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1. Introduction 

The aim of this report is to describe the work carried out in WP16 between the beta and the final release of 

the Biomedical Knowledge Discovery (KDD) and simulation platform. Section 2, covers the work carried out 

by ATHENA in developing the final release of the KDD platform (DCV + knowledge discovery extension). 

Section 3, describes the work carried out by ATHENA with the AITION knowledge discovery tool. Section 4, 

outlines the work of Siemens on the DeepReasoner web-based prototype for supporting evidence-based 

decision making. Finally, Section 5 describes the updated method for personalizing the whole-body 

circulation model used to generate features for the DeepReasoner and is also related to the work performed 

in WP9. 

2. Integration with DCV, interface, front-end tech-specs 

As described in D16.2 (Beta Prototype of KDD & Simulation platform), ATHENA started to develop a web-

based knowledge discovery platform focusing on biomedical cases. The last year of the project, this platform 

came to its final release by integrating with the Data Curation and Validation (DCV) tool [D15.2]. The 

algorithms and methods described in D16.1 (First report on Biomedical knowledge discovery and simulation 

for model-guided personalized medicine) remain, providing the user with an efficient pipeline: from 

preliminary analysis to advanced statistics like development of predictive models. 

Workflow support: Each analysis step carried out by users is stored in a specific history-area where they can 

navigate in their history going back at any state they want. Every analysis can be stored as a workflow and 

hence when a user comes back to the platform s/he will find his/her workflows and rerun them. 

2.1. User interface 

2.1.1. Preliminary analysis 

Although we mainly focused on the development of classification models to help clinicians automate the 

processes of patient’ classification in medical categories, clustering and dimensionality reduction techniques 

were applied as preliminary steps for each data analysis.  Clinicians spend a lot of time to make an informative 

profile of their datasets in order to then proceed with classifications and predictions. A key-problem they 

address is the well-known ‘curse of dimensionality’ where there is a large number of variables that produce 

a high-dimensional feature space. As the dimensions of the space increase, the predictive power of a model 

decreases, since it has to cope with much more noise and there usually aren’t enough observations to get 

good estimates. Moreover, although most of the variables are very informative, the computational time to 

analyse them and gain information through a predictive model is usually prohibitive. Therefore, 

dimensionality reduction strategies are used to identify strong correlations among the variables and project 

them into a new lower-dimensional space. Especially, Principal Component Analysis (PCA) and Singular Value 

Decomposition (SVD) integrated in the DCV extension are also used to visualize high-dimensional data. Later, 

t-distributed Stochastic Neighbour Embedding (t-SNE) was added in order to handle sparse data [1]. 

Clustering methods that were already added to the DCV KDD extension are also combined with 

dimensionality reduction for better visualization. 

In Figure 1, a clustering example of the Juvenile Idiopathic Arthritis (JIA) knowledge discovery use-case is 

shown. Having patient cohorts derived from three main datasets (clinical measurements, measurements of 
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biological factors by Luminex assays, and microbiota phyla categories) we aimed to develop a computational 

model that predicts short and long-term patient outcomes referring to their activity regarding the JIA disease. 

Such a case requires a preliminary analysis to first understand how each dataset affects the other. Following 

this, we proceeded to the best integration of the three datasets and made our training sets for the predictive 

model. Thus, we applied a k-means clustering (with a k=2, as we have a binary problem herein: active/inactive 

disease) simultaneously using a principal component analysis for the visualization of clusters in two-

dimensional space (Figure 1). We observed that the enrichment of the clinical model with Luminex and 

microbiota variables can at least separate the patients into two clusters while the clinical set on its own fails 

to do so. 

 

Figure 1: Clustering on clinical datasets VS mixed datasets: Patients could be separated in two clusters when enriching the 
clinical dataset with the Luminex and Microbiota sets. 

A user-friendly interface was also designed following the prerequisites of the DCV interface to provide users 

with the steps, variables and parameters they want to add into the analysis (Figure 2). The interface consists 

of JavaScript, css and html5 scripts including four external libraries: Jquery [2] and w2ui [3] for the main 

interface fields and components, slickgrid.js [4] for the data representation in an interactive data-grid and 

finally D3 [5] or any visualizations. Code snippets were written in JavaScript code in order to allow D3 to 

“communicate” with slickgrid. Thus, interactions between the data-table and the visualizations are available 

for exploring patient data through visualizations (Figure 3). 
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Figure 2: DCV knowledge discovery extension user interface. 

Figure 3: Interactive mode of the platform. A k-means clustering was applied on the JIA multivariable dataset and then the user 
selects a range of interest from the therapy column to explore how the distribution differs between the two clusters. Here, the 
clinician observes the statistical behaviour of patients receiving aggressive therapy (therapyFU=1 selected as range of interest). 

2.1.2. Development of prediction models 

Similarity and classification algorithms were already available in the KDD extension since February 2016 

[D16.2]. However, a new container was added to visualize the KDD results. Especially for the prediction 

models, a detailed report is provided to users with both results and assessment metrics for each of the model 

trainings. Thus, the platform provides clinicians with a user-friendly environment where they can build 

models and assess them on their own (Figure 4). An optimized version of the C4.5 algorithm [6] is used for 

implementing “Decision Trees” for classification and regression tasks. The user is able to also improve his/her 

predictions through “Random Forests” that are constructed by an ensemble of decision trees. Decision tree 

learning is a ‘white-box’ strategy, as it provides the rules based on which the classification was done. 

Clinicians found this approach very useful (Figure 5) since they can compare these rules with the ones derived 

from their clinical model. 
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Moreover, there is the option to select a grouping variable in order to optimize the validation phase during 

the construction of the models. Selecting a grouping variable indicates that the cross-validation (CV) 

technique is used to split the data in training and test sets where each patient cohort of visits can never be 

separated into different splits. For instance, patient ‘23’ has visited the hospital multiple times. His/her visits 

will always be in the same set during the CV procedure. Finally, each trained model is stored so it can be 

loaded to predict the outcome of new patient cases later. 

 
Figure 4: The platform gives a comprehensive view to the clinicians. Example from the NND use-case. Three predictors were 

selected and the Patient_ID column as a grouping variable. The model was trained and detailed classification rules are provided 
for each classification. The clinician is thus able to compare the model’s rules with his/her own clinically designed rules. 

 

 
Figure 5: The user selects a trained model from the database to classify new follow-up trials or entirely new patient cohorts. 
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2.1.3. Model assessment 

A comprehensive report is produced for each training. Apart from the visualization of the classification-tree, 

classification performances, confusion matrices and ROC charts are provided to the user. The tool in addition 

offers the user the choice to search for a patient and view the posterior probabilities for belonging to each 

class separately. An optimal threshold derived by ROC analysis is applied so the clinician can also ask for the 

classifier’s “trust” in the classification. In the case where the probabilities are below the threshold, the 

prediction is highlighted in red to indicate that is not to be trusted. For instance, in Figure 6B, Patient 10 is 

classified into Class1 with a 52% probability. Apparently, it is not a trustable classification, while patient 60 

was classified with a certainty level of 97%. This specific feature was added on request of the NND clinicians, 

as they also use a confidence level from 1 to 5 for deciding whether they should proceed with a second 

follow-up classification. Users can also select a specific threshold from the ROC chart to change the threshold 

levels on the patient-based probabilities heat-map. 
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Figure 6: A comprehensive report is provided to users in order to be able to assess models based on their preferences: A) Overall 
mean accuracy, detailed classification performances for each class and confusion matrix; B) ROC curves and patients’ posterior 
probabilities highlighted in red or green depending on a selected cut-off point from the ROC; C) Feature importance: how much 

each predictor contributes to the measured overall classification accuracy. 

 

2.2. Back-end functionalities and architecture 

The main architecture of MDP’s infrastructure extended DCV module is illustrated in Figure 7. The user 

interface described previously refers to the front-end section while the back-end consists of a worker, named 

madIS, enhanced with extra python modules for the knowledge discovery extension. The open source python 

library, scikit-learn [7] was incorporated that contains many well-established machine learning algorithms 

and techniques implemented in python libraries. These libraries can be imported on top of EXAREME easily 

[8] as specific User-Defined Functions (UDFs) of the madIS system [9]. Such UDFs, construct predictive or 

clustering models, estimate new values for unlabelled data, and categorize new data samples [D16.1]. An 

example of a madIS query for clustering is the following: 

select skcluster(init, cols) from table t; 

where: 
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- skcluster is the madIS UDF for clustering 

- init is the initialization string and the desired parameters of any desired algorithm provided by scikit-

learn.  

i.e.: “KMeans(n_clusters=3)” for k-means algorithm or “DBSCAN(eps=0.5, min_samples=5)” for 

Density-Based Spatial Clustering. 

- cols are the attributes participating in clustering 

In Figure 8 one can see the results of such a query. In this illustration, it is also depicted that in case of 

centroid-algorithms the cluster centres are returned too. 

 

Figure 7: Description of the extended DCV architecture. 

 

Figure 8: K-means clustering of samples consisting of 4 variables (columns). Result (appearing above the query) depicts how the 
last 14 samples are clustered (1st column: id, 2nd: cluster, and the remaining columns are the centroids). 
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2.3. Knowledge Discovery use-cases and significant results 

The integrated knowledge discovery methods were applied on two clinical use-cases with promising results. 

In particular, an automated classification system was developed and assessed to classify gait-movement joint 

patterns for patients from the Neurological and Neuromuscular Diseases (NND) group. All models achieve 

high prediction accuracy (above 80%) for each pattern. We also addressed the challenging approach of fitting 

a heterogeneous dataset from the Juvenile Idiopathic Arthritis (JIA) group on a prediction model. 

2.3.1. Neurological and neuromuscular diseases (NND) 

One of the primary needs of clinicians is a classification that characterizes each Cerebral Palsy (CP) gait by 

different degrees of membership for several gait patterns. Machine learning techniques fit very well such 

kind of problems. Predictive models can be created in order to automate the CP gait classification. Thus, our 

aim was to train classification models, based on rules developed by clinicians, and identify their prediction 

accuracy. Models with high accuracy (>80%) can be considered reliable in classifying new patients and can 

also predict possible future behaviour in their movement. Thus, having a classified dataset of 356 children 

with 1561 gait trials, we trained Random Forests and k-Nearest Neighbour models for the above-mentioned 

classification tasks. Random forests were used due to their “white-box” approach which fits very well in gait-

classification, as the clinicians can explore and see the rules based on which the model classified each sample, 

and hence compare with their own rules. K-NN is used to classify the patients based on their similarities. 

 

Both methods were applied on datasets where the predictor variables correspond to kinematic parameters 

extracted from the gait waveforms by the clinicians. After training and assessment, our classifiers proved to 

be reliable enough to classify each of the patterns successfully (overall accuracies>=85%). However, the 

number of parameters used as predictor variables in the models were too few (two to five at most) for 

trusting those results. Therefore, we also trained the classifiers directly on the waveform data in order to 

validate the good results. Kinematic waveforms consist of 50 intervals of a gait-cycle (initial contact of the 

foot to the ground until one step is completed). Thus, a large number of predictors is available; wavelet 

decomposition was applied to reduce the dimensions and avoid possible overfitting. The results are 

illustrated in Figure 9. The classifiers trained on extracted parameters outperformed the ones trained on 

waveforms. Nevertheless, waveform-based model accuracies still remained above 80% validating our 

analysis. Clinicians were trained on how to use the platform on their own and after were able to try more 

trainings on different variations; the classification performance was always high. 
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Looking deeper into the trained models, two screenshots from the DCV analytics report follow (Figure 10 & 

Figure 11). A classification model was trained on kinematic data measured for the hip joint in sagittal plain. 

The measured values refer to three parameters: Extension of hip, its range of motion (measurements of hip 

angle degree during one complete movement cycle), and its flexion (percentage of the gait cycle participating 

in flexion). As said before, these parameters are essentially the predictor variables of the model. As a 

response variable, the multiclass variable selected consisted of three classes: 0 for normal hip motion, 1 for 

hip extension deficit, and 2 for continuous excessive hip flexion. The overall mean prediction accuracy was 

88% and the model was very discriminative. The percentages of true positives are very high as one can see 

from the confusion matrix and the area under the ROC curve. 

 

 

 

 

 

Figure 10: Classification performance per class (left) and distribution of classified samples in a confusion matrix (right). 

 

 

Figure 9: NND results: Random forest and k-NN algorithms used to train predictive models on kinematic waveforms and 
extracted parameters. PS: pelvis in sagittal plane, HS: hip in sagittal plane, PC: pelvis in coronal plane, HC: hip in coronal 

plane, PT: pelvis in transverse plane, HT: hip in transverse plane and FT: foot in transverse plane. 
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Figure 11: Receiver operation characteristic curves (ROC) for each class-pattern separately: plot of the true positive rate against 
the false positive rate for different possible cut-off points indicating the trade-off between sensitivity and specificity. Accuracy is 

measured by the area under the ROC curve (i.e. 99% of patients with deficit extension are correctly classified by the model). 

 

In conclusion, the prediction models developed herein can be integrated with the classification procedure 

that clinicians follow. The models were also revised by clinicians. They were able to use them on their own 

and we are now working on incorporating the whole platform and the related produced models into the 

regular clinical validation process. 

2.3.2. Juvenile Idiopathic Arthritis (JIA) 

The second use-case on which DCV was applied on was designed to determine early in the course of JIA who 

needs more aggressive therapy. Using the same methods as for NND, we tried to fit efficient classification 

models in order to predict the disease outcome (active/inactive) using only baseline variables. This was a 

challenging task since we essentially tried to predict short and long-term outcomes (from 6 to 12 months) 

without having available follow-up visits. The dataset consisted of 151 patients with many variables from 

three heterogeneous datasets: clinical measurements, Luminex factors and microbiota phyla categories, 

which were to be concatenated and be fed to the models as one training set. Integrating the three datasets 

into one created a difficult problem due to the very large number of dimensions. In addition, several patient-

cases were removed due to missing samples for Luminex and microbiota datasets. Hence, the amount of 

training cases was reduced after concatenation. For instance, from the available 151 patients some of them 

were missing Luminex measurements and some others microbiota measurements. After applying different 

methods of dimensionality reduction and normalization, the first results looked promising, especially for the 

12 months’ outcome. However, the diagram shown in Figure 12 refers to models trained without validation. 

Consequently, we applied a 10-fold cross-validation to assess the models only on test cases. The area under 

the ROC curve that was used for the assessment was below 70% and so it was incomparable to the training 

accuracies. 
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As a second trial, we then fitted three models: one clinical plus ultrasound, one clinical plus microbiota and 

one clinical plus Luminex, in order to see which of these performed best and, especially, if the Luminex and 

microbiota models would perform better than the clinical one (something shown also from the preliminary 

analysis via clustering - Figure 1). Our aim here was to predict only the 6 and 12 months’ outcome as for the 

next two (18 and 24) the number of cases was dramatically small. In case of good performances, a deep 

feature selection process would be applied simultaneously with the training phase. Unfortunately, all models 

once again achieve poor performance and so no trustable predictors were selected from these datasets. 

Results in Figure 13 refer to the 6 month prediction case and one can easily observe the poor performance. 

Looking at the classification tables, we saw that the models were mainly unsuccessful is identifying patients 

who remained active. 

 

 

Figure 12: Overall mean accuracies for predicting JIA disease outcome on merged dataset for four future periods: 1) for 6 months 
- 77 patients, 2) for 12m - 66 patients, 3) for 18m - 46 patients, and 4) for 24m - 27 patients. No validation technique applied. 

 

 

Figure 13: The models re-performed on separated datasets and not in one concatenated like in Figure 12. In this step, cross-
validation also applied to assess the models on test data. Poor performances were achieved by the classifiers tending to classify 

the majority of them as inactive. Class 0 refers to patients with active disease, class 1 to inactive patients. 
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3. AITION tool 

The AITION desk tool, which was initially developed as part of the Health-e-Child ICT-FP6 project (#027749), 

provides feature selection, variable correlation analysis, statistical simulation modelling and reasoning based 

on Graphical Probabilistic Models (GPMs). GPMs are a popular and well-studied framework for compact 

representation of a joint probability distribution over a large number of interdependent variables, as well as 

for efficient reasoning about such a distribution [10,11]. 

In MD-Paedigree, new algorithms for Bayesian Network structure learning were implemented and tested 

following a Service Oriented Architecture, extending already existing algorithms in AITION. In particular, 

AITION desk implements state-of-the-art algorithms and techniques (exact [12-14] or approximate [15-19]) 

for Bayesian Network (BN) Structure and Parameter Learning, Markov Blanket induction and feature 

selection, and real-time inference. 

Furthermore, ontologies and a-priori knowledge can be incorporated with the BN, defining topological 

constraints, in order to automate causal discovery and feature selection and provide semantic modelling 

under uncertainty [20]. This way, AITION presents a rich ‘natural’ framework for imposing structure and prior 

knowledge, providing the domain expert with the ability to seed the learning algorithm with knowledge 

about the problem at hand. 

In the following section, we will describe how the AITION desk tool was used for analysis of JIA data, working 

on discretized variables utilizing both approximate and exact Bayesian Network structure learning 

algorithms. 

3.1. Juvenile Idiopathic Arthritis (JIA) 

Our focus has been on outcome prediction and early prognosis trying to identify disease signatures (factors 

and associations among specific sets of variables) that better predict short-term and long-term outcomes. In 

addition, based on the identified Directed Acyclic Graph (DAG), we have built specific Bayesian Network 

models for statistical simulation that can be used for precision medicine tasks, targeted predictions and 

“what-if” analysis. 

In particular, we used the AITION tool on (i) a dataset of 60 patients consisting of 20 clinical, 4 Luminex, 5 

microbiota variables, and on (ii) a dataset of 151 patients with just the 20 clinical variables. One dichotomised 

variable was used as an outcome variable in both sets. For these experiments, we used only variables that 

had already been selected by feature selection in collaboration with JIA clinicians at a previous step. The 

reason that the former dataset has fewer patients is that we had to exclude patients for which there were 

null values that could not be imputed reliably. In addition, we were instructed to exclude OPBG from the first 

set, since there was an issue with their Luminex measurements. 

Variables were discretized using the following rules, based on known cut-off values taken from the literature 

or clinical practice. We also made sure that, for each variable, the discretisation used would allow for at least 

a few patient samples falling into each discrete category (e.g., for the “Age at Onset” variable, since we only 

had one baby in the sample, we had to merge the “Baby” and “Toddler” cases into one discrete value of 

“Baby/Toddler”). For variables for which appropriate discretisation cut-off values were not known, we 

decided to use quartiles. 
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Discretisation Rules: 

GENDER: ifthenelse(gender=1,"1_Male","2_Female"ageonset) 

AGEATONSET: 

ifthenelse(ageonset<3,"1_BabyToddler",ifthenelse(ageonset<5,"2_Preschooler",ifthenelse(ageonset<12,"3_Gradeschooler",ifthene

lse(ageonset<18,"4_Teen","6_Adult")))) 

DISEASEDURATION: 

ifthenelse(disdur<0.2,"1_0.1",ifthenelse(disdur<0.3,"2_0.2",ifthenelse(disdur<0.4,"3_0.3",ifthenelse(disdur<0.5,"4_0.4","5_0.5+")))

) 

ESR: ifthenelse(esr<15,"1_Normal",ifthenelse(esr<22,"2_Low",ifthenelse(esr<30,"3_Medium","4_High"))) 

PGA: ifthenelse(pga<2,"1_<2",ifthenelse(pga<4,"2_<4",ifthenelse(pga<6,"3_<6",ifthenelse(pga<8,"4_<8","5_High")))) 

NEUTRO: ifthenelse(neutro<8,"1_Normal","2_High") 

For ALL Joints discretise as follows: 

JOINT: ifthenelse(joint=0,”1_Inactive”,”1_Active”) 

Where joint is the column name/variable. 

Leave KNEE as is for all clinical (i.e. 0,1,2) 

Quartiles used for remaing variables. 
 

Three network structure algorithms were used, combining the results in order to build a 

model as robust as possible. The first dataset, consisting of all types of JIA variables, did not produce very 

good results, explained by the low number of patient samples. 

The following heat maps show the most important discovered dependencies between all variables (Figure 

14) and between the clinical variables only (Figure 15), for the two datasets respectively. 
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Figure 14: Heat map dependency matrix depicting most important dependencies in JIA clinical+Luminx+microbiota dataset. 
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Figure 15: Heat map dependency matrix depicting discovered dependencies in JIA dataset of clinical variables only. 

Based on the above-mentioned findings, AITION generated the most probable Directed Acyclic Graph (DAG) 

structure that was then used for quantitative analysis, as shown in the AITION screenshots that follow. In 

Figure 16, the AITION desk tool is shown with the JIA model loaded ready for “Inference” (reasoning). The 

four variables that appear as grey boxes are variables that AITION found were almost uncorrelated, and were 

excluded from the final DAG. 

AITION can also perform a sensitivity analysis based on a selected variable. In the example depicted in Figure 

17, a sensitivity analysis is carried out based on the “dichotomised output” variable (at the top of the graph). 

The length of the red bars, appearing on top of each variable box/node, give an indication of relative influence 

of each variable on “Outcome” (the selected variable). 

Abbreviations: ANA, antinuclear antibodies; DIP, distal interphalangeal joints; DISC, discretized; ESR, 

erythrocyte sedimentation rate; GA, global assessment; IACI, intra-articular corticosteroid injections; MTX, 

methotrexate; NSAIDs, non-steroidal anti-inflammatory drugs; RF, rheumatoid factor; TMJ, 

temporomandibular joints. 
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Figure 16: The JIA clinical variable model, as show within the “Inference” window of the AITION desk tool. 

 

Figure 17: Sensitivity analysis on “Outcome” (‘status_dich_disc’) variable. 

The following set of figures show examples of AITION’s reasoning capabilities with the JIA model. Starting 

from Figure 18, we see one example of how we can do reasoning using inference in graphs with AITION, 

where the user has set the value of the JIA variable TMJ (Temporomandibular Joints) to “2_Active”, as shown 

by the turquoise coloured ‘tmj_disc’ node (and the 100% value displayed along the “2_Active” value-line). 

We can observe that the distributions of the “Outcome” variable (‘status_dich_disc’ on top of the graph) 

have changed, compared to the baseline distribution of the model, shown in the graph of Figure 16: the 
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probability of value “1_Pesistent-or-Flair” has substantially increased and that of “2_Inactive” has greatly 

decreased, giving a bad prognosis. The small vertical black-line that appears inside each coloured value-box 

indicates the original percentage of the value in the dataset, before tweaking anything. We can reset the 

graph to its original form by clicking on the “Clear” button in the top right corner of AITION. 

Similarly, the probability of more aggressive treatment (MTX) in this case has increased, as shown by the 

modified distributions of the “Therapy Follow-up” variable (‘therapFU_disc’), under the “Outcome” node. 

Note also that to the left of the long purple vector bar there appears a percentage indicating how many of 

the patients in our data sample match the specified vector (e.g. in this case, only 2% of patients in the JIA 

data have TMJ involvement). This shows that a very small sample supports this conclusion; however, JIA 

clinicians confirmed that TMJ involvement is a known ‘bad’ joint, validating this association. 

 

Figure 18: Inference example: setting TMJ (“tmj_disc” node) active. 

On the question of validating the graph, JIA clinicians were happy that the JIA model showed most expected 

dependencies, such as the ones discussed above (TMJ and Therapy Follow-Up being strongly connected to 

Outcome). Going ‘down the graph’, they were also not surprised that therapy is connected with the number 

of active joints and that this in turn is connected to the various joints in our data set. The dip-knee connection 

is an inverted one: those having dip involvement, have less probability of knee involvement (explainable by 

the various subtypes of JIA). They were a bit surprised by the connection between ESR, NSAIDs and the inter-

tarsals on the one hand with elbow on the other hand, so they may explore this a little bit further. The 

problem here is that the elbow is not a typical joint of any subtype. On the other hand, the inter-tarsals are 

a typical joint of a JIA subtype which is associated with high ESR and which tends to be treated with NSAIDs, 

so those three are explainable. In the correlation graph, it seems that elbow is positively correlated with the 

inter-tarsals, so we should maybe start to say that also the elbow is a typical joint of this particular subtype. 

On the other hand, the connection between gender and therapy was surprising at first sight, but then again 

this may be due to different subtypes of JIA being more frequent in females or males and being treated 

differently. The connection between ANA positivity and young females at onset is very firm knowledge, so 
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they were pleased that we found that too. The excluded variables were not so surprising to clinicians, 

although uveitis should be associated with ANA positivity, but it may have failed to pick up that relationship 

due to the small numbers. I general, they concluded that this was “very nice work and interesting to look at 

and to reason about”, prompting them with ideas for follow-up studies.  

In Figure 19 & Figure 20, the user selects different treatment values of the “Therapy Follow-up” variable and 

observes the effect on prognosis and other variables. 

 

Figure 19: Inference: Treatment plan set to Injections. 

 

Figure 20: Inference: Treatment plan set to Biologics. 



D. 16.3 Final Release of KDD & Simulation platform MD-Paedigree - FP7-ICT-2011-9 (600932) 

 

23 
 

Different “what-if?” scenarios are explored in the following screenshots. In Figure 21, the clinician explores 

what could happen if a new patient arrives with two active knee joints and symmetry (i.e. setting the values 

of three JIA variables). In addition, in the following three figures s/he also investigates what the model 

predicts for this patient if treated with injections (Figure 22), MTX drug (Figure 23), or Biologics (Figure 24). 

 

Figure 21: What-if a new patient arrives with 2 active knee joints & symmetry? 

 

Figure 22: What if.. Therapy = inject? 
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Figure 23: What if.. Therapy = MTX? 

 

 

Figure 24: What if.. Therapy = Biologics? 
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4. DeepReasoner: web-based prototype for supporting evidence-based 

decision making1 

As deep learning intrinsic mechanisms are very difficult to understand, deep neural networks are considered 

as black boxes. Assessing the confidence of a model or even exposing some evidence of how a decision is 

taken remains challenging. For this reason, we propose to integrate DL-based models within a case-based 

reasoning framework. Starting from our previous experience on this topic, we achieved a complete re-

foundation of our case-based reasoning technology we call now DeepReasoner. Not only the prototype itself, 

where the front-end was completely re-designed and re-implemented as well as its back-end, but also the 

machine learning technology at the core of the case-based reasoning engine were improved. Our former web 

prototype implemented in Java and served by a Jetty server supports similarity searches that use classical 

distance functions, such as Euclidean distance, computed over the selected clinical variables. While classical 

distances are well-studied and therefore easy to interpret, they do not cope well with the large 

dimensionality, the presence of uninformative features, or the large difference in dimensionality and scales 

between different sources of information. All of these features are found in the heterogeneous and multi-

modal data that are being acquired in this project. Moreover, classical distances are by design not aware of 

the context and thus cannot weight the importance of the parameters according to the current use case.  

We proposed an enhancement of the underlying knowledge-discovery engine that has the potential to 

overcome these limitations of similarity search, based solely on classical distance functions. This new 

development uses the deep learning models we described in the previous section of this deliverable to derive 

compact task-specific patient representations that can then be analysed in several ways, including through 

similarity estimations. Moreover, we completely redesigned the front end as well as the back-end using 

modern web technologies such as html5, JavaScript and server side scripting node.js. The retrieval engine 

itself is implemented as an azure machine learning web service using python scripting language and the keras 

deep learning library. On the side of the front-end, results analysis and visualization such as computing 

prediction histograms and graph clustering are implemented in JavaScript.  

In a nutshell, DeepReasoner consists of two main components: i) a deep-learning based encoder that 

converts patient parameters into a compact representation and ii) a retrieval system that permits to retrieve 

from a database relevant patients as well as their corresponding outcome.  

As shown in the figure below, the web application is served by a virtual machine that communicates with the 

DeepReasoner back-end through a tunnel for querying predictions. Serving the web app as well as 

communicating with the back-end is done using https. 

                                                           
1 For the reader’s convenience, this section also appears reprinted in D9.4 (Report on predictive risk models 

and their quantitative evaluation), where the DeepReasoner is used for predictive modelling. 
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Figure 25: DeepReasoner in the cloud 

 

The DeepReasoner workflow consists of the following steps: 1) a query dataset is uploaded either from the 
Gnubila platform through the “Query Management” or directly from a user’s computer, 2) a use-case is 
selected from the list of available use cases, 3) a query case is selected, a number of retrieved cases is chosen 
and the query is sent to the back-end, 4) results are presented to the user in the form of a prediction 
histogram, a distance heat map as well as a patient graph. Interaction is possible with the different 
visualizations that are implemented using d3js technology. Users can change the number of bins for the 
prediction histogram, and the threshold for graph clustering can be changed. The latter triggers a re-
clustering of the graph implemented in JavaScript and computed directly in the browser.  The different steps 
are shown below. 

 

 

 
Figure 26: Upload query 
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Figure 27: Select use case 

 

 

 
Figure 28: Setup query 

 

 

 
Figure 29: Visualize prediction distribution 
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Figure 30: Visualize similarity between cases through distance heat map 

 

 

 
Figure 31: Visualize patient graph and perform clustering in the browser 

 

5. Personalization of the Whole-Body Circulation Model 

For the personalization of the whole-body circulation model we use a set of standard objectives, formulated 
based on systolic, diastolic and average arterial/venous aortic pressure, interval of time during which the 
aortic/pulmonary valve is open, and maximum and minimum left/right ventricular volume. The 
personalization of the whole-body circulation model, which is used to provide input features for the 
DeepReasoner, was updated as follows: beyond this set of 12 objectives, the personalization based on the 
following objectives was improved. 
 
1. Pressure based objectives 
Based on the shape of the pressure curves, the following objectives are defined (Figure 1): 
- Slope1: the slope of the systolic pressure during early systole (before the valve opens) 
- PDia: the ventricular pressure at mid diastole 
- Slope2: the slope of the aortic pressure decay during diastole 
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Figure 32: Additional pressure based objectives. 

 

2. Volume based objectives 
Based on the shape of the volume curve, the patients are classified into three categories (Figure 2): 
 

 
Figure 33: Additional volume based objectives. 
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a. Patients with diastolic plateau 

- Δt1: the delta time on the volume curve between two identical volume values (one in systole and 
one in diastole), at a volume level of 30% between minimum and maximum volume 

- Slope1: the slope of the volume curve in diastole at the above defined volume value 
- Δt2: the duration of the diastolic plateau 
- Slope2: the slope of the volume curve when the atrium contracts 
- Level of diastolic plateau, expressed in percentages between the min and max volume 

 
b. Patients with diastolic volume increase during early diastole 

- Δt1: the delta time on the volume curve between two identical volumes (one in systole and one 
in diastole), at a volume level of 30% between minimum and maximum volume 

- Slope1: the slope of the volume curve in diastole at the above defined volume value 
 

c. Patients with no diastolic plateau but with different slopes during diastole 
- Slope1: the slope of the volume curve in early diastole, before atrial contraction 
- Slope2: the slope of the volume curve in late diastole, after atrial contraction 
- Volume level at which atrial contraction starts 

 

The updated personalized whole-body circulation model was used to re-personalize all patients with CVD risk 

(WP4). The figures below display two samples which exemplify the excellent match between computed and 

measured volume curves. 

 
Figure 34: Comparison between computed and measured LV volume for an OPBG patient (left) and a UCL patient (right). 
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