4 of (22) © e-balance consortium 2015

List of authors

Company Author

IHP Krzysztof Piotrowski

Ievgen Kabin

Peter Langendörfer

UMA Daniel Garrido

Eduarto Canete

Jaime Chen

EDP Nuno Emanuel Pereira

EFA Paulo Rodrigues

Alberto Bernardo

ALLI Marcel Geers

LW Henry Schomann

Deliverable D5.4 e-balance

© e-balance consortium 2015 Page 5 of (22)

Table of Contents

Executive Summary ... 3
List of authors .. 4
Table of Contents .. 5
List of Tables ... 6
List of Figures.. 7
Abbreviations .. 8
1 Introduction .. 9
2 The security and privacy protocol .. 11
3 Implementation details ... 15

3.1 Energy management platform service security and privacy module .. 15
3.1.1 Identification .. 15
3.1.2 Request authentication ... 16
3.1.3 Data encryption .. 16

3.2 Data access control module ... 18
4 Evaluation .. 20

4.1 Public key operations .. 20
4.2 Data encryption and key generation operations .. 20

5 Conclusions .. 21
References ... 22

e-balance Deliverable D5.4

Page 6 of (22) © e-balance consortium 2015

List of Tables

Table 1: Record of the table in the Data Persistence Module storing the data owner policies 18
Table 2: The computational complexity of public key operations .. 20
Table 3: The computational complexity of operations related to data encryption .. 20

Deliverable D5.4 e-balance

© e-balance consortium 2015 Page 7 of (22)

List of Figures

Figure 1: The position of the deliverable D5.4 within the e-balance project .. 9
Figure 2: The security architecture of the e-balance management unit ... 10
Figure 3: The modules involved in the security and privacy protocol for energy management 11
Figure 4: Internal structure and interactions of the Security and Privacy Module .. 15
Figure 5: Internal structure and interactions of the Access Control Module ... 18

e-balance Deliverable D5.4

Page 8 of (22) © e-balance consortium 2015

Abbreviations

CP Communication Platform

EMP Energy Management Platform

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

RSA Rivest-Shamir-Adleman

DSA Digital Signature Algorithm

SHA Secure Hash Algorithm

CaMyTs Castelluccia-Mykletun-Tsudik

PRNG Pseudo Random Number Generator

DH Diffie-Hellman

MU Management Unit

TP Trusted Party

Deliverable D5.4 e-balance

© e-balance consortium 2015 Page 9 of (22)

1 Introduction

The security aspects of the energy grid are gathering more and more attention in the recent years. This is

mainly due to the fact that the energy grid is part of the critical infrastructure and it shall be protected from

any interference that can disturb its working, especially if this interference is an intentional act. The security

aspects actually become critical in the era of smart grid, where the exchanged data controls the state of the

grid (sometimes real-time) and it is sometimes even easier to interfere with this data exchange due to the

scale of the communication.

Figure 1: The position of the deliverable D5.4 within the e-balance project

Due to the importance of the subject we address it in the e-balance project. In this document we will provide

the detailed description of the security and privacy protocol (and its implementation) that is used in the e-

balance system to protect the data of the users according to their defined policy. This deliverable builds up

on the basic and standard mechanisms that can be used to protect the devices and the data, presented in

deliverable D4.2 [1]. It is assumed that the basic protection on the system level is present and thus, the

context for the security and privacy protocol is defined. This document describes the way the data gathered

and generated by the system is exchanged.

e-balance Deliverable D5.4

Page 10 of (22) © e-balance consortium 2015

In the following paragraphs we will describe the coverage of each of the security related documents, based

on the security architecture, defined in deliverable D3.2 [2] and depicted in Figure 2.

The D4.2 covers all the security and privacy modules (blue boxes in the figure) except the data access

control module within the request processor and the security and privacy modules within the energy

management platform. Those blocks are implementing the security and privacy protocol and are covered by

this document – deliverable D5.4.

Figure 2: The security architecture of the e-balance management unit

There are two major groups of security and privacy modules within the energy management platform that are

covered by this document. They can be defined as follows:

- Energy management platform service security and privacy modules

- Data access control (will be covered also by the deliverable D4.2)

The specific instantiations of these modules and their very specific low level functions depend very much on

the hardware and software implementation of the individual management unit. However, these modules

should fulfil a specific set of requirements in order to provide their function properly. Additionally, the

standard IT security solutions as well as the level of data protection regarded as secure, change with time and

need to be updated with newer and stronger algorithms or parameters and fixes. Thus, the implementation

described in this document supports updating the security approach with up-to-date basic means.

It is suggested to read the deliverable D4.2 document prior to this document.

Deliverable D5.4 e-balance

© e-balance consortium 2015 Page 11 of (22)

2 The security and privacy protocol

As presented in Figure 2 and explained in the previous section, the security and privacy protocol for the

energy management is implemented around the Data Interface connecting the Communication Platform (CP)

and the Energy Management Platform (EMP). The role of this protocol is to define the rules for providing

the access to the data exchanged between the management units within the e-balance system.

The Access Control Module is implemented in the communication platform and the data is accessed via the

data interface by the services located in the energy management platform. A service runs on behalf of a

specific stakeholder. The data owner may define which services from which stakeholders can access her

data. The access control is driven by that definition. Further, the data owner may also restrict the granularity

of the data in the time dimension, i.e., defining the minimum delay between two read requests.

The privacy is further protected by means of an end-to-end encryption supporting a diversity of mechanisms,

including standard encryption of individual values, but also privacy homomorphic encryption that allows

performing aggregation of multiple encrypted values.

The modules involved in the implementation of the protocol are presented in Figure 3. The functionality

provided by the security and privacy module for the energy management platform services allows them to

generate a valid request for the data interface – signed, in order to authenticate the data access. Further, the

data (to be) stored in the middleware may be additionally protected by means of encryption. In order to

prepare the data for storing and also to use the encrypted data the service uses the respective functions

provided by the security and privacy module. If the values are encrypted using a privacy homomorphism,

then the module also provides respective functions allowing performing the defined aggregation operations

on the encrypted data, e.g., addition.

In order to perform the above mentioned security related functions, the security and privacy module provides

also the storage for the security credentials of the respective stakeholder used by these security operations.

These credentials include passwords and key materials with certificates.

Communication
Platform

Data Storage and Exchange
Middleware

Energy Management
Platform

Request Processor Data access control

Energy Management Platform Service

Data Interface

Security and Privacy
- Credentials store
- Request signing
- Value encryption
- Value decryption
- Value operations

Service Logic

 enc/dec

 sign

Figure 3: The modules involved in the security and privacy protocol for energy management

Figure 3 shows also the features provided by the security and privacy module in the energy management

platform. While preparing the data access request, the service can use different functions provided by the

security and privacy module. A service instance (process) usually works for a single stakeholder, thus it is

connected to one security and privacy module. This allows separating the service logic and the credentials of

the stakeholders and by that allows replicating the same service implementation to work for different

stakeholders.

Further, it is also possible to extract the security and privacy module and realize it as a hardware module that

is connected to the respective management unit and provides its functions via a defined API. Within e-

balance we focus on the software realisation.

e-balance Deliverable D5.4

Page 12 of (22) © e-balance consortium 2015

Additionally, if a case where one service is working for multiple stakeholders is justified, it must use

individual security and privacy module for each stakeholder, to separate their credentials.

The security and privacy block of the energy management platform provides the following functions.

 sign (message, out signature)

 encrypt (plaintext, out ciphertext)

 decrypt (ciphertext, out plaintext)

 add (a, b, out sum)

The accesses to the security credentials are embedded in the functions listed above. The service executes its

logic and each time the access to the data stored in the communication platform is necessary the request is

prepared, i.e., the content is prepared, collected and the whole request is signed.

On the other hand, the data access control module has the following security related function available.

 verify (message, signature, key, out result)

Here the specific key material from the certificate is accessed and hiding of the accesses to the credentials is

not necessary. The certificate is either provided with each request, or it can also be stored in the

communication platform. There are advantages and disadvantages of each solution. The provision of the

certificate with the request may cause an increase in the data exchanged, but simplifies the implementation

and no special storage (and management) for the certificates is necessary.

Depending on the kind of the data access request, different security related actions can be performed and

there are different contents of the request data structure. Common for all the four kinds of requests, are the

parameters of the functional interface and the signature of the request issuer over the whole request.

Additionally, if a write request is performed by the data owner the request may also contain the privacy and

security policy that defines the allowed operations on the written data item. If a write request is done by

other stakeholder, then, depending on the owner’s preferences either the latest policy defined by the data

owner or a default policy is applied.

The security and privacy policy is defined for each written data value. It is a structured set of the following

items:

 identifier of the authorized stakeholder

 identifier of the authorized service of the stakeholder

 allowed access rights, and (optionally)

 the minimum delay between two accesses (in seconds)

Such a data set is provided for each authorized stakeholder and service combination. Different stakeholders

and services with exactly the same access rights may be grouped together.

The protocol running on the data interface between the communication platform and the energy management

platform services can be shortly described by the following steps.

1. Service logic (preparation of the request)

o identification of the data to be accessed (variable and data owner)

o definition of the access type (write, read, event, periodic)

o for the write access:

 for own data (optional) definition of the security and privacy policy (or use of

the default)

 (optional) encryption of the value with encrypt()

o for the event and periodic access, definition of the condition and period, respectively

o performing the signature on the request with sign()

o transferring the request (and optionally the certificate) over the data interface

Deliverable D5.4 e-balance

© e-balance consortium 2015 Page 13 of (22)

2. Data access control (processing of the request)

o for incoming certificate: verifying the certificate with verify()

o verifying the request signature with verify()

o verifying the access rights (comparing the stored policy with the actual access)

o if the above steps are successful: processing the request by the request processor

o (the processing and data exchange is protected by the D4.2 security mechanisms)

o transferring the results back to the service logic

3. Service logic (receiving and processing the reply)

o (optional) processing (aggregation) of encrypted data with add()

o (optional) decryption of the value with decrypt()

o further processing by the service logic

The main aim of the privacy protocol is to allow the data source to define the allowed use of the data it

generates. Of course, there may be contradicting interests in the sense that the data source may be willing to

restrict the accesses to its data very much, while the data consumers may be willing to have the access on

very detailed basis, since they need the data to perform their operations. The border line that specifies the

default (and minimum) level of access shall be defined by the contract between the data source and the data

consumers, like the contract between the customer and the energy retailer. The complete set of contracts that

the data source has with all the service providers defines the base for the privacy and security policy. Due to

the contract, the data source is obligated to provide specific data to specific stakeholders at specific rates

(temporal resolution). Anything above the contracted level (additional access rights, extensions of present

access rights) has to be negotiated between the parties and can be added to the basic policy. In any case a

change in the privacy policy restricting the data access for a party the data source has a contract with may

cause a contract violation.

During the privacy protocol design process we had multiple discussions on how and where to define the

privacy policy, as well as on where and how to enforce it. There are several options for both these points and

we have decided to provide a design that, on one hand allows different solutions and is thus flexible, but on

the other hand we focus on implementing the one that is the most meaningful, from our point of view.

For the definition of the privacy policy there are two main options. The first is to define the policy as a rather

static construct while the variable is created, while the device is installed and configured for the first time or

while it is reconfigured. This policy is mainly based on the contracts the data source has with the parties

interested in the data. Thus, any time the contract changes the policy needs to be updated. This can be done

using the middleware tool for managing the variables. This allows the writing request to be simpler, i.e., it

does not include the policy definition for each written value.

The second option is to allow the service running on the management unit to define the policy for each value

that it writes on behalf of the data owner. This solution allows more flexibility as each value can have a

different access right definition and as a result, for instance, a different allowed reader group. However, this

solution requires storing the policy for each written value, what can cause the required data storage size to

grow. In case the data is replicated within the middleware on several management units this problem may

become an issue.

With respect to enforcing of the privacy policy there are two options that actually depend on the realisation

of the data storage and the request processor within the middleware. Enforcing of the policy can happen on

the unit that stores the value or at the one which received the request. In the latter case it is necessary to

transmit the policy together with the value to be able to check the access rights before answering the request.

If data replication is allowed then it should also include the replication of the privacy and security policy,

otherwise it is necessary to check the access rights at the origin management unit.

e-balance Deliverable D5.4

Page 14 of (22) © e-balance consortium 2015

In our solution we decided to support the static policy that can be overridden by the one defined by the

service writing the data on behalf of the owner. The enforcing of the policy happens on the unit that stores

the data.

The following section will describe the implementation details of the blocks involved in the above mentioned

protocol.

Deliverable D5.4 e-balance

© e-balance consortium 2015 Page 15 of (22)

3 Implementation details

This section provides the details on the implementation of the individual blocks involved in the privacy and

security protocol. The following sub-section describes the part of the implementation present in the energy

management platform, while the latter one describes the data access control module present in the

communication platform.

3.1 Energy management platform service security and privacy module

The implementation of the security and privacy module in the energy management platform can be divided

into three blocks. The first one covers the functionality and storage related to the stakeholder and security

module identification. The second one is related to the public key security needed for authenticating

(signing) the requests and the third block includes the functionality and storage related to the privacy

homomorphism mechanism used to encrypt the data. Figure 4 shows the internal structure of the security and

privacy module, with the separated functional blocks.

Energy Management Platform Service

Data Interface

Security and Privacy Module

Credentials Functions

 Identification data
getID(dataindex, out ID)

 Private key + Certificate
getCert(out encodedCert)

sign(message, out signature)

 Symmetric keys

encrypt(plaintext, streamName, out ciphertext, out index)
decrypt(ciphertext, streamName, index, out plaintext)

createStream(streamName, initialization)

Service Logic

 API

Figure 4: Internal structure and interactions of the Security and Privacy Module

We have implemented this module in Java and in C. The former implementation can be used for integration,

while the latter was mainly used for performance checks on embedded devices. The following subsections

present the implementation details of each of the above mentioned blocks.

3.1.1 Identification

The identification block contains a data structure that contains data that can be used for identification

purposes, but may also be used as service configuration data. The data is set while the module is initialised

(or installed). For the service logic this block is like a read-only memory.

The block provides a function to access the fields of the data structure. The data can be addressed by indices

or by field names. The following method implements the function in Java.

 public Object getID(String dataindex);

The function returns the object from the storage identified by the given identifier (dataindex).

e-balance Deliverable D5.4

Page 16 of (22) © e-balance consortium 2015

3.1.2 Request authentication

The request authentication block contains the credentials necessary to prove the identification of the

stakeholder, i.e., her private key used to sign the requests, as well as the certificate that contains the

corresponding public key of the stakeholder. The certificate is signed by a party that is trusted in the system

(the certification party) and it is used to verify the signatures generated by the block at the access control

module.

The request authentication block provides two functions, one used to sign the request (as a byte stream) and

the second that provides the certificate, so that it can be forwarded together with the request and the signature

over the request to the verifying party – the access control module.

 public byte[] sign(byte[] message);

The byte stream message is signed using the private key stored in the credential store and returned as a byte

stream.

 public byte[] getCertBytes();

 public Certificate getCert();

The above two Java methods return the certificate of the stakeholder stored in the credential store. The first

one returns the encoded certificate that is ready to be transmitted (and serialized) while the second one

returns it as a Java object.

In our implementation we have focused on signature algorithms based on Elliptic Curve Cryptography

(ECC), like the ECDSA (Elliptic Curve Digital Signature Algorithm), since they generate much smaller

signatures, while providing the same level of protection, compared to much larger signatures, like RSA

(Rivest-Shamir-Adleman) or DSA (Digital Signature Algorithm). However, the Java implementation

supports all the three above named signature algorithms. The key material (and the certificate) is initialized

while the module is installed and is read-only for the service logic.

We use certificates generated using the Openssl Toolkit, which are then installed while the security and

privacy module is installed and initialized. These are standard X509 v3 certificates.

3.1.3 Data encryption

The data encryption is based on the additively homomorphic encryption scheme proposed by Claude

Castelluccia, Einar Mykletun and Gene Tsudik (CaMyTs) [4]. It provides the feature that the encrypted data

may be added and the sum can be decrypted, if the correct key material is available.

The following operations using a defined modulus M are defined in this scheme. The modulus must be

common for all data sources, whose data should be aggregated and must be known to the data consumer.

Encryption:

1. Represent the message (plaintext data) m as integer m ∈ [0, M-1] where M is a large integer

2. Let k be a randomly generated key, where k ∈ [0, M-1]

3. Compute: c = Enc(m, k, M) = (m + k) mod M, where c is the ciphertext

Decryption:

1. Compute: m = Dec(c, k, M) = (c - k) mod M, where k is the same key as used for encryption

Deliverable D5.4 e-balance

© e-balance consortium 2015 Page 17 of (22)

Addition of Ciphertexts:

1. Let c1 = Enc(m1, k1, M) and c2 = Enc(m2, k2, M)

2. Compute: c = (c1 + c2) mod M

3. The ciphertext can be decrypted using the aggregated key k = (k1 + k2) mod M: Dec(c, k, M) => m1 + m2

The main disadvantage of the CaMyTs approach is that it requires a keystream for the keys to encrypt the

individual values. The maintenance of the key stream and synchronizing it between the data sources and the

data consumers is not a trivial task. Thus, we have combined the approach with the secure Pseudo Random

Number Generator (PRNG) – the lmRNG, developed at the IHP [3].

The lmRNG approach is a set of equations that use start values and operate on these changing its internal

state and generating a bit-stream that can be broken down into individual values of an arbitrary length. Two

instances of the generator that are using the same initial values (seed) will generate exactly the same bit-

stream.

The lmRNG is a secure PRNG, what also means that having one (or more) of the values it generated you are

not able to deduct neither the following nor the previous values, the generator generated or will generate,

without knowing its seed or internal parameters. This feature makes the lmRNG a perfect source of keys.

Further, it also simplifies the synchronisation between the data source and data consumer. Once the key

generators on both sides are initialized with the same seed values, both communicating sides can use the key

indices to identify the correct key, i.e., the data and the keys are provided as two streams, where the data

stream is transmitted from data source to data consumer and the key stream is generated independent on both

sides.

Additional data consumers may get access to the data by getting the key generator parameters allowing

generating the key stream from a given position in the original stream only. This is a form to restrict access

to the data, i.e., the joining party is not allowed to decrypt data that was created prior to the obtaining of the

data access.

Further, it is possible to restrict access to the data stream by distributing keys that allow decryption of only

some chosen aggregated values.

In order to optimize the encryption and decryption operations we have decided that the modulus is equal to

2
n
, where n is the bit-length of the used integer – in our case n it is 64, but we support also 32 bit long

integers. Thus, the modulo operation simply causes discarding the data type overflow.

Thus, the block related to the data encryption stores the following data set for each key stream: initialisation

data (two integers: iv1 and iv2), current state of the internal equations (t1 and t2), the current key and its index.

A key stream can be used for encrypting one variable, thus for each encrypted variable an individual set of

the above mentioned data items is necessary.

Further, if a data consumer joined the data stream, the fact is stored as well, together with the key index and

the internal key stream generator parameters.

The encryption block implementation in Java provides the following methods.

 public boolean registerKeyStream(String name, long iv1, long iv2);

Registers a new key stream generator identified by name and initializes it with the given initialisation data

(iv1 and iv2).

 public PRNGInit getKeyStreamFork(String name, String clientName);

Provides the initialization data taken from a defined local key stream (identified by name) to be used by a

remote key stream generator at data consumer identified by clientName. The PRNGInit object contains the

e-balance Deliverable D5.4

Page 18 of (22) © e-balance consortium 2015

initialisation data and the current key index. The current key index is used at the remote client to compute its

local key for decryption.

 public EncData encrypt(long plaintext, String name);

This method encrypts a new value (plaintext) within the defined key stream identified by name. It generates

a new key in the key stream and encrypts the data. It returns the encrypted data together with the index of the

used key – both contained in the returned EncData object.

 public long decrypt(long ciphertext, String name, long index);

This method decrypts the encrypted data (ciphertext) using the key identified by index from the local key

stream identified by name. It returns the decrypted value.

The key stream generators are created on both ends of the communication channel, i.e., at the data source

and at the data consumer. The exchange of the parameters to configure the key stream generator can be either

done manually, while the device (and the security and privacy module) is installed and configured, or it may

be done on-line. In the latter case the two services have to securely exchange the initialisation data using a

protocol similar to Diffie-Hellman (DH).

3.2 Data access control module

The Access Control Module is located in the Communication Platform, in the Data Storage and Exchange

Middleware (see Figure 5). It is implemented in Java programming language and the main blocks of the

algorithms have also been implemented in C programming language.

The data access requests are provided to the Request Processor via the Data Interface or from other

Management Units (MU). Before being processed, these requests are verified by the Access Control

Module.

Data Storage and Exchange Middleware

Data Interface

Access Control Module

Functions

verifySignature(message, signature, pubKey, out result)
verifyCertificate(certificate, Tpcertificate, out result)

checkAccess(variable, dataConsumer, reqAccess, out result)

Request Processor

 API
Data
Persistence
Module API

Figure 5: Internal structure and interactions of the Access Control Module

Table 1: Record of the table in the Data Persistence Module storing the data owner policies

No

(primary key)
variable stakeholder service allowed_access delay last_access

The access control module provides an API that allows the request processor to verify the request source and

verify that the requested access is allowed. The verification of the certificate (the authentication of the

request) is based on the signature verification, while the access control is realized based on the privacy and

security policy of the data owner, stored in the Data Persistence Module. Table 1 presents the fields of the

database table in the data persistence module that stores the policy of the data owner. It defines who

Deliverable D5.4 e-balance

© e-balance consortium 2015 Page 19 of (22)

(stakeholder and service) can access and how (allowed_access) the owner’s data (variable). It also specifies

if there is a defined minimum delay between accessed data (delay). The latter defines the temporal resolution

of the accessed (read) data. The last field (last_access) stores the timestamp of the last performed access of

the defined kind. The table stores different access types (read, write, etc.) for the same request source in

separate records.

Thus, the data access control module provides the following methods.

 public boolean verify(byte[] msg, byte[] sign, PublicKey pubkey);

This function verifies, if the provided signature (sign) is a correct one for the provided message (msg) and

the public key (pubkey). It returns true of false, depending on the result of the check. It allows to verify the

signature of the data access request source and thus, to authenticate the request.

 public boolean verifyCert(Certificate cert, Certificate TPcert);

This function allows verifying, if the provided certificate (cert) of the request source is correctly signed by

the Trusted Party (TP), whose certificate is also provided (TPcert). Thus, it allows verifying the trust chain.

The function returns true of false, depending on the result of the check.

public boolean checkAccess(String variable, String owner, String

stakeholder, String service, String reqAccess);

This function accesses the database table with the data owner’s security and privacy policy and verifies, if

the request source (stakeholder and service) is allowed to access (reqAccess) the data (variable) from the

specified data owner (owner). The function also performs the internal check if the previous data access by

the request source was performed following the minimum delay parameter. The function returns true of

false, depending on the result of all the checks.

The certificate of the stakeholder requesting the data access is currently provided together with the request,

but it may also be stored locally in the database. In the latter case the first access from a given stakeholder

and service combination requires providing the certificate. The certificate of the trusted party is embedded in

the module and is defined while the module is being installed or reinitialized.

e-balance Deliverable D5.4

Page 20 of (22) © e-balance consortium 2015

4 Evaluation

The evaluation of the proposed approach was mainly focused on the complexity it induces. The aim of this

evaluation was to define the overhead caused by the security and privacy functionality.

The complexity evaluation was realized as follows. In order to distinguish between the computational effort

caused by the evaluated algorithms and the background processing we did the evaluation in a single threaded

environment – an embedded system that was developed at IHP [5]. The test platform is based on the 16-bit

MSP430 microcontroller. Further, the algorithms were implemented in C programming language. The

complexity of the developed solutions is expressed in the number of clock cycles required to execute each

operation. This measure allows estimating the overhead for more complex environments, but it also allows

evaluating, if the proposed approach can be used on low power and computationally limited embedded

devices.

The evaluated mechanisms are divided in two classes; the first contains the public key cryptography

operations (ECDSA signature generation and verification), while the second contains the operations related

to the data encryption (privacy homomorphism CaMyTs encryption, decryption, generating of a new key

using the lmRNG).

The microcontroller on the test platform runs with 25MHz, meaning that an operation requiring 25 million of

clock cycles causes the microcontroller to be busy for one second. Further, knowing the frequency of these

operations the duty cycle of the microcontroller can be estimated.

4.1 Public key operations

The public key operations include the generation of the signature and the verification of a signature. The

signature algorithm is the ECDSA P160 with SHA-1 (a variant of the SHA). The size of the message is 100

bytes to reflect the projected size of a request. The values are an average of 1000 measurements.

Table 2: The computational complexity of public key operations

Operation Complexity [clock cycles / s]

Sign (ECDSA with SHA) 1’262’189’020 / 50.49

Verify (ECDSA with SHA) 2’522’699’881 / 100.91

4.2 Data encryption and key generation operations

The operations related to the encryption of the data include data encryption, data decryption, as well as the

generation of a new key in the key generator. The measurements were done for two data size options, i.e. for

32-bit and 64-bit long values. The data size defines the maximum value of the sum of the aggregated values.

It means that for a large number of aggregated values it is advisable to use 64-bit values. Additionally, the

used data size depends on the individual values. In any case the 64-bit values provide more flexibility in

both. The values given in table 3 are an average of 1000 measurements.

Table 3: The computational complexity of operations related to data encryption

Operation Complexity for 32-bit numbers

[clock cycles]

Complexity for 64-bit numbers

[clock cycles]

Encryption 25 54

Decryption 26 55

Key generation 2’117 3’956

Deliverable D5.4 e-balance

© e-balance consortium 2015 Page 21 of (22)

5 Conclusions

This document presents the technical details of the implementation of the security and privacy protocol for

the energy management platform. It provides the API consisting of the basic set of functions (Java

programming language methods) provided by the module to the services implemented in the energy

management platform, as well as the functions (Java methods) available to the request processor in the

communication platform. The first module allows preparing the data access request, to encrypt the data and

to authenticate the request using a digital signature. The second block allows verifying that the source of the

request is as declared and that the request processor is allowed to execute the requested access on behalf of

the request issuer.

The implementation was evaluated with respect to the computational effort it induces. We have chosen a

microcontroller based platform to investigate two aspects. First is the general computational overhead caused

by the operations performed by the protocol, and the second aspect is the check of the ability to use the

proposed approach on low power and energy constrained devices.

The evaluation led to the following observations. The proposed data encryption is very lightweight and does

not cause too much computational effort. On the other hand, the authentication of the requests using the

standard security approaches causes the protocol to be computationally too expensive to be used on low

power devices – the generation of the signature takes on the microcontroller about 50 seconds. Here other

approaches based for instance on short key solutions like the one proposed in [6], have to be used, but in that

case the standard certificates cannot be used anymore. Anyway, the test platform was an extreme case and

the target system will be providing by far better performance, it will be most probably from the BeagleBone

Black or Raspberry PI class, where the signature generation takes about 50 milliseconds is thus, still in the

acceptable range.

e-balance Deliverable D5.4

Page 22 of (22) © e-balance consortium 2015

References

[1] K. Piotrowski, et al., “Deliverable D4.2 – Detailed security and privacy specification and

implementation”, Public deliverable of e-balance project, FP7-Smartcities-2013, Project number

609132, 2015.

[2] K. Piotrowski, et al., “Deliverable D3.2 – Detailed System Architecture Specification”, Public

deliverable of e-balance project, FP7-Smartcities-2013, Project number 609132, 2015.

[3] A. Sojka, K. Piotrowski, “lmRNG: A Lightweight Pseudorandom Number Generator for Wireless

Sensor Networks.” in Proc. Of SECRYPT 2012, pp. 358-363.

[4] C. Castelluccia, E. Mykletun and G. Tsudik, “Efficient Aggregation of encrypted data in Wireless

Sensor Networks”, in IEEE Mobiquitous, 2005.

[5] K. Piotrowski, St. Ortmann, P. Langendörfer, “Multi-radio wireless sensor node for mobile biomedical

monitoring”, in Proc. BMT 2012 – 46th DGBMT Annual conference, pp. 725, Jena, Germany,

September, 2012.

[6] A. Sojka, K. Piotrowski, P. Langendoerfer, "ShortECC-A Lightweight Security Approach for Wireless

Sensor Networks," in Proc. SECRYPT, 2010.

