

IST Amigo Project
Deliverable D3.4

Amigo Overall Middleware: First

Prototype Implementation &
Documentation

First integrated methodology (‘how to’) for employing
the middleware

IST-2004-004182

Public

May 2007 Public

Amigo IST-2004-004182 1/103

Project Number : IST-004182

Project Title : Amigo

Deliverable Type : Report and Prototype

Deliverable Number : D3.4

Title of Deliverable : Amigo Overall Middleware: First Prototype
Implementation & Documentation – First integrated
methodology (‘how to’) for employing the middleware

Nature of Deliverable : Public

Internal Document Number : amigo_d3.4_correctedfinal

Contractual Delivery Date : 28 February 2007

Actual Delivery Date : 21 May 2007

Contributing WPs : WP3

Editor(s) : INRIA: Graham Thomson, Nikolaos Georgantas

Author(s) : FT: Anne Gérodolle, Mathieu Vallée

 ICCS-NTUA: Ioanna Roussaki, Dimitris Tsesmetzis,
Yiannis Papaioannou, Miltiades Anagnostou

 IMS: Edwin Naroska
 INRIA: Graham Thomson, Sébastien Bianco, Nikolaos

Georgantas, Sonia Ben Mokhtar, Valérie Issarny,
Nicolas Palix, Charles Consel, Laurent Réveillère,
Wilfried Jouve

 Microsoft: Ron Mevissen, Stephan Tobies, Rich
Hanbidge

 TELIN: Pravin Pawar, Remco Poortinga

 TID: José María Miranda, Álvaro Ramos, David
Cordón, Andrés Tuells

 VTT: Jarmo Kalaoja, Ilkka Niskanen, Toni Piirainen

Abstract
D3.4 concerns the first overall prototype implementation and associated documentation of the
Amigo middleware. Specifically, we present in this document the first integrated methodology
(‘how to’) for employing the Amigo middleware. D3.4 comprises: (i) the present document; (ii)
developed source code of components; (iii) developed service description vocabulary and
language ontologies; (iv) user's guide and developer's guide documents for components and
ontologies; and (v) Javadoc-style and OWLDoc electronic documentation for components and
ontologies. Delivered material besides the present document can be accessed on the Amigo
OSS Repository - Public Web site (http://amigo.gforge.inria.fr/home/index.html). The present
document, more specifically, proposes a set of “HOWTO” guides oriented towards the Amigo
application and service developer. Together, these showcase the functionalities of the Amigo
middleware, describing the options a developer has for creating Amigo services and

May 2007 Public

Amigo IST-2004-004182 2/103

applications. The Amigo middleware is comprehensive, providing support for a large number
of aspects of creating novel applications for the networked home environment. A HOWTO is
provided for each approach for a particular aspect that the middleware supports. Each
HOWTO highlights the features of a particular approach, and where alternatives exist, the
relative advantages of each. In this way, the Amigo developer can use this document to assist
in quickly choosing the best approach for the task at hand, and familiarizing themselves with
how to use the approach in the development of their own Amigo services and applications.

Keyword list
HOWTO, ambient intelligence, networked home system, interoperability, mobile / personal
computing / consumer electronics / domotic domain, semantic concept, ontology, service
description vocabulary, service description language, semantic reasoning, service matching,
service composition, service adaptation, service execution, middleware, service discovery
protocol, service interaction protocol, programming and deployment framework, context,
quality of service, multimedia streaming, content distribution, security, data storage.

May 2007 Public

Amigo IST-2004-004182 3/103

Table of Contents

Table of Contents ...3

Figures ..7

Tables ..8

1 Introduction...9
1.1 References.. 11

2 How to develop a basic service...12
2.1 Overview ... 12

2.1.1 Objectives and principles.. 12
2.1.2 Features.. 12
2.1.3 Assessment .. 13

2.2 How to develop a service with the .Net programming and deployment
framework.. 13

2.2.1 Principles and prerequisites.. 13
2.2.2 How to develop, deploy and use services .. 14

2.2.2.1 Discovery, deployment and eventing terminology and libraries... 14
2.2.2.2 Sample server... 14
2.2.2.3 Sample client .. 15
2.2.2.4 Sample server with discovery... 15
2.2.2.5 Sample client with discovery .. 16
2.2.2.6 Sample server with eventing (event source) .. 16
2.2.2.7 Sample client with eventing (event sink) .. 17

2.2.3 Resources... 17
2.3 How to develop a service with the OSGi programming and deployment
framework.. 17

2.3.1 Principles and prerequisites.. 17
2.3.1.1 Development... 17
2.3.1.2 Run-time.. 18

2.3.2 How to develop, deploy, and use services ... 18
2.3.2.1 How to create an API bundle.. 18
2.3.2.2 How to create a bundle that provides an Amigo service.. 18
2.3.2.3 How to create a bundle that uses an Amigo service.. 19
2.3.2.4 How to deploy bundles ... 20
2.3.2.5 How to create an OBR repository... 21
2.3.2.6 How to add bundles to the Amigo bundle repository ... 21

2.3.3 Some Amigo services using the OSGi framework.. 21
2.3.4 Resources... 22

3 How to develop a secure service ..23
3.1 Overview ... 23

3.1.1 Objectives ... 23

May 2007 Public

Amigo IST-2004-004182 4/103

3.1.2 Principles .. 23
3.1.3 Assessment .. 24

3.2 How to develop a secure service ... 24
3.2.1 Service implementation .. 24
3.2.2 Registering and hosting a secured service... 25

3.3 How to develop a secure service client ... 27
3.4 Resources... 29

4 How to develop a semantic service ..30
4.1 Overview ... 30

4.1.1 Objectives and principles.. 30
4.1.2 Features.. 31
4.1.3 Assessment .. 32

4.2 How to write a semantic service description .. 32
4.2.1 Functional service description .. 32
4.2.2 Context-aware service description.. 40
4.2.3 Quality of service aware service description... 40
4.2.4 Event-based service description... 42

4.3 How to register a semantic service with the service repository 44
4.4 Resources... 44

5 How to develop a semantic service-based application.................46
5.1 Overview ... 46

5.1.1 Objectives and principles.. 46
5.1.1.1 Workflow-based service composition ... 46
5.1.1.2 Strategy-based service composition .. 46
5.1.1.3 Context-aware service discovery.. 46
5.1.1.4 Quality of service-aware service discovery .. 47
5.1.1.5 Event-based service composition... 47

5.1.2 Features.. 47
5.1.2.1 Workflow-based service composition ... 47
5.1.2.2 Strategy-based service composition .. 48
5.1.2.3 Context-aware service discovery.. 48
5.1.2.4 Quality of service-aware service discovery .. 49
5.1.2.5 Event-based service composition... 49
5.1.2.6 Future integration.. 50

5.1.3 Assessment .. 50
5.1.3.1 Workflow-based service composition ... 50
5.1.3.2 Strategy-based service composition .. 50
5.1.3.3 Context-aware service discovery.. 50
5.1.3.4 Quality of service-aware service discovery .. 51
5.1.3.5 Event-based service composition... 51

5.2 How to develop an application that integrates complex service workflows...... 52
5.3 How to develop an application using strategy-based composition and a
composition visualisation tool .. 57

May 2007 Public

Amigo IST-2004-004182 5/103

5.3.1 Overview of the composition framework... 57
5.3.2 An example scenario .. 57
5.3.3 Simulating service composition logic using the VantagePoint tool 58
5.3.4 Describing a composition using the ESRR framework 63

5.4 How to develop an application that integrates context-aware services............. 65
5.5 How to develop an application that integrates QoS-aware services 68
5.6 How to develop an application that integrates event-based services 69
5.7 Resources... 70

6 How to develop a domotic service ..72
6.1 Overview ... 72

6.1.1 Objectives ... 72
6.1.2 Principles and features ... 72
6.1.3 Assessment .. 72

6.2 Motivating example.. 73
6.3 Understanding the domotic service model ... 74

6.3.1 Use example... 77
6.4 How to develop a low-level driver .. 79

6.4.1 Use example... 79
6.5 How to use a high-level driver .. 80

6.5.1 WebService builder... 80
6.5.2 UPnP device builder ... 80

7 How to develop a multimedia content application81
7.1 Overview ... 81

7.1.1 Objectives and principles.. 81
7.1.2 Features.. 81
7.1.3 Assessment .. 81

7.2 Motivating example.. 82
7.3 Content distribution set up ... 82
7.4 Basic principles ... 83
7.5 How to browse content devices ... 83
7.6 How to find content ... 85
7.7 How to update content metadata ... 87
7.8 How to start and control playback sessions... 89
7.9 How to adapt and use adapted content ... 91
7.10 Further examples and references .. 92
7.11 Resources... 92

8 How to use the Datastore to store persistent data within the
Amigo network ...93

May 2007 Public

Amigo IST-2004-004182 6/103

8.1 Overview ... 93
8.1.1 Objectives and principles.. 93
8.1.2 Features.. 93
8.1.3 Assessment .. 93

8.2 How to create compartments.. 94
8.3 How to work with compartments.. 95
8.4 How to use the history .. 96
8.5 Resources... 97

9 How to use home system deployment, configuration and
management ...98

9.1 Overview ... 98
9.1.1 Objectives and principles.. 98
9.1.2 Assessment .. 99

9.2 Platform support .. 99
9.3 Overview of the deployment client component (.Net) .. 99

9.3.1 Packages .. 99
9.3.2 Package tool ... 100

9.4 How to use the deployment client SDK (.Net implementation) 100
9.4.1 Client side – deployment .. 100

9.5 How to use the management console interface (Web Service) 101
9.5.1 Deployment... 101
9.5.2 Control .. 101
9.5.3 Diagnose... 101

10 Conclusion...103

May 2007 Public

Amigo IST-2004-004182 7/103

Figures

Figure 4-1: The events.owl ontology .. 43
Figure 4-2: LightSensor, Light and LightManager service descriptions....................... 44
Figure 5-1: An overview of the steps involved in the SD-SDCAE composition process

... 52
Figure 5-2: Example scenario visualization in VantagePoint 58
Figure 5-3: Services to be composed... 59
Figure 5-4: Participating modules in simulation ... 59
Figure 5-5: Query sequence... 60
Figure 5-6: Service discovery simulation.. 61
Figure 5-7: Dynamic discovery of services... 62
Figure 5-8: Simulating context events .. 63
Figure 5-9: QoS-aware service selection process ... 69
Figure 5-10: Pantachou example of the LightManager.. 70
Figure 6-1: The Amigo Domotic Infrastructure ... 73
Figure 6-2: Domotic service model interfaces.. 75
Figure 7-1: Content Distribution Setup ... 83
Figure 7-2: Devices List.. 85
Figure 7-3: MMC Content Available screen ... 87
Figure 7-4: MMC Modify Content ... 88
Figure 7-5: MMC Play Content... 90
Figure 9-1: A schematic overview of the management console and deployment client

... 99

May 2007 Public

Amigo IST-2004-004182 8/103

Tables

Table 2-1: A comparison of the features supported by the .NET and OSGi
programming and deployment frameworks... 13

May 2007 Public

Amigo IST-2004-004182 9/103

1 Introduction

This deliverable concerns the first overall prototype implementation and associated
documentation of the Amigo Base Middleware (or simply middleware), after the two previous
partial prototypes of Deliverables D3.2 [Amigo-D3.2] and D3.3 [Amigo-D3.3]. Specifically, we
present in this document the first integrated methodology (‘how to’) for employing the Amigo
middleware. We propose a set of “HOWTO” guides oriented towards the Amigo application
and service developer. Together, these showcase the functionalities of the Amigo middleware,
describing the options a developer has for creating Amigo services and applications. Our
HOWTO guides are detailed enough to give a comprehensive overview of all the capabilities
of the middleware offered to the developer and the basic steps for using these capabilities.
They further reference other more detailed sources – in particular, the user’s guide and
developer’s guide documents accompanying each middleware component, which are
discussed below – where the developer can find component specifications and thorough
examples of use. Further, this document includes a first qualitative assessment of the Amigo
middleware, where we state the added value of each of the proposed middleware
functionalities for the application developer. Actually, this is the first version of a living HOWTO
document for the Amigo middleware, which will be updated based on feedback from the
ongoing integration of the middleware into the application work packages WP5, 6, 7.

This document is complemented by the actual Amigo middleware prototype and its online
documentation, where we follow the reporting model and update the material of the previous
deliverables D3.2 and D3.3:

− On the Amigo OSS Repository - Public Web Site [Amigo-OSS-Pub] (see [Amigo-D9.5]), for
each component under development:

o Source code of the current prototype version;

o User's guide and developer's guide documents, if already available;

o Javadoc1 (or equivalent for C#) documentation, if already available.

− On [Amigo-OSS-Pub], for the service description vocabulary and service description
language:

o OWL specification of the current version;

o User's guide and developer's guide documents, if already available;

o OWLDoc2 (follows the same principle as Javadoc) documentation, if already
available.

We note here that, with regard to component/ontology implementation and documentation, our
focus during the last 6 months has been on completing the implementation of the
components/ontologies; we have, thus, released complete versions for all of them.
Consequently, the online documentation that we provide for certain components is still at an
early stage and will take a form closer to complete when the almost final, public versions of
components/ontologies will be available. Certainly, there are already a number of advanced
user's guide and developer's guide documents for some of the components, which are
specifically referenced by the present HOWTO document.

Introducing further the present document, we point out that it presents the comprehensive
Amigo middleware, which provides support for a large number of aspects of creating novel

1 http://java.sun.com/j2se/javadoc/
2 http://www.co-ode.org/downloads/owldoc/co-ode-index.php

May 2007 Public

Amigo IST-2004-004182 10/103

applications for the networked home environment. A HOWTO is provided for each approach
for a particular aspect that the middleware supports. Each HOWTO highlights the features of a
particular approach, and where alternatives exist, the relative advantages of each. In this way,
the Amigo developer can use this deliverable to assist in quickly choosing the best approach
for the task at hand, and familiarizing themselves with how to use the approach in the
development of their own Amigo services and applications.

The first HOWTO of the deliverable, “How to develop a service” is presented in Chapter 2, and
describes how the OSGi and .Net programming frameworks provided by the Amigo
middleware allow a Java or C# developer to: make a Java or C# object remotely available as
an “Amigo Service” (that is, a networked entity able to answer remote HTTP/SOAP calls, and
act as an asynchronous event source); publish an Amigo service through WS-discovery;
discover Amigo services using WS-discovery; and interact with discovered Amigo services,
that is, place remote calls, subscribe to an event source and asynchronously receive events.

Then in Chapter 3, “How to develop a secure service”, a HOWTO is provided which informs
the Amigo developer how to secure access to the services in the home.

In Chapter 4, “How to develop a semantic service”, HOWTOs are provided covering the range
of options the Amigo developer has for describing semantic services, including simple, atomic
capability descriptions, complex conversation-based capability descriptions, event-based
service descriptions, as well as context-aware and quality-of-service descriptions. The use of
the Amigo semantic service repository is also covered in this chapter.

Chapter 5, “How to develop a semantic service-based application”, provides HOWTOs that
illustrate how to develop an Amigo application that exploits the suite of service discovery and
service composition methods that the Amigo middleware offers.

There are a number of off-the-shelf domotic systems and devices based on technologies such
as BDF, EIB, and X10, which can be installed at home but cannot be directly integrated within
the Amigo platform. Chapter 6, “How to develop a domotic service”, describes the steps
required to develop a domotic service, and how to integrate a domotic device into the Amigo
system.

Chapter 7, “How to develop a multimedia content application”, walks the reader through
building an application that uses the Amigo Middleware to manage and render multimedia
content.

The Amigo Datastore is a service that implements a simple persistency layer for storing data
within the Amigo networked home, and Chapter 8 provides a tutorial on how to use this
service.

The last HOWTO of this deliverable is provided in Chapter 9, “How to use home system
deployment, configuration and management”, which illustrates the use of the Amigo home
management console, which provides the inhabitants/administrator of an Amigo home with a
single point of contact regarding service control and diagnostics for the home’s networked
environment.

Finally, Chapter 10 concludes this deliverable, summarizing the main features presented by
these HOWTOs.

May 2007 Public

Amigo IST-2004-004182 11/103

1.1 References

[Amigo-D3.2] Amigo Consortium. Deliverable D3.2: Amigo Middleware Core -
Prototype Implementation & Documentation. March 2006.

[Amigo-D3.3] Amigo Consortium. Deliverable D3.3: Amigo Middleware Core
Enhanced: Prototype Implementation & Documentation. October
2006.

[Amigo-D9.5] Amigo Consortium. Deliverable D9.5: Web site for sharing open
source software developed within Amigo. March 2006.

[Amigo-OSS-
Pub]

Amigo Consortium. Amigo OSS Repository - Public Web Site.
http://amigo.gforge.inria.fr/home/index.html

May 2007 Public

Amigo IST-2004-004182 12/103

2 How to develop a basic service

2.1 Overview

2.1.1 Objectives and principles
Development of a basic service, i.e. a service that follows certain syntactic standards and has
not (but may further be enriched with) a semantic description, is based on the Amigo
programming and development framework.

A basic service may be a middleware (Base Middleware or Intelligent User) service or an
application service.

The goal of the programming and deployment framework is two-fold:

• help developers programming Amigo services (or applications using Amigo services)
without caring about underlying protocols, so as to reduce programming effort and
enforce interoperability;

• maintain a repository of Amigo components that can be deployed on .Net or OSGi
platforms.

The use of this framework is not mandatory, and developers may also package Amigo-aware
services as independent applications that are to be deployed on a given system or hardware
(as they see fit). Both kinds of components will be able to interact within the same Amigo
environment through service discovery protocols, communication protocols and (when
necessary) interoperability methods. However, the use of the framework reduces programming
effort, eases reusability of components and enforces interoperability.

The programming framework is based on the following protocols:

• WS-Discovery for publishing and discovering Amigo services;

• HTTP/SOAP for remote method invocation;

• WS-Eventing for subscription to event sources.

We have made additional restrictions for the use of these protocols. For example, the WS-
Eventing standard does not specify the transport protocol to be used for event delivery. The
programming framework uses TCP. This is transparent to the developer. However, event
sources or consumers developed outside the framework can interact with event sources or
consumers based on the programming framework, provided they use TCP for event delivery.

2.1.2 Features
The OSGi and .Net frameworks allow a Java or C# developer to:

• make a Java or C# object remotely available as an “Amigo Service” (that is, a
networked entity able to answer remote HTTP/SOAP calls, and act as an
asynchronous event source);

• publish an Amigo service through WS-Discovery;

• discover Amigo services using WS-Discovery;

• interact with discovered Amigo services, that is, place remote calls, subscribe to an
event source and asynchronously receive events.

May 2007 Public

Amigo IST-2004-004182 13/103

A Java client may discover and interact with C# .Net services, and vice versa. However both
frameworks have their own particularities. These particularities are detailed in the following
sections; here are the main differences:

Feature .Net framework OSGi framework

• Deployment platform • .Net • OSGi

• Operating system • Windows (XP, CE, …) • Windows(XP, CE, ...),
Linux, Mac OS

• Integration in an IDE • Yes (Visual) • No

• WSDL handling • Complete • Incomplete

Table 2-1: A comparison of the features supported by the .NET and OSGi programming and
deployment frameworks

2.1.3 Assessment
The programming and deployment framework allows developers to program Amigo services
(or applications using Amigo services) without caring about underlying protocols. The
framework handles the protocols for announcement and discovery of remote services (WS-
Discovery), synchronous interaction (HTTP/SOAP) and subscription to asynchronous sources
of events (WS-Eventing).

Using this framework limits the problems of incompatibility due to different interpretations of
the protocol specifications.

Several components in Work Package 3 and other work packages are using this framework.
This eases understanding among developers.

Management tools exist or will be built, so that it will be possible to install, manage and
monitor in a unified way, components that are deployed over the .Net or the OSGi framework.

2.2 How to develop a service with the .Net programming and deployment
framework

2.2.1 Principles and prerequisites
The .Net programming framework is composed of several .Net libraries on top of the standard
Microsoft .Net and .NetCF (.Net Compact Framework) platforms that all together enable
application developers to build service-oriented components without having to deal with
protocol details or complex structures. These libraries offer additional discovery, deployment
and eventing mechanisms, that are not available in the standard .Net and .NetCF platforms,
based on Web Service standards (resp. WS-Discovery, Web Services, and WS-Eventing).

The .Net platform is used on desktop, laptop and tablet PCs whereas the .Net Compact
Framework is used on PDAs and SmartPhones.

The .Net or .NetCF runtime (available from http://download.microsoft.com) is required for
these components at runtime. The .Net or .NetCF SDK is required at development time (also
available from the link above). Although the components are written using C#, the binary form
is a standard .Net library and can therefore be used with any .Net (e.g., Visual Basic .Net or
the free Visual Studio Express editions) compliant language/tool.

May 2007 Public

Amigo IST-2004-004182 14/103

2.2.2 How to develop, deploy and use services
A service-oriented architecture is always composed of a client and a server component. As
such, the .Net libraries offer functionality for both sides (as far as the standard Microsoft .Net
platform doesn’t already support it; an example is the client side of a web service that is
natively supported by .Net).

The latest version can be downloaded from the public Gforge website:
http://amigo.gforge.inria.fr/. After installation the following directory structure is created:

\Program Files\EMIC\EMIC WSDiscovery Framework

• the main directory containing the license and the online documentation

\Program Files\EMIC\EMIC WSDiscovery Framework\Code

• the main directory for the source, binaries and example code

\Program Files\EMIC\EMIC WSDiscovery Framework\Code\Final

• the components (in binary form for .Net and .Net Compact Framework) that a
developer should use when using the .Net programming framework

\Program Files\EMIC\EMIC WSDiscovery Framework\Code\Picture Frame Sample

• the example source code of a picture frame application (client and server)

\Program Files\EMIC\EMIC WSDiscovery Framework\Code\WSDiscovery

• the source code for the .Net components

\Program Files\EMIC\EMIC WSDiscovery Framework\Code\Dependencies

• the components necessary for the sample to run

2.2.2.1 Discovery, deployment and eventing terminology and libraries
A service-oriented architecture is composed of at least one server and one client component.
The Amigo project selected Web Services as the interoperability protocol, thus developers
need to write (and deploy) a Web Service. This is enabled by the
EMIC.WebServerComponent.dll (this can be found in the ‘Final’ directory discussed in the
previous section). This component is used for the server side. A client will use Web Services
to call methods on the server. There is no additional component necessary since this is
natively supported by the .Net platform (http://msdn.microsoft.com/webservices)

Web Services are hosted on devices and there might be many of them available in an Amigo
system. Locating a Web Service (that is, getting their network address) is solved by discovery.
This is enabled (for client as well as server side) by the EMIC.WSDiscovery.dll (also in the
‘Final’ directory).

Eventing is a mechanism that allows components to be notified over the network with signals.
These signals are called events and can potentially carry data with them (e.g.: the location of a
user changed, where the new location is the data carried by the event). Eventing is enabled by
the EMIC.WSEventing DLL.

2.2.2.2 Sample server
(Note: a full working example can be found in the ‘Code’ directory after installing the EMIC
Programming Framework).

May 2007 Public

Amigo IST-2004-004182 15/103

A simple server (one that returns the current date/time) requires a class that implements the
server component (sample implementation in C#):
 public class MyFirstService
 {
 [WebMethod]
 public DateTime GetDateTime()
 {
 return DateTime.Now;
 }
 }

(For details, please read the Web Service introduction at
http://msdn.microsoft.com/webservices)

This class exposes a single method as a Web Service method (GetDateTime()).

The first step to deploy this class as a Web Service is to register an instance of this class with
the EMIC.WebServerComponent DLL:
 WebServer.Port = 8080;
 WebServer.AddWebService(“MyFirstService”, new MyFirstService());

The first line instructs the WebServer to use port 8080 (0 (zero) could also be used as the port,
in which case the WebServer will chose an arbitrary free port).

The second line creates a new instance of the MyFirstService class and registers it with the
WebServer component under the virtual directory “MyFirstService”. Note: multiple services can
be registered with a single WebServer as long as they all use different virtual directories.

The web service is now registered with the following address:
http://<machinename>:8080/MyFirstService/service.asmx

2.2.2.3 Sample client
For the client, we rely on the standard .Net functionality of generating client stubs (proxies) for
Web Services. This can be done using the wsdl.exe tool or directly from the Visual Studio IDE
(by adding a web reference to the address above after which proxy code is generated
automatically).

2.2.2.4 Sample server with discovery
Adding discovery (making a service discoverable) using the .Net Programming Framework is
shown below: it uses the server code from above and adds the following extensions (shown in
boldface) making the service discoverable.
 [Location(“MyLocation”)]
 [Endpoint(“MyEndPoint”)]
 [Type(“MyType”)]
 [Scope(“MyScope”)]
 public class MyFirstService : DiscoverableService
 {
 [WebMethod]
 public DateTime GetDateTime()
 {
 return DateTime.Now;
 }
 }

The location, endpoint, type and scope attribute are metadata that are used in the discovery
process and are fully detailed in the online documentation.

The DiscoverableService is a base object that takes all complexity away from the developer
and handles WS-Discovery automatically. The announcement (Hello and Bye in WS-
Discovery) are connected to the object’s lifetime so that a Hello message is sent when the
object is instantiated and a Bye when the object is disposed.

May 2007 Public

Amigo IST-2004-004182 16/103

2.2.2.5 Sample client with discovery
The .Net programming framework also has support for client side discovery. There are two
ways of locating a service with WS-Discovery. The first is by scope and type and is called a
Probe. A query is sent to the network and all services implementing this scope and type
answer (refer to the scope and type attribute demonstrated in the code snippet of the previous
section). The second one is by Endpoint reference (again, refer to the code snippet of the
previous section, but this time for the Endpoint attribute) and is called Resolve. An Endpoint is
a unique reference to a specific service (instance), hence only that service will answer.

Two objects, a ProbeClient and a ResolveClient can be used for the two previously described
query methods. Their API is very similar:
 ProbeClient pc = new ProbeClient();
 pc.AddServiceScope(new ServiceScope(“MyScope”));
 pc.AddServiceType(new ServiceType(“MyType”));
 pc.SendProbe();
 Thread.Sleep(3000);
 Console.WriteLine(“I found “+pc.ProbeMatches.Count” services.”);

The first line instantiates a ProbeClient object followed by two lines that add the query
requirements: the Scope and the Type we are looking for. The fourth line sends out the probe
over the network. The sleep of 3 seconds (3000 milliseconds) allows the probes to arrive. The
answers to the probe can be received through the ProbeMatches property of the ProbeClient
object.

Note: there is also an asynchronous way to get notified for every arriving answer, see the
online documentation for further details.

An example of a resolve can be found is given below:
 ResolveClient rc = new ResolveClient();
 rc.EndpointReference = new EndpointReference(“MyEndpoint”);
 rc.SendResolve();
 Thread.Sleep(3000);
 if (rc.ResolveMatches.Count != 0)
 Console.WriteLine(“I found the service.”);

Note: there is also an asynchronous way to get notified for every arriving answer, again see
the online documentation for further details.

2.2.2.6 Sample server with eventing (event source)
When using the .Net programming framework, eventing can be added to an existing Web
Service (see section “Sample server” above). The mechanism used is standard C# events that
are mapped to WS-Eventing events. The following example shows how this can be done:
 [WSEvent(“MyFirstEvent”)]
 public class MyFirstService
 {
 public event EventHandler<WSNotificationEventArgs> MyFirstEvent;

 [WebMethod]
 public DateTime GetDateTime()
 {
 if (this.MyFirstEvent != null) // C# event signal
 this.MyFirstEvent(this, null); // (continued)

 return DateTime.Now;
 }
 }

The WSEvent attribute tells the underlying deployment module
(EMIC.WebServerComponent.dll) that the C# event with the name MyFirstEvent should be
mapped to a WS-Eventing event. Now, every time the C# event is fired (see the commented
lines), a WS-Eventing event is sent out to the network.
(Note: the check if the event is not null checks if there are any subscribers, there is an implicit

May 2007 Public

Amigo IST-2004-004182 17/103

subscriber – the underlying deployment module – but if not, a null pointer exception would be
thrown).

The code above is only for sample purposes (not functional): an event is fired every time
somebody calls GetDateTime().

An event may carry additional data. See the online documentation for further details and
example code.

2.2.2.7 Sample client with eventing (event sink)
Events can be received using the WSEventSink object:
 private void EventReceived(string eventName,
 NotificationData notificationData,
 bool subscriptionEnded)
 {
 Console.WriteLine(“Received event”);
 }
 …
 WSEventingSink sink = new WSEventingSink(
 new Uri("http://<machinename>:8080/MyFirstService/event")))
 sink.Subscribe(this.EventReceived);

The last three lines first create an instance of the WSEventSink object, and then register the
EventReceived method to be called every time an event is received. In the example above, the
address of the event source is hard coded. When combined with discovery, the address that is
received from the Probe/ResolveClient can be used.

In the example above, the event sink (client) subscribes to all events from that source (server).
There are additional methods to specify which events a sink wants to subscribe to. Besides
this, subscriptions have an expiration period and need to be renewed. See the online
documentation for more details and example code.

2.2.3 Resources
http://download.microsoft.com (frameworks, SDK)

http://msdn.microsoft.com/webservices (Web Service technology)

http://amigo.gforge.inria.fr/ (open source Amigo repository)

2.3 How to develop a service with the OSGi programming and
deployment framework

2.3.1 Principles and prerequisites
The OSGi programming framework is mainly composed of a set of Java classes and interfaces
(packed in OSGi bundles), and some tools used during development. The API is defined by
one bundle called amigo_core, so that developers need only to include amigo_core.jar in their
compilation environment. Other Amigo bundles are used only at run-time. Instances of classes
implementing the interfaces defined by amigo_core are discovered through OSGi lookup.

2.3.1.1 Development
Development of a bundle using the Amigo OSGi framework requires a Java Development
Toolkit, at least JDK 1.3. It is further recommended to install ant from http://ant.apache.org.

May 2007 Public

Amigo IST-2004-004182 18/103

2.3.1.2 Run-time
At run-time, the components can be deployed on any CDC Java Virtual Machine, Personal
profile or above. An OSGi R3 platform is required. The framework has been tested with Oscar
1.0.5 [oscar] and Knopflerfish [Knopflerfish]. Pre-configured versions of Oscar for J2SE on PC
(Windows, MacOS, Linux), J2SE on a Linux PDA and J2ME/Personal profile on a Pocket PC
can be downloaded from http://amigo.gforge.inria.fr/obr/. See the user’s guide for more details.

2.3.2 How to develop, deploy, and use services
The Amigo OSGi programming framework is not an integrated programming framework. Java
developers may use any IDE (Integrated Development Environment) like Eclipse or Netbeans,
or no IDE at all. To allow a quick start, developers may download a template project from
[amigo_sample]. This contains all the necessary resources (Java source, build files, libraries)
to build OSGi bundles covering the following main features: creating an Amigo service and
publishing it on the network; discovering and using an Amigo service; acting as an event
source; subscribing to an event source and receiving events.

The “How-to” part of the developer’s guide [amigo_dev] details these different features, which
we rapidly review below. We distinguish between two use cases:

Use case 1. We are developing a server and a client from scratch in Java. We shall define our
API in Java and make Amigo services from plain Java classes (POJO).

Use case 2. For the server, there already exists a WSDL description. We want to write a client
that will connect to this server. This is typically the case if the service was written using the C#
framework.

We describe only the case where we are developing a client and server from scratch. The
second use case is detailed in the complete how-to, to be found in the developer’s guide on
the Amigo Gforge web site. Not covered here either is the writing of the OSGi manifest and
possible metadata files.

2.3.2.1 How to create an API bundle
First we create a bundle that will define the API of our Amigo services, and stub classes which
will be used to access Amigo services. We design the API according to our needs. We have
to use the “java2stub” tool to generate additional information and stub classes that will be
packed together with the Java interfaces in an “API bundle”.

2.3.2.2 How to create a bundle that provides an Amigo service
The first task is to create a class that implements the API we have just defined. We have then
to instantiate this class, create an “AmigoService” instance and register (if desired) this service
on the network. This looks like:
 server = new MyImplementation(…);
 AmigoExportedService myService=serviceExporter.createService(server);
 try {
 myService.exportInterface(AmigoReference.DEFAULT,Hello.class);
 logger.info("exported service with reference "+myService.getReference());
 } catch (AmigoException e) {
 System.err.println("error exporting object",e);
 }

The AmigoExportedService encapsulates any object to make it an AmigoService.
exportInterface will expose the object on the network (using a communication protocol not
decided here). In this example, only the methods defined by the Hello interface are exposed
onto the network.

May 2007 Public

Amigo IST-2004-004182 19/103

Publishing an Amigo service
We may (or may not) publish the service using WS-Discovery:
 try {
 myService.addProperty("location",mylocation);
 myService.addProperty("serviceType","HelloService");
 lookup.registerService(myService);
 } catch (AmigoException e) {
 e.printStackTrace();
 }

The service will be published using the default scope urn:amigo, the service type
“HelloService”, and in this example an additional property called “location”.

Acting as an event source
Once the service has been created, it can act as an event source. This is done by using the
EventSender and NotificationData interfaces. Here is a code excerpt that retrieves a reference
on the event sender associated to the Amigo service, creates an event containing two pieces
of information (a location and a temperature) and sends it asynchronously.
 final EventSender sender = myService.getEventSender();
 NotificationData data = new NotificationData();
 data.setProperty(“location”, myLocation);
 data.setProperty(“temperature”, temperature);
 sender.notify(“helloEvent”,data);

Calling the notify method puts the event in a queue to be asynchronously sent to all (if any)
event consumers having subscribed to this event source for the “helloEvent” type (see
“Subscribing to event sources and receiving events” below).

2.3.2.3 How to create a bundle that uses an Amigo service
We have seen the basic principles to expose an Amigo service. Now let’s see the “client” part,
that is: discovering services, invoking methods, subscribing to event sources.

Discovering an Amigo service
Amigo services are discovered using the AmigoLdapLookup methods lookup or
lookupFirstService, for example:
 AmigoService[] services = lookup.lookup ("(serviceType=HelloService)");

Invoking an Amigo service
The AmigoService we have just discovered is only a placeholder for the end point reference of
the service and some properties (e.g., the “location” property in the previous example). To
place a remote call, we will build a stub that implements the required interface.
 Hello helloService=(Hello) (services[0].getSpecificStub(Hello.class));

Then, invoking the helloWorld method on this stub will build a soap envelope containing the
request, post it to the server, retrieve the answer and decode it.
 helloService.helloWorld(someArg);

Subscribing to event sources and receiving events
To receive events, a client must provide an implementation of the EventSink interface:
 public class MyEventSink implements EventSink {…

May 2007 Public

Amigo IST-2004-004182 20/103

This interface defines two methods that we must implement:
 public void subscriptionEnded(String tag){
 System.out.println(“subscription ended”);
 }

 public void notify(String tag, NotificationData data){
 System.out.println(“received an event”);
 for (Enumeration keys=data.keys();keys.hasMoreElements();){
 String key = (String) keys.nextElement();
 System.out.println(key+”:”+data.get(key));
 }
 }

notify is called every time an event to which the event sink has subscribed is received.
subscriptionEnded will be called when the subscription ends (on the sink unsubscription
request, or on the source decision).

To receive events from an event source, we must create an instance of event sink and call the
subscribe method:
 EventSink sink=new MyEventSink();
 service.getSubscriptionManager().subscribe (sink,”helloEvent”,-1);

The -1 means that we have subscribed for ever to the event source, to receive events sent
with the “helloEvent” tag. Reception of events is done in a separate thread, and the “notify”
method of our event sink will be called each time an event is received from the source.

To unsubscribe from the event source (e.g. when the bundle is stopped) we call the
unsubscribe method:
 service.getSubscriptionManager().unsubscribe(sink);

Variants
There are several ways to obtain a stub to an Amigo service reference: lookup is only one of
them. A service may also be known by configuration (the URL is known, hard-coded or read
from a configuration file), or as the result of a remote method invocation of some bootstrapping
object. In such cases, one may use the AmigoImportedService createService method:
 AmigoReference ref = new AmigoReference(AmigoReference.SOAP,”http://......”);
 AmigoService service = AmigoImportedService.createService(ref);

Also, generating code is not mandatory. A generic API is also available.
 service.getGenericStub().invoke(“helloWorld”,parameterNames,params);

2.3.2.4 How to deploy bundles
The OSGi bundles we have just created can be deployed on any R3 compliant platform. The
user’s guide [amigo_user] shows how to install the Oscar OSGi platform and install bundles
from the Amigo Bundle Repository. Once we have installed the Amigo bundles (that is, the
core API bundle, and the protocol management bundles, amigo_wsdiscovery and
amigo_ksoap_export), we may install the bundles we created using for example the Oscar
Graphical User Interface.

There are three main ways to deploy bundles on a platform:

• At bootstrap: we may configure the OSGi platform so as to start a given list of bundles
when starting. In the case of Oscar, we should edit the system.properties file and
change the oscar.auto.start.1 property to include all bundles we need. We may use
this technique if we want to distribute an application composed of OSGi bundles but we
do not want to exhibit the OSGi aspects.

May 2007 Public

Amigo IST-2004-004182 21/103

• Installing a bundle from a given URL: Oscar provides textual, graphical or remote
(through a browser) user interfaces. We can install a bundle from a URL. If you are
using Knopflerfish, we may also open a file selector and browse the local file system.

• Using a bundle repository: The Oscar Bundle Repository (OBR) bundle enriches the
user interface by providing a feature that allows selecting bundles from a “bundle
repository” and automatically finding and installing all bundles that provide the
packages needed by a given bundle. If we want to install our own bundles that way, we
have to build our own repository, as described in the next section.

2.3.2.5 How to create an OBR repository
A bundle repository is an XML file that describes a set of OSGi bundles. The bundle repository
features and the descriptor syntax are described at [obr]. There are multiple ways to access
the repository bundles:

Web access – by associating an appropriate XSL file with the XML repository descriptor,
all bundles in the OBR repository are accessible via a web page.

Programmatic access – the Bundle Repository bundle provides an OSGi service for
dynamically deploying repository bundles and the transitive closure of their deployment
dependencies into an executing OSGi framework.

Interactive access – the Bundle Repository bundle also provides a shell command for
Oscar's Shell Service bundle, so if we are using Oscar we can interactively type OBR
commands at Oscar's shell prompt. Additionally, the Shell Plugin bundle provides a GUI
interface for the Shell GUI bundle.

The sample project contains a tool that allows a repository XML file to be generated
automatically from a directory containing bundles. This tool browses the contents of the
directory, extracts information from the manifests and builds the repository.xml file accordingly.
The directory must be structured in a given manner: it may either contain directly the bundles,
or a list of subdirectories with a naming convention – the directory <bundle> must contain a
bundle named <bundle>.jar, and optionally the documentation of this bundle in a “doc”
subdirectory, and the sources in a file named <bundle>-src.jar. The doc and sources are
useful when viewing the repository.xml file in a browser.

Once our repository.xml file has been created and put at some accessible URL, it can be used
by the OBR bundle. Information about how to configure Oscar to use a new repository
descriptor is found at [obr]. It may also be viewed in a browser, provided a convenient XSL file
is provided. An XSL file is provided with the tool; we may edit it to customize the title and
description of our repository.

2.3.2.6 How to add bundles to the Amigo bundle repository
Once our set of bundles is in a stable state, we may want to add it to the main Amigo bundle
repository. This will be done by referring to our own repository.xml file from the main Amigo
repository file, visit http://amigo.gforge.inria.fr/obr/v2/repository.xml .

Currently the main Amigo repository refers to the CMS and the ANS bundle repositories.

2.3.3 Some Amigo services using the OSGi framework
Context Management Service (CMS): a repository of OSGi bundles linked to context
management (context source broker; helper API to write Amigo context sources and sinks) is
available at http://core.lab.telin.nl/ãmigo/obr/repository.xml.

Awareness Notification Service (ANS): a repository of OSGi bundles linked to ANS is available
at http://amigo.gforge.inria.fr/obr/ans/repository.xml.

May 2007 Public

Amigo IST-2004-004182 22/103

Palantir: a repository of bundles corresponding to the WP7 Palantir demonstrator is available
at http://amigo.gforge.inria.fr/obr.palantir/repository/repository.xml.

2.3.4 Resources
[amigo_obr] http://amigo.gforge.inria.fr/obr/v2/repository.xml. Contains the core Amigo

bundles, some examples (referred to in the user’s guide), a copy of the
standard Oscar bundle repository, and references to the CMS OSGi repository.

[amigo_dev] http://amigo.gforge.inria.fr/obr/tutorialdeveloper_guide/. Amigo OSGI framework
developer’s guide.

[amigo_user] http://amigo.gforge.inria.fr/obr/tutorial/user_guide/. Amigo OSGI framework
user’s guide.

[Knopflerfish] http://www.knopflerfish.org/

[obr] http://oscar-osgi.sourceforge.net/repo/bundlerepository/. Documentation of the
Oscar Bundle Repository bundle.

[oscar] http://oscar.objectweb.org/. The detailed Java documentation of each module is
available from the OSGi Amigo repository [amigo_obr], except for the log4j
bundle which is a simple encapsulation of existing Open Source libraries. The
log4j documentation can be found at http://logging.apache.org/log4j/docs/.

[amigo_sample] http://amigo.gforge.inria.fr/obr/tutorial/full_tutorial_v2.zip. A sample project
based on the OSGi framework.

May 2007 Public

Amigo IST-2004-004182 23/103

3 How to develop a secure service

3.1 Overview

3.1.1 Objectives
The Amigo security framework is responsible for securing access to the services in the home.
The Amigo security model is based on the Kerberos protocol, with shared secrets to establish
mutual authentication. The security service is the mutually trusted Kerberos authority and acts
as a trust broker between users and services inside the home and grants or denies access to
services. The employed access control scheme in Amigo is role-based with few, well-known
user, device, and service roles, thus enabling non-technical users to setup a secure system
easily. As usual with Kerberos, access is granted or denied centrally by the security service
and is relayed to users and services with encrypted tickets.

3.1.2 Principles
Accordingly, the implementation of Amigo security is split into two major components: the
security service, which needs to be deployed in the home to enable secure use of services,
and the security API that enables secure communication with the security service and between
clients and services in the home. The security service as such is, from the service developer’s
point of view, a fixed service that is only communicated with via the security API. Thus, the
security service is irrelevant for the purposes of this document.

The security API is available both as a Java OSGi bundle and as a .Net library, and uses lower
level middleware functionality like WS-Discovery.

Before we go into more details though, it will help to quickly recapitulate the principles of
Kerberos [Kerberos]. In Kerberos, security and privacy are achieved via a mutually trusted
authority that shares a secret – a key for a symmetric cipher like AES, Triple DES, or Blowfish
– with each of the participants of the security scheme. Using some coarse simplification3, a
typical exchange that enables secure and authorized of a client to a service has the following
steps:

1. The client C requests a ticket granting ticket from the authority A; this request is sent
unencrypted.

2. If the client is known, then A sends a ticket granting ticket TGT, which is encrypted with
the secret KC, which is known only to C and A.

3. C decrypts the TGT with KC, which proves that it really came from A (because only A
and C know KC).

4. C uses information from TGT to create a ticket request for the service S that it wants to
use and sends it to A.

5. A checks that the ticket request has been sent from C. It determines if A has
permission to use S.

6. A sends a ticket TS to C, which contains information that is encrypted with KS, the key
that is shared between A and S.

7. C uses TS to prove to S that is has A’s authorization to access S.
8. S attempts to decrypt TS with KS, and if it does so successfully, grants access to C.

3 This simplification is here only for didactic purposes; the implementation does not use this simplification.

May 2007 Public

Amigo IST-2004-004182 24/103

In addition to this protocol, we need a way to initially establish the keys that are shared
between the C (or S) and A. This is part of the registration procedure, which is covered in the
subsequent sections.

In the remainder of this chapter, we will discuss how to use the .Net version of the security API
to implement and consume secure services. The Java implementation uses the same object
model so that the principles are sufficiently similar to be transferred from .Net to Java.

3.1.3 Assessment
The Amigo security libraries enable authenticated and authorized service use in the Amigo
home, based on a simple, role-based, security concept. Using the API presented in this
chapter, use of these mechanisms is significantly simplified, because the security protocol is
abstracted into a comprehensive API that supports easy service and client implementation.

3.2 How to develop a secure service
In the following, we will describe the necessary steps to develop a secure Amigo service. We
do this by walking through the code sample that is installed as part of installing the Amigo
security package.

3.2.1 Service implementation
The following example shows the code that is necessary to implement a web service with
secured methods. Hosting, registration, and persisting are handled in the next section.
Detailed API documentation is available from the help files installed with the security package.

// ==++==
//
//
// Copyright (c) 2006 Microsoft Corporation. All rights reserved.
//
// The use and distribution terms for this software are contained in the
// file named license.txt, which can be found in the root of this
// distribution.
// By using this software in any fashion, you are agreeing to be bound by
// the terms of this license.
//
// You must not remove this notice, or any other, from this software.
//
//
// ==--==

using System;
using System.Web.Services;
using EMIC.HomeFx.Security;
using EMIC.WSDiscovery.Server;

These declarations import the necessary namespaces – note that we are also importing the
EMIC.WSDiscovery.Server namespace, which contains the .Net implementation of WS-
Discovery.
namespace SecuredSeviceSample {
 [Scope ("urn:amigo-security-sample")]
 [Type ("sample-service", "urn:amigo-security-sample")]
 public class Service : EMIC.HomeFx.Security.Service {

The service implementations inherits from EMIC.HomeFx.Security.Service, which contains the
necessary primitives to validate incoming requests. EMIC.HomeFx.Security.Service in turn
inherits from EMIC.WSDiscovery.Server.Discoverable service, which enables automatic

May 2007 Public

Amigo IST-2004-004182 25/103

discovery of our service. The Type and Scope attribute specify the WS-Discovery type and
scope for this service.
 public Service(EMIC.HomeFx.Security.Service securedService)
 : base(securedService){}

The only means of creating an EMIC.HomeFx.Security.Service is by copying from another
instance of that class. Such an instance can be created by either registering a service with the
security authority or by deserializing a persisted instance. Both possibilities are discussed in
the next section.
 [WebMethod]
 public SecuredResult<string> Hello(SecuredRequest<string> request) {

A secure service has one of several web methods, which will be reachable once the service is
hosted by the web server. In the current version, security has to be added explicitly to the
service behaviour as shown in the example above. For this, the web method accepts one
generic argument of type SecuredRequest<T0, T2, …, Tn>. The types T0,…,Tn are
instantiated with the actual types of the unsecured version of the web method. Currently, up to
five arguments are supported. Return type of the function is SecuredResult<T>, where T is the
return type of the unsecured function.
 return ValidateAndDispatchRequest<string, string>(request, Hello);
 }

Inside the secured function, the request is dispatched to the unsecured, private version of the
secured function via the ValidateAndDispatchRequest<T, T0, …, Tn> member function of
EMIC.HomeFx.Security.Service. Based on the result of the validation of the incoming secured
request, this function will either decrypt the encrypted parameters, pass them to the unsecured
function, and return the encrypted result, or – in case of an unsuccessful validation – will return
an error result. In either case, the return value of this dispatched function can directly be
passed to the invoker of the secure web method.

 private string Hello(string name) {
 return String.Format("Hello {0} ({1}@{2})!",
 name,
 InvocationContext.User == null ? "<unknown>" :
 InvocationContext.User.ToString(),
 InvocationContext.Device);
 }
 }
}

The unsecured version of the function can assume that the caller has been successfully
authenticated and authorized to use the service. If necessary, access to the authentication
information, i.e., identity of the calling user and device, are available via the
InvocationContex.User and InvocationContext.Device properties.

This concludes the discussion of the service code.

3.2.2 Registering and hosting a secured service
In the following, we discuss a small program that is capable of registering the secured service
from the previous section with the security service (or retrieve a previous registration if it
exists) and host the services with the Amigo .Net web server component.

// ==++==
//
//
// Copyright (c) 2006 Microsoft Corporation. All rights reserved.
//

May 2007 Public

Amigo IST-2004-004182 26/103

// The use and distribution terms for this software are contained in the
// file named license.txt, which can be found in the root of this
// distribution.
// By using this software in any fashion, you are agreeing to be bound by
// the terms of this license.
//
// You must not remove this notice, or any other, from this software.
//
//
// ==--==

using System;
using System.Xml.Serialization;
using System.Xml;
using System.Net;

using EMIC.WebServer;
using EMIC.HomeFx.Security;
using EMIC.HomeFx.Security.Proxies;
using EMIC.WSAddressing;

Import of the required namespaces for hosting and communication with the security service (in
EMIC.HomeFx.Security.Proxies).
namespace SecuredSeviceSample {

 class Program {
 static readonly string registrationFileLocation =

System.Windows.Forms.Application.LocalUserAppDataPath
+ @"\registration.xml";

We store registration information in the user path for this application. Of course, other choices
are possible. Care should be taken to secure the stored information because it enables an
attacker to impersonate the service.
 static int Main(string[] args)
 {
 EMIC.HomeFx.Security.Service securedService = null;
 XmlSerializer xmlSerializer =
 new XmlSerializer(typeof(EMIC.HomeFx.Security.Service));
 try
 {
 using (XmlReader xmlReader = XmlReader.Create(registrationFileLocation))
 {
 securedService =
 (EMIC.HomeFx.Security.Service)xmlSerializer.Deserialize(xmlReader);
 securedService.SecurityServiceProxy =
 RediscoveringSecurityServiceProxy.Instance;
 }
 }

If possible, we try to recreate an EMIC.HomeFx.Security.Service.Service from information
stored at the designated location. If this succeeds, we set the SecurityServiceProxy field of the
service to the singleton instance provided by the RediscoveringSecurityServiceProxy, which
supports automatic finding of the security service and automatic fail-over to alternative security
services in case of communication failures. In case that an exception is thrown during the
restoration process, we (re-)register the service with the security service:
 catch
 {
 string password = PronounceablePasswordGenerator.GeneratePassword(8);
 Console.WriteLine("Attempting to register with password " + password);

 try
 {
 securedService = EMIC.HomeFx.Security.Service.RegisterNewService(
 "Amigo Security Sample Service",
 System.Net.Dns.GetHostName(),
 password,
 ServiceRole.Unrestricted,
 RediscoveringSecurityServiceProxy.Instance);

May 2007 Public

Amigo IST-2004-004182 27/103

 }

For this, we create a new password that is used to encrypt the registration process (and will
need to be transferred out of band to the security service). Then, we call RegisterNewService
with the registration information of this service. We specify its requested service role (which
controls client authorization for this service at the security service) and again provide the
singleton instance provided by the RediscoveringSecurityServiceProxy to enable
communication with the security service.
 catch (RediscoveryException) {
 Console.WriteLine("Could not locate security service");
 return -1;
 }
 catch (RegistrationException e) {
 Console.WriteLine("Could not register with security service: " +
 e.Message);
 return -1;
 }

During this process, irrecoverable communication errors will lead to a RediscoveryException.
A registration attempt that is rejected from the security service for some reason will lead to a
Registration exception. In either case, the service has not been successfully registered and we
terminate the program with an error code.

 try {
 using (XmlWriter xmlWriter = XmlWriter.Create(registrationFileLocation))
 {
 xmlSerializer.Serialize(xmlWriter, securedService);
 }
 }
 catch {
 Console.WriteLine("Warning: Could not persist registration information");
 }
 }

Upon successful registration, we attempt to persist the registration information to the
designated location.

If the program has successfully executed up to here, then we have created an instance of
EMIC.HomeFx.Security.Service.Service, which we can use to create and host an instance of
the secured service from the previous section:
 WebServer.Port = 0;
 WebServer.Start();

 using (Service service = new Service(securedService)) {
 WebServer.AddWebService(serviceLocation, service);
 Console.WriteLine("Sample service running." + Environment.NewLine
 + "Press <return> to quit");
 Console.ReadLine();
 }
 return 0;
 }
 }
}

This concludes our explanation of how to develop secured Amigo services.

3.3 How to develop a secure service client
In a similar manner, we will now explore the steps necessary to access a secured Amigo
client:
// ==++==
//
//
// Copyright (c) 2006 Microsoft Corporation. All rights reserved.

May 2007 Public

Amigo IST-2004-004182 28/103

//
// The use and distribution terms for this software are contained in the file
// named license.txt, which can be found in the root of this distribution.
// By using this software in any fashion, you are agreeing to be bound by the
// terms of this license.
//
// You must not remove this notice, or any other, from this software.
//
//
// ==--==

using System;
using System.Net;
using System.Threading;

using EMIC.HomeFx.Security;
using EMIC.HomeFx.Security.Proxies;
using EMIC.WSDiscovery;
using EMIC.WSDiscovery.Client;

Import of the necessary namespaces for Amigo security.
namespace SecuredClientSample {

 class Program {
 static int Main(string[] args)
 {
 if (!Device.IsRegistered())
 {
 Console.Error.WriteLine("The device has not been registered.");
 return -1;
 }

Instead of a explicit registration step, we assume that registration of the device and user of this
client program has been performed separately. The Amigo security package contains an
application that serves exactly that purpose. If the device has not previously been registered,
access to secured Amigo services is not possible and we exit with an error code.

 Device thisDevice = Device.ThisDevice(RediscoveringSecurityServiceProxy.Instance);
 Authentication authentication = thisDevice.AuthenticateDevice();

In the next step, we create an object represention of this device and authenticate it with the
security service that is reachable via the singleton instance of
RediscoveringSecurityServiceProxy. This will obtain the ticket granting ticket from the security
service and store it locally on the device. If other clients on this have recently obtained such a
ticket, it will be reused until it expires.

 using (ProbeClient probeClient = new ProbeClient())
 {
 probeClient.AddServiceScope(
 new ServiceScope(new Uri("urn:amigo-security-sample")));
 probeClient.AddServiceType(
 new ServiceType("sample-service", "urn:amigo-security-sample"));

 while (probeClient.ProbeMatches == null || probeClient.ProbeMatches.Count == 0)
 {
 Console.WriteLine("Probing for service...");
 probeClient.SendProbe();
 Thread.Sleep(2000);
 }

We probe for the service that we want to use until we find one, using the WS-Discovery
implementation.

 ServiceInfo match = probeClient.ProbeMatches[0];
 Sid sid = Sid.GetSidFromServiceInfo(match);

May 2007 Public

Amigo IST-2004-004182 29/103

We retrieve the unique name under which this service is known to the security service. This
name is included into the metadata transmitted in the ProbeMatch message from the service.

 EMIC.HomeFx.Security.Authorization authorization
 = thisDevice.Authorize(sid, authentication, new TimeSpan(1, 0, 0));

 SessionCredentials credentials = authorization.NewSessionCredentials();

We try to obtain a ticket for the service, with a validity period of at least one hour. Then we use
this ticket to create the necessary credentials to start a new session with the service.

 using (ServiceProxy proxy = new ServiceProxy())
 {
 proxy.Proxy = new WebProxy();
 proxy.Url = match.FirstXaddr.AbsoluteUri;

We prepare a proxy to contact the service, using the address from its ProbeMatch reply.
 string response = thisDevice.InvokeSecuredService<string, string>(
 credentials,
 proxy.Hello,
 "Amigo Security Client");

Finally, we use the InvokeSecuredService<T, T0,…Tn> method of the Device class to issue a
secured call to the service. As parameters, this method takes the credentials that have been
created in the previous step, a delegate to the method that is responsible to send the secured
request to the service, and the service call’s arguments of type T0, …, Tn.
 Console.WriteLine("Response = \"" + response + "\"");
 Console.ReadLine();
 }
 }
 return 0;
 }
 }
}

3.4 Resources
[Kerberos] John Kohl and B. Clifford Neuman. The Kerberos Network Authentication

Service (Version 5). Internet Request for Comments RFC-1510. September
1993.

May 2007 Public

Amigo IST-2004-004182 30/103

4 How to develop a semantic service

4.1 Overview
This chapter presents a ‘how-to’ for the Amigo service developer that describes how to create
semantic service descriptions for Amigo services. Any basic Amigo service (see Chapter 2),
e.g., a domotic service (see Chapter 6) or other, can be enriched with a semantic description.
This enables much more flexibility and effectiveness when discovering a service or
dynamically integrating it in a service-based application (see Chapter 5). Semantic service
descriptions are created using the Amigo-S language, which is presented in Chapter 4 of
[D3.2]. In addition to presenting the principles, features, and an initial assessment of Amigo-S
service description, this chapter aims to provide several concrete examples of using Amigo-S
to describe services. These include examples of using the Amigo-S ontology and
vocabularies, of creating functional descriptions for a service, of describing non-functional
properties of the service including context-aware and quality of service properties, as well as
how to register these descriptions with the semantic service repository.

4.1.1 Objectives and principles
The Amigo-S description language is a declarative language for the semantic specification of
Amigo services. Amigo-S uses OWL-S as a basis. The Ontology Web Language (OWL) is a
recommendation by W3C supporting formal description of ontologies and reasoning on them.
An ontology can represent concepts of any knowledge domain and relations between them.
OWL-Services (OWL-S) is an OWL-based ontology for semantically specifying Web services
[OWL-S].

However, OWL-S cannot be used as-is for describing Amigo-aware services for several
reasons. Firstly, the only concrete grounding with an interaction protocol that is defined in
OWL-S is the mapping of OWL-S processes to WSDL operations. Indeed, OWL-S has been
defined for semantically describing Web services. In the Amigo home, Web services will be
used together with other technologies, and we need a semantic description language that
could be used for all of them, independently of the underlying technology. Thus, OWL-S is
extended by enabling several groundings to be employed for a service.

Secondly, OWL-S lacks support for describing context-ware and quality of service related
information, which are key non-functional properties that we want to describe for Amigo-aware
services. Therefore, included in the Amigo-S language are generic classes for describing such
non-functional properties.

In addition, it is desired for Amigo-S to have the possibility of specifying these properties
globally for all the functionalities that an Amigo service provides, as well as individually for
each functionality. Thus, OWL-S is extended such that these properties could be expressed at
different levels.

Thirdly, we wish to be able to semantically describe the event capabilities an Amigo service
has, and Amigo-S provides extensions to allow this. Please refer to [D2.1] for a more detailed
analysis of OWL and OWL-S with respect to Amigo, and to [D3.2] for further detail on novel
aspects of Amigo-S.

Amigo-S reuses classes that are already formally specified as part of OWL-S, aiming to be
consistent with similar existing concepts, and thus reduce the effort for learning a new
language for developers who are already familiar with writing OWL-S descriptions.

The semantic concepts and vocabulary used in Amigo-S service descriptions are provided by
a common set of vocabulary ontologies. These vocabularies are modularly-defined to support
maintainability and future evolution of concepts related to the Amigo home. The vocabularies
include the Amigo Core Concepts which define the basic vocabulary that helps to tie the other

May 2007 Public

Amigo IST-2004-004182 31/103

vocabularies together, Devices and Platforms that provides a classification of different
platforms hosted by devices and a generic classification of device types and their states,
Functional Capabilities which includes several concepts representing the function of an
individual capability, Quality of Service which defines a range of QoS parameters, User
Context and Physical Context which attempts to model all context parameters that may
potentially be related to the Amigo user and the generic parameters that are related to the
elements of the physical environment respectively, and the Multimedia vocabulary that
describes the different types of content that can be processed by the devices in an Amigo
home. There are also several other domain-specific vocabularies defined.

By incorporating shared, semantic concepts from common vocabulary ontologies in Amigo-S
service descriptions, we can promote a high level of interoperability between different Amigo
services and applications. Please refer to [D3.2] for further information on the available
vocabularies.

In order to support the use of the full range of features of Amigo-S for service registration and
discovery, and again to increase the availability and promote the interoperability of Amigo
services, a common, dedicated semantic service repository is provided. The use of the
repository is covered later in this chapter.

4.1.2 Features
The main features of the Amigo-S service description are that:

• It allows semantic service descriptions to be created for basic services, where the
service provides a collection of atomic capabilities.

• Semantic service descriptions can provide semantic concepts for a whole service, for
each capability and its inputs and outputs, and optionally its pre-conditions and effects.

• It allows semantic descriptions of conversation-based services, where the capabilities
the service provides are described as a workflow of sub-capabilities.

• Complex workflows can be created by composing capabilities using a variety of control
constructs, e.g. Sequence, Choice.

• Context parameters can be described for a service, both at the level of individual
capabilities, and for the service as a whole.

• It supports and open-ended number of context parameters, based on the available
context sources.

• The quality of service parameters a service supports can be described both at the
individual capability level, and for the service as a whole.

• It supports a range of commonly required quality of service parameters, including:
throughput, cost, latency, response time, error rate, jitter, data encryption, and
accessibility.

• It allows semantic descriptions of a service’s event capabilities, specifically its event
production and consumption.

• The descriptions of a service’s event capabilities may define several profiles (event or
command). As a result, an event-based service can receive and send multiple events
and commands.

• Multiple groundings can be supported.

In addition, a dedicated semantic service repository for services described by Amigo-S is
provided. The repository itself is implemented as a basic Amigo service employing the Amigo
OSGi programming and deployment framework (see Chapter 2). The repository can perform

May 2007 Public

Amigo IST-2004-004182 32/103

exact and weak semantic service matching at the service and capability levels, as well as
straight service retrieval.

The semantic service repository can also offer support for legacy (UPnP) services through the
use of the Amigo interoperability framework. Please refer to [D3.1b] and [D3.2] for details.

4.1.3 Assessment
The advantages of the Amigo-S service description include:

• By creating a semantic service description for a basic service, it allows the service to
be discovered via semantic matching at both the service and capability levels,
increasing the service’s availability and promoting its interoperability.

• Describing a semantic service’s provided capabilities as conversation-based workflows
allows the expression of data and control dependencies between the service’s
capabilities.

• By allowing a service’s description to contain context parameters, the service can be
incorporated by the context-aware discovery mechanisms (please refer to Chapter 5
for details), which enables an application to optimise service selection based on
services’ current context, and frees the application developer from the need to actively
search for the optimal service.

• By allowing a service’s description to feature quality of service parameters, it makes
the service available to applications which employ the priority-based quality of service
selection model provided by the Quality of Service Aware Service Selection Tool
(QASST), which allows the Amigo middleware to serve as many requests as possible
while satisfying the majority of Amigo users.

• The event-based service description features allows programmers to focus on the
event-based service interface in terms of typed high-level operations, namely
command and event. Providing a high-level viewpoint prevents programmers from
dealing with low-level operations of heterogeneous communication modes when it is
unnecessary.

• Enabling support for multiple groundings promotes interoperability between different
service technologies.

As all Amigo-S services can be registered with the common semantic service repository, the
Amigo-S service developer is presented with a common feel and interface regardless of what
style, or mix of styles, of service they develop. Furthermore, the use of the common semantic
service repository facilitates interoperability between the different styles of service. For
example, an application can employ a service that features context aware parameters,
whether the application uses the context-aware features or not.

4.2 How to write a semantic service description

4.2.1 Functional service description
In this section, we shall look at how to create semantic services in Amigo-S. Two simple
examples are provided – the first is a multimedia browser service that allows a user to explore
the contents of a multimedia library, and the second is a multimedia renderer service that
permits different media to be played.

For each example, we shall look at how the service can be created based on the Amigo-S
language using the Protégé ontology editor, and also provide the raw OWL XML that makes
up the service description.

May 2007 Public

Amigo IST-2004-004182 33/103

The Amigo-S developer has several tools at his disposal to assist him in creating service
descriptions. The Protégé ontology editor can be used to graphically edit descriptions
[Protégé]. The Eyeball OWL checker tool, available from the Jena project website, is a lint-like
command-line tool that can be used to check that service descriptions are free of certain
common OWL errors [Eyeball]. Developers who prefer to work directly with Amigo-S XML can
of course create service descriptions using their favourite text editor.

For clarity, examples present the full OWL XML of the service description both in this chapter,
and later in Chapter 5. The examples can be cut and paste into OWL files using the
developer’s tools of choice, and may also act as templates for developing new descriptions.

We will first look at the multimedia browser service. This service has two provided capabilities
– a ListMedia capability that provides a list of all of the media in the library, and a
ListMostPlayedMedia capability that provides a list of the twenty-five most played media for a
particular user. In order for the ListMostPlayedMedia capability to identify the user, the user
must first login before the most played list is created. As such, the ListMostPlayedMedia
capability is conversation-based, and comprises a sequential workflow of a Login sub-
capability followed by a CreateMostPlayedMediaList sub-capability. By describing this
capability as workflow, it ensures that these sub-capabilities are carried out in this order, and
that both are performed by the same service.

We will now begin to create this service. First, we must include all the necessary pre-amble:

<?xml version="1.0"?>
<!DOCTYPE uridef[
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
 <!ENTITY process "http://www.daml.org/services/owl-s/1.1/Process.owl">
 <!ENTITY objList "http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl">
 <!ENTITY wsdl "http://www.hitech-projects.com/euprojects/amigo/MultimediaBrowser.wsdl">
]>
<rdf:RDF
 xmlns:lang="http://www.hitech-projects.com/euprojects/amigo/Amigo-S.owl#"
 xmlns:capabilities="http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#"
 xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#"
 xmlns:service="http://www.daml.org/services/owl-s/1.1/Service.owl#"
 xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
 xmlns:grounding="http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
 xmlns:objList="http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="http://www.hitech-projects.com/euprojects/amigo/MultimediaBrowser.owl#"
 xmlns:wsdl="http://www.hitech-projects.com/euprojects/amigo/MultimediaBrowser.wsdl"
 xml:base="http://www.hitech-projects.com/euprojects/amigo/MultimediaBrowser.owl">
<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl"/>
 <owl:imports rdf:resource="http://www.hitech-projects.com/euprojects/amigo/Amigo-S.owl"/>
</owl:Ontology>
This defines the XML namespaces for the Amigo-S language and capabilities, OWL-S, the
multimedia browser description itself, and a WSDL description of the service implementation.
Also, the base is set to the URI of the service description. Finally, the Amigo-S and capabilities
documents are imported.

Next, we define the service profile for the multimedia browser service. The profile describes
the capabilities a service has, as well as a textual name and description of the service, and a
link to the grounding the service supports.

At this point, the OWL XML of the service profile looks like this:

<service:Service rdf:ID="MultimediaBrowserService">
 <service:presents>
 <capabilities:ServiceProfile rdf:ID="MultimediaBrowserProfile">

May 2007 Public

Amigo IST-2004-004182 34/103

 <!-- Provided capabilities -->
 <lang:hasProvidedCapability>
 <capabilities:ListMedia rdf:ID="ListMediaCapability">
 <lang:hasConversation rdf:resource="#ListMediaConversation"/>
 <lang:hasOutput rdf:resource="#ListMediaOutput"/>
 </capabilities:ListMedia>
 </lang:hasProvidedCapability>

 <lang:hasProvidedCapability>
 <capabilities:ListMostPlayedMedia rdf:ID="ListMostPlayedMediaCapability">
 <lang:hasConversation rdf:resource="#ListMostPlayedMediaConversation"/>
 <lang:hasInput rdf:resource="#ListMostPlayedMediaInput"/>
 <lang:hasOutput rdf:resource="#ListMostPlayedMediaOutput"/>
 </capabilities:ListMostPlayedMedia>
 </lang:hasProvidedCapability>

 <!-- Sub-capabilities -->
 <lang:hasCapability>
 <capabilities:Login rdf:ID="LoginCapability">
 <lang:hasConversation rdf:resource="#LoginConversation"/>
 <lang:hasInput rdf:resource="#LoginInput"/>
 <lang:hasOutput rdf:resource="#LoginOutput"/>
 </capabilities:Login>
 </lang:hasCapability>

 <lang:hasCapability>
 <capabilities:CreateMostPlayedMediaList rdf:ID="CreateMostPlayedMediaListCapability">
 <lang:hasConversation rdf:resource="#CreateMostPlayedMediaListConversation"/>
 <lang:hasOutput rdf:resource="#CreateMostPlayedMediaListOutput"/>
 </capabilities:CreateMostPlayedMediaList>
 </lang:hasCapability>

 <service:presentedBy rdf:resource="#MultimediaBrowserService"/>

 <profile:textDescription rdf:datatype=http://www.w3.org/2001/XMLSchema#string">
 Example multimedia browser service.
 </profile:textDescription>

 <profile:serviceName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 MultimediaBrowser Service
 </profile:serviceName>
 </capabilities:ServiceProfile>
 </service:presents>

 <service:supports rdf:resource="#MultimediaBrowserServiceGrounding"/>
 </service:Service>

Each capability description states the semantic that represents the capability, e.g. ListMedia
and ListMostPlayedMedia, a link to its conversation description, and links to descriptions of
any inputs and outputs it has.

ListMedia is implemented with an atomic conversation, and has a single output. The OWL
XML for the ListMedia conversation and output description looks like:
 <!-- Conversations -->
 <process:AtomicProcess rdf:ID="ListMediaConversation">
 <process:hasOutput>
 <process:Output rdf:ID="ListMediaOutput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#MediaList
 </process:parameterType>
 </process:Output>
 </process:hasOutput>
 </process:AtomicProcess>

ListMostPlayedMedia is implemented as a composite conversation, comprised of the
sequence of the Login and CreateMostPlayedMediaList sub-capabilities. Each of these sub-
capabilities is implemented as an atomic conversation. The OWL XML for conversation for the
ListMostPlayedMedia provided capability looks like:
 <process:CompositeProcess rdf:ID="ListMostPlayedMediaConversation">

May 2007 Public

Amigo IST-2004-004182 35/103

 <process:hasInput>
 <process:Input rdf:ID="ListMostPlayedMediaInput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#User
 </process:parameterType>
 </process:Input>
 </process:hasInput>

 <process:hasOutput>
 <process:Output rdf:ID="ListMostPlayedMediaOutput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#MediaList
 </process:parameterType>
 </process:Output>
 </process:hasOutput>

 <process:composedOf>
 <process:Sequence>
 <process:components>
 <process:ControlConstructList>
 <objList:first>
 <process:Perform rdf:ID="LoginPerform">
 <process:process rdf:resource="#LoginCapability"/>
 <!-- Parameter Bindings -->
 </process:Perform>
 </objList:first>
 <objList:rest>
 <process:ControlConstructList>
 <objList:first>
 <process:Perform rdf:ID="CreateMostPlayedMediaListPerform">
 <process:process rdf:resource=
 "#CreateMostPlayedMediaListCapability"/>
 <!-- Parameter Bindings -->
 </process:Perform>
 </objList:first>
 <objList:rest rdf:resource="&objList;#nil"/>
 </process:ControlConstructList>
 </objList:rest>
 </process:ControlConstructList>
 </process:components>
 </process:Sequence>
 </process:composedOf>
 </process:CompositeProcess>

and the Login and CreateMostPlayedMediaList sub-capabilities look like:
 <process:AtomicProcess rdf:ID="LoginConversation">
 <process:hasInput>
 <process:Input rdf:ID="LoginInput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#User
 </process:parameterType>
 </process:Input>
 </process:hasInput>
 </process:AtomicProcess>

 <process:AtomicProcess rdf:ID="CreateMostPlayedMediaListConversation">
 <process:hasOutput>
 <process:Output rdf:ID="CreateMostPlayedMediaListOutput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#MediaList
 </process:parameterType>
 </process:Output>
 </process:hasOutput>
 </process:AtomicProcess>

At this point, the description of the structure of the multimedia browser service is complete.
What remains is to link the atomic conversation with their representative operation in the
service’s grounding. The grounding makes references to the service’s WSDL file, which is
provided when the service is registered with the repository. The OWL XML for the multimedia
browser service grounding looks like:
 <!-- Grounding -->
 <grounding:WsdlGrounding rdf:ID="MultimediaBrowserServiceGrounding">

May 2007 Public

Amigo IST-2004-004182 36/103

 <grounding:hasAtomicProcessGrounding rdf:resource="#ListMediaGrounding"/>
 <grounding:hasAtomicProcessGrounding rdf:resource="#LoginGrounding"/>
 <grounding:hasAtomicProcessGrounding rdf:resource="CreateMostPlayedMediaListGrounding"/>
 </grounding:WsdlGrounding>

 <grounding:WsdlAtomicProcessGrounding rdf:ID="ListMediaGrounding">
 <grounding:wsdlDocument rdf:datatype="&xsd;#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/MultimediaBrowser.wsdl
 </grounding:wsdlDocument>

 <grounding:owlsProcess rdf:resource="#ListMediaConversation"/>

 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>
 <grounding:portType rdf:datatype="&xsd;#anyURI">
 &wsdl;#MultimediaBrowser
 </grounding:portType>
 <grounding:operation rdf:datatype="&xsd;#anyURI">
 &wsdl;#listMedia
 </grounding:operation>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>

 <grounding:wsdlInputMessage rdf:datatype="&xsd;#anyURI">
 &wsdl;#listMediaRequest
 </grounding:wsdlInputMessage>

 <grounding:wsdlOutputMessage rdf:datatype="&xsd;#anyURI">
 &wsdl;#listMediaResponse
 </grounding:wsdlOutputMessage>

 <grounding:wsdlOutput>
 <grounding:WsdlOutputMessageMap>
 <grounding:owlsParameter rdf:resource="#ListMediaOutput"/>
 <grounding:wsdlMessagePart rdf:datatype="&xsd;#anyURI">
 &wsdl;#listMediaReturn
 </grounding:wsdlMessagePart>
 </grounding:WsdlOutputMessageMap>
 </grounding:wsdlOutput>
 </grounding:WsdlAtomicProcessGrounding>

 <grounding:WsdlAtomicProcessGrounding rdf:ID="LoginGrounding">
 <grounding:wsdlDocument rdf:datatype="&xsd;#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/MultimediaBrowser.wsdl
 </grounding:wsdlDocument>

 <grounding:owlsProcess rdf:resource="#LoginConversation"/>

 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>
 <grounding:portType rdf:datatype="&xsd;#anyURI">
 &wsdl;#MultimediaBrowser
 </grounding:portType>
 <grounding:operation rdf:datatype="&xsd;#anyURI">
 &wsdl;#login
 </grounding:operation>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>

 <grounding:wsdlInputMessage rdf:datatype="&xsd;#anyURI">
 &wsdl;#loginRequest
 </grounding:wsdlInputMessage>

 <grounding:wsdlInput>
 <grounding:WsdlInputMessageMap>
 <grounding:owlsParameter rdf:resource="#LoginInput"/>
 <grounding:wsdlMessagePart rdf:datatype="&xsd;#anyURI">
 &wsdl;#user
 </grounding:wsdlMessagePart>
 </grounding:WsdlInputMessageMap>
 </grounding:wsdlInput>

 <grounding:wsdlOutputMessage rdf:datatype="&xsd;#anyURI">
 &wsdl;#loginResponse
 </grounding:wsdlOutputMessage>

May 2007 Public

Amigo IST-2004-004182 37/103

 </grounding:WsdlAtomicProcessGrounding>

 <grounding:WsdlAtomicProcessGrounding rdf:ID="CreateMostPlayedMediaListGrounding">
 <grounding:wsdlDocument rdf:datatype="&xsd;#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/MultimediaBrowser.wsdl
 </grounding:wsdlDocument>

 <grounding:owlsProcess rdf:resource="#CreateMostPlayedMediaListConversation"/>

 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>
 <grounding:portType rdf:datatype="&xsd;#anyURI">
 &wsdl;#MultimediaBrowser
 </grounding:portType>
 <grounding:operation rdf:datatype="&xsd;#anyURI">
 &wsdl;#createMostPlayedMediaList
 </grounding:operation>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>

 <grounding:wsdlInputMessage rdf:datatype="&xsd;#anyURI">
 &wsdl;#createMostPlayedMediaListRequest
 </grounding:wsdlInputMessage>

 <grounding:wsdlOutputMessage rdf:datatype="&xsd;#anyURI">
 &wsdl;#createMostPlayedMediaListResponse
 </grounding:wsdlOutputMessage>

 <grounding:wsdlOutput>
 <grounding:WsdlOutputMessageMap>
 <grounding:owlsParameter rdf:resource="#CreateMostPlayedMediaListOutput"/>
 <grounding:wsdlMessagePart rdf:datatype="&xsd;#anyURI">
 &wsdl;#createMostPlayedMediaListReturn
 </grounding:wsdlMessagePart>
 </grounding:WsdlOutputMessageMap>
 </grounding:wsdlOutput>
 </grounding:WsdlAtomicProcessGrounding>

Next, the multimedia renderer service is presented. For simplicity of the example, the service
supports a single PlayMedia operation, which features a composite conversation comprising of
the sequence of SetMedia and Play sub-capabilities. The service can be created using the
developer’s tools of choice, using the following OWL XML:
<?xml version="1.0"?>
<!DOCTYPE uridef[
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
 <!ENTITY process "http://www.daml.org/services/owl-s/1.1/Process.owl">
 <!ENTITY objList "http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl">
 <!ENTITY wsdl
 "http://www.hitech-projects.com/euprojects/amigo/MultimediaRenderer.wsdl">
]>
<rdf:RDF
 xmlns:lang="http://www.hitech-projects.com/euprojects/amigo/Amigo-S.owl#"
 xmlns:capabilities="http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#"
 xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#"
 xmlns:service="http://www.daml.org/services/owl-s/1.1/Service.owl#"
 xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
 xmlns:grounding="http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
 xmlns:objList="http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="http://www.hitech-projects.com/euprojects/amigo/MultimediaRenderer.owl#"
 xml:base="http://www.hitech-projects.com/euprojects/amigo/MultimediaRenderer.owl"
 xmlns:wsdl="http://www.hitech-projects.com/euprojects/amigo/MultimediaRenderer.wsdl">
<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl"/>
 <owl:imports rdf:resource="http://www.hitech-projects.com/euprojects/amigo/Amigo-S.owl"/>
</owl:Ontology>

 <service:Service rdf:ID="MultimediaRendererService">

May 2007 Public

Amigo IST-2004-004182 38/103

 <service:presents>
 <capabilities:ServiceProfile rdf:ID="MultimediaRendererProfile">

 <!-- Provided capabilities -->
 <lang:hasProvidedCapability>
 <capabilities:PlayMedia rdf:ID="PlayMediaCapability">
 <lang:hasConversation rdf:resource="#PlayMediaConversation"/>
 <lang:hasInput rdf:resource="#PlayMediaInput"/>
 <lang:hasOutput rdf:resource="#PlayMediaOutput"/>
 </capabilities:PlayMedia>
 </lang:hasProvidedCapability>

 <!-- Sub-capabilities -->
 <lang:hasCapability>
 <capabilities:SetMedia rdf:ID="SetMediaCapability">
 <lang:hasConversation rdf:resource="#SetMediaConversation"/>
 <lang:hasInput rdf:resource="#SetMediaInput"/>
 </capabilities:SetMedia>
 </lang:hasCapability>

 <lang:hasCapability>
 <capabilities:Play rdf:ID="PlayCapability">
 <lang:hasConversation rdf:resource="#PlayConversation"/>
 <lang:hasOutput rdf:resource="#PlayOutput"/>
 </capabilities:Play>
 </lang:hasCapability>

 <service:presentedBy rdf:resource="#MultimediaRendererService"/>

 <profile:textDescription rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 Example multimedia renderder service.
 </profile:textDescription>

 <profile:serviceName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 MultimediaRenderer Service
 </profile:serviceName>
 </capabilities:ServiceProfile>
 </service:presents>

 <service:supports rdf:resource="#MultimediaRendererServiceGrounding"/>
 </service:Service>

 <!-- Conversations -->
 <process:CompositeProcess rdf:ID="PlayMediaConversation">
 <process:hasInput>
 <process:Input rdf:ID="PlayMediaInput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#Media
 </process:parameterType>
 </process:Input>
 </process:hasInput>

 <process:hasOutput>
 <process:Output rdf:ID="PlayMediaOutput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.w3.org/2001/XMLSchema#boolean
 </process:parameterType>
 </process:Output>
 </process:hasOutput>

 <process:composedOf>
 <process:Sequence>
 <process:components>
 <process:ControlConstructList>
 <objList:first>
 <process:Perform rdf:ID="SetMediaPerform">
 <process:process rdf:resource="#SetMediaCapability"/>
 <!-- Parameter Bindings -->
 </process:Perform>
 </objList:first>
 <objList:rest>
 <process:ControlConstructList>
 <objList:first>
 <process:Perform rdf:ID="PlayPerform">
 <process:process rdf:resource="#PlayCapability"/>

May 2007 Public

Amigo IST-2004-004182 39/103

 <!-- Parameter Bindings -->
 </process:Perform>
 </objList:first>
 <objList:rest rdf:resource="&objList;#nil"/>
 </process:ControlConstructList>
 </objList:rest>
 </process:ControlConstructList>
 </process:components>
 </process:Sequence>
 </process:composedOf>
 </process:CompositeProcess>

 <process:AtomicProcess rdf:ID="SetMediaConversation">
 <process:hasInput>
 <process:Input rdf:ID="SetMediaInput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#Media
 </process:parameterType>
 </process:Input>
 </process:hasInput>
 </process:AtomicProcess>

 <process:AtomicProcess rdf:ID="PlayConversation">
 <process:hasOutput>
 <process:Output rdf:ID="PlayOutput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.w3.org/2001/XMLSchema#boolean
 </process:parameterType>
 </process:Output>
 </process:hasOutput>
 </process:AtomicProcess>

 <!-- Grounding -->
 <grounding:WsdlGrounding rdf:ID="MultimediaRendererServiceGrounding">
 <grounding:hasAtomicProcessGrounding rdf:resource="#SetMediaGrounding"/>
 <grounding:hasAtomicProcessGrounding rdf:resource="#PlayGrounding"/>
 </grounding:WsdlGrounding>

 <grounding:WsdlAtomicProcessGrounding rdf:ID="SetMediaGrounding">
 <grounding:wsdlDocument rdf:datatype="&xsd;#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/MultimediaRenderer.wsdl
 </grounding:wsdlDocument>

 <grounding:owlsProcess rdf:resource="#SetMediaConversation"/>

 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>
 <grounding:portType rdf:datatype="&xsd;#anyURI">
 &wsdl;#MultimediaRenderer
 </grounding:portType>
 <grounding:operation rdf:datatype="&xsd;#anyURI">
 &wsdl;#setMedia
 </grounding:operation>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>

 <grounding:wsdlInputMessage rdf:datatype="&xsd;#anyURI">
 &wsdl;#setMediaRequest
 </grounding:wsdlInputMessage>

 <grounding:wsdlInput>
 <grounding:WsdlInputMessageMap>
 <grounding:owlsParameter rdf:resource="#SetMediaInput"/>
 <grounding:wsdlMessagePart rdf:datatype="&xsd;#anyURI">
 &wsdl;#media
 </grounding:wsdlMessagePart>
 </grounding:WsdlInputMessageMap>
 </grounding:wsdlInput>

 <grounding:wsdlOutputMessage rdf:datatype="&xsd;#anyURI">
 &wsdl;#setMediaResponse
 </grounding:wsdlOutputMessage>
 </grounding:WsdlAtomicProcessGrounding>

 <grounding:WsdlAtomicProcessGrounding rdf:ID="PlayGrounding">

May 2007 Public

Amigo IST-2004-004182 40/103

 <grounding:wsdlDocument rdf:datatype="&xsd;#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/MultimediaRenderer.wsdl
 </grounding:wsdlDocument>

 <grounding:owlsProcess rdf:resource="#PlayConversation"/>

 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>
 <grounding:portType rdf:datatype="&xsd;#anyURI">
 &wsdl;#MultimediaRenderer
 </grounding:portType>
 <grounding:operation rdf:datatype="&xsd;#anyURI">
 &wsdl;#play
 </grounding:operation>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>

 <grounding:wsdlInputMessage rdf:datatype="&xsd;#anyURI">
 &wsdl;#playRequest
 </grounding:wsdlInputMessage>

 <grounding:wsdlOutputMessage rdf:datatype="&xsd;#anyURI">
 &wsdl;#playResponse
 </grounding:wsdlOutputMessage>

 <grounding:wsdlOutput>
 <grounding:WsdlOutputMessageMap>
 <grounding:owlsParameter rdf:resource="#PlayOutput"/>
 <grounding:wsdlMessagePart rdf:datatype="&xsd;#anyURI">
 &wsdl;#playReturn
 </grounding:wsdlMessagePart>
 </grounding:WsdlOutputMessageMap>
 </grounding:wsdlOutput>
 </grounding:WsdlAtomicProcessGrounding>
</rdf:RDF>

This completes the creation of the semantic service descriptions for the multimedia browser
and multimedia renderer service. Later in this chapter, we shall see how these services are
registered with the runtime system, and later in Chapter 5, how they are used to compose a
multimedia player service described by a user task.

4.2.2 Context-aware service description
To provide an example of how a context parameter is described, we shall consider an
ambulance that has a certain location. This example is taken from a larger emergency
response application scenario. Further details of this scenario are presented in Chapter 5. In
this case, the service context parameter would describe its location in the longitude, latitude
and altitude format using the following RDF fragment (namespaces are excluded for the sake
of brevity.
<?xml version="1.0"?>
<rdf:RDF>
 <ServiceLocation>
 <probability>0.9</probability>
 <timestamp>2006-10-18T00:00:00</timestamp>
 <hasAbsoluteLocation>
 <AmigoICCS:WGS84Location rdf:ID="location1">
 <longitude>6.8897</longitude>
 <latitude>52.2328</latitude>
 <altitude>0.00</altitude>
 </AmigoICCS:WGS84Location>"
 </hasAbsoluteLocation>
 </ServiceLocation>
</rdf:RDF>

4.2.3 Quality of service aware service description
The QoS-aware Service Selection Tool (QASST) is a mechanism for filtering a list of services
and selecting the most appropriate one which addresses specific QoS requirements set by an

May 2007 Public

Amigo IST-2004-004182 41/103

Amigo User. In order for this to function properly, the semantic service description has to
include the specification of some QoS features.

The example that will be used to demonstrate how a QoS-aware semantic service description
should be provided is the common case of a video delivery service. Consider the case where
two or more Media Servers maintain movies in the Amigo home environment and that the
movie requested by the Amigo user is available in both. Then the QASST selects which of the
two video services is the most appropriate for the user requesting the video delivery.

The following example illustrates such a video-on-demand service semantic description that
includes several QoS properties (i.e. Throughput, Error Rate, Jitter, Latency, MTBF, MTTR,
Availability, Accessibility, Response Time, Data Encryption, Supported Standard).
<?xml version="1.0" encoding="utf-8"?>
<Amigo:Service rdf:ID="VideoOnDemand@home1">
 <ServiceType rdf:datatype=
 "http://www.w3.org/2001/XMLSchema#string">VideoDelivery</ServiceType>
 <hasJitter>
 <Jitter rdf:ID="CD_QoSP_Jitter">
 <Amigo:QC_Value rdf:datatype="http://www.w3.org/2001/XMLSchema#string">1</Amigo:QC_Value>
 <Amigo:QC_Metric rdf:datatype="http://www.w3.org/2001/XMLSchema#string">msec</Amigo:QC_Metric>
 </Jitter>
 </hasJitter>
 <hasLatency>
 <Latency rdf:ID="CD_QoSP_Latency">
 <Amigo:QC_Value rdf:datatype="http://www.w3.org/2001/XMLSchema#string">300</Amigo:QC_Value>
 <Amigo:QC_Metric rdf:datatype="http://www.w3.org/2001/XMLSchema#string">msec</Amigo:QC_Metric>
 </Latency>
 </hasLatency>
 <hasAccessibility>
 <Accessibility rdf:ID="CD_QoSP_Accessibility">
 <Amigo:QC_Value rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0.99000</Amigo:QC_Value>
 <Amigo:QC_Metric rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0</Amigo:QC_Metric>
 </Accessibility>
 </hasAccessibility>
 <hasResponseTime>
 <ResponseTime rdf:ID="CD_QoSP_ResponseTime">
 <Amigo:QC_Value rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0.01</Amigo:QC_Value>
 <Amigo:QC_Metric rdf:datatype="http://www.w3.org/2001/XMLSchema#string">sec</Amigo:QC_Metric>
 </ResponseTime>
 </hasResponseTime>
 <hasMTBF>
 <MTBF rdf:ID="CD_QoSP_MTBF">
 <Amigo:QC_Metric rdf:datatype="http://www.w3.org/2001/XMLSchema#string">sec</Amigo:QC_Metric>
 <Amigo:QC_Value rdf:datatype="http://www.w3.org/2001/XMLSchema#string">36000000</Amigo:QC_Value>
 </MTBF>
 </hasMTBF>
 <hasErrorRate>
 <ErrorRate rdf:ID="CD_QoSP_ErrorRate">
 <Amigo:QC_Value rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10exp(-5)</Amigo:QC_Value>
 <Amigo:QC_Metric rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0</Amigo:QC_Metric>
 </ErrorRate>
 </hasErrorRate>
 <hasDataEncryption>
 <DataEncryption rdf:ID="CD_QoSP_DataEncryption">
 <Amigo:QC_Metric rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0</Amigo:QC_Metric>
 <Amigo:QC_Value
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">AES-128</Amigo:QC_Value>
 </DataEncryption>
 </hasDataEncryption>
 <hasThroughput>
 <Throughput rdf:ID="CD_QoSP_Throughput">
 <Amigo:QC_Metric rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Kbps</Amigo:QC_Metric>
 <Amigo:QC_Value rdf:datatype="http://www.w3.org/2001/XMLSchema#string">512</Amigo:QC_Value>
 </Throughput>
 </hasThroughput>
 <hasSupportedStandard>
 <SupportedStandard rdf:ID="CD_QoSP_SupportedStandard">
 <Amigo:QC_Value
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">WSDL 1.1</Amigo:QC_Value>
 <Amigo:QC_Metric rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0</Amigo:QC_Metric>
 </SupportedStandard>

May 2007 Public

Amigo IST-2004-004182 42/103

 </hasSupportedStandard>
 <hasAvailability>
 <Availability rdf:ID="CD_QoSP_Availability">
 <Amigo:QC_Value rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0.99995</Amigo:QC_Value>
 <Amigo:QC_Metric rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0</Amigo:QC_Metric>
 </Availability>
 </hasAvailability>
 <hasMTTR>
 <MTTR rdf:ID="CD_QoSP_MTTR">
 <Amigo:QC_Value rdf:datatype="http://www.w3.org/2001/XMLSchema#string">1800</Amigo:QC_Value>
 <Amigo:QC_Metric rdf:datatype="http://www.w3.org/2001/XMLSchema#string">sec</Amigo:QC_Metric>
 </MTTR>
 </hasMTTR>
</Amigo:Service>

4.2.4 Event-based service description
The goal of event-based service description is to define semantic services with event
capabilities. This kind of service is needed because entities are heterogeneous in terms of
their functionalities and mechanisms to produce and consume data.

Event capabilities can be defined in terms of basic operations: subscription, publication, and
notification. These operations correspond to standard remote calls. From a higher viewpoint,
programmers only express the communication mechanism (i.e., event or command), the
direction (i.e., input or output) and the type of the event (i.e., the type of the value which is
embedded in the event).

Our system will manage the event throughout its lifecycle and use the command operation as
is. While commands are used for synchronous communication between services, events can
be used for asynchronous communication. It is important to provide both because, in a
ubiquitous environment, deployed services use heterogeneous communication modes (i.e.,
synchronous and asynchronous). Event design patterns for asynchronous communication rely
on several low-level synchronous operations, i.e. subscription and notification. Providing a
high-level viewpoint prevents programmers from dealing with these low-level operations when
it is unnecessary. Semantic services and their instances can then be separately developed.
Indeed, developers only express the communication means, command or event, of semantic
services in a typed manner. Typed events enable safer service composition. Valid
compositions can then be ensured, i.e. event consumers handle properly received events from
event producers.

In our approach, each event is uniquely associated with a type (and vice versa). Consider the
following types: Luminosity, Temperature or Availability. One can define an event for each of
these types; the defined event then inherits from the semantics of the corresponding type.

An event-based service is described like other regular services in OWL and is associated with
a special profile. The profile process indicates if the service consumes or generates events. To
do so, it uses one of the following composite processes described in the events.owl ontology:
EventOutput or EventInput (see Figure 4-1). This ontology must be imported when a new
event-based service description is defined.

In addition, the profile must declare a unique hasParameter property. This property defines the
type of values associated to an event. The URI of a previously defined datatype is used to
define the hasParameter property.

<?xml version="1.0"?>
<rdf:RDF
 xmlns:p1="http://www.owl-ontologies.com/Events.owl#"
 xmlns:j.1="http://www.daml.org/services/owl-s/1.1/Process.owl#"
 xmlns:j.0="http://amigo.gforge.inria.fr/owl/Amigo-S.owl#"
 xmlns:j.2="http://www.daml.org/services/owl-s/1.1/Service.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

May 2007 Public

Amigo IST-2004-004182 43/103

 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:j.3="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
 xml:base="http://www.owl-ontologies.com/Events.owl">
 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://amigo.gforge.inria.fr/owl/Amigo-S.owl"/>
 </owl:Ontology>
 <j.1:CompositeProcess rdf:ID="EventInput"/>
 <j.1:CompositeProcess rdf:ID="EventOutput"/>
</rdf:RDF>

Figure 4-1: The events.owl ontology

Let us consider as an example a light manager to illustrate how to describe an event-based
service (see Figure 4-2). This light manager subscribes to events provided by a light sensor
and turns lights on and off depending on the ambient luminosity. Note that light sensors and
lights are also considered as services. These three services are described using the Amigo-S
vocabulary and the events.owl ontology vocabulary.

<?xml version="1.0"?>
<rdf:RDF
 xmlns:j.0="http://www.daml.org/services/owl-s/1.1/Process.owl#"
 xmlns:j.1="http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl#"
 xmlns:j.2="http://www.daml.org/services/owl-s/1.1/Service.owl#"
 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://www.owl-ontologies.com/LightManagerExample.owl#"
 xmlns:j.3="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
 xml:base="http://www.owl-ontologies.com/LightManagerExample.owl">
 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.owl-ontologies.com/Events.owl"/>
 </owl:Ontology>
 <j.0:ResultVar rdf:ID="Luminosity">
 <j.0:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
 ></j.0:parameterType>
 </j.0:ResultVar>
 <j.2:Service rdf:ID="Light">
 <j.2:presents>
 <j.3:Profile rdf:ID="OnOffProfile">
 <j.3:has_process>
 <j.0:CompositeProcess rdf:ID="OnOffProcess">
 <j.0:composedOf>
 <j.0:Any-Order rdf:ID="OnOff">
 <j.0:components>
 <j.0:ControlConstructBag rdf:ID="OnOffComponent">
 <j.1:first>
 <j.0:Perform rdf:ID="Off">
 <j.0:process>
 <j.0:AtomicProcess rdf:ID="OffProcess"/>
 </j.0:process>
 </j.0:Perform>
 </j.1:first>
 <j.1:first>
 <j.0:Perform rdf:ID="On">
 <j.0:process>
 <j.0:AtomicProcess rdf:ID="OnProcess"/>
 </j.0:process>
 </j.0:Perform>
 </j.1:first>
 </j.0:ControlConstructBag>
 </j.0:components>
 </j.0:Any-Order>
 </j.0:composedOf>
 </j.0:CompositeProcess>
 </j.3:has_process>
 </j.3:Profile>
 </j.2:presents>
 </j.2:Service>

May 2007 Public

Amigo IST-2004-004182 44/103

 <j.2:Service rdf:ID="LightManager">
 <j.2:presents>
 <j.3:Profile rdf:ID="LuminosityEventInputProfile">
 <j.3:has_process rdf:resource=
 "http://www.owl-ontologies.com/Events.owl#EventInput"/>
 <j.3:hasParameter rdf:resource="#Luminosity"/>
 </j.3:Profile>
 </j.2:presents>
 </j.2:Service>
 <j.2:Service rdf:ID="LightSensor">
 <j.2:presents>
 <j.3:Profile rdf:ID="LuminosityEventOuputProfile">
 <j.3:hasParameter rdf:resource="#Luminosity"/>
 <j.3:has_process rdf:resource=
 "http://www.owl-ontologies.com/Events.owl#EventOutput"/>
 </j.3:Profile>
 </j.2:presents>
 </j.2:Service>
</rdf:RDF>

Figure 4-2: LightSensor, Light and LightManager service descriptions

To summarize, our approach enables high-level development, thanks to event abstraction and
separation of concerns, and to the separation between semantic service description and
service instance. A semantic discovery process enables finding event-based service instances
by searching with event-based semantic descriptions.

4.3 How to register a semantic service with the service repository
In order to make services available to the Amigo home environment, we must register the
services with the service repository. The service repository will typically be hosted on a server
machine within the networked home environment, though the services themselves may be
hosted on any device within the environment.

The repository can be discovered via the dynamic discovery mechanisms provided by the
OSGi programming framework, please refer Chapter 2 for examples of using dynamic
discovery.

To register an Amigo-S service with the service repository, we can call the ‘addService’
method:
 addService(String serviceDescriptionURI, String wsdlGroundingURI);

The addService method takes two parameters – the first is the URI of the Amigo-S description
of the service, the second is the URI of the service’s grounding, which in this example points to
a WSDL file. A URI representing the service instance is returned by the method, and can be
used to identify the service instance within the service repository.

A service can be removed from the repository by calling the ‘removeService’ method:
 removeService(String serviceURI);

A special case for service registration is legacy services such as UPnP-based services. Here,
no explicit service registration is required. When requests are made for such services, the
service repository exploits the Amigo interoperability framework to discover legacy services at
runtime.

4.4 Resources
[D2.1] Amigo D2.1 Specification of the abstract system architecture. Available

on-line at http://www.hitech-projects.com/euprojects/amigo/deliverables/
Amigo_WP2_D2.1_v10%20final.pdf.

May 2007 Public

Amigo IST-2004-004182 45/103

[D3.1b] Amigo D3.1b Detailed design of the Amigo middleware core: Service
specification, Interoperable middleware core. Available on-line at:
http://www.hitech-projects.com/euprojects/amigo/deliverables/
Amigo_WP3_D31b_v1.0.pdf

[D3.2] Amigo D3.2 Amigo middleware core: Prototype implementation &
documentation. Available on-line at: http://www.hitech-
projects.com/euprojects/amigo/deliverables/amigo-d3.2-final.pdf.

 [Eyeball] Eyeball: a tool for checking RDF/OWL for common problems. See:
http://jena.sourceforge.net/Eyeball/.

[OWL-S] OWL-S: Semantic Markup for Web Services. See:
http://www.w3.org/Submission/OWL-S/.

[Protégé] The Protégé Ontology Editor and Knowledge Acquisition System. See:
http://protege.stanford.edu/.

May 2007 Public

Amigo IST-2004-004182 46/103

5 How to develop a semantic service-based
application

5.1 Overview
This chapter presents a set of ‘how-to’s’ for the Amigo application developer, describing how
to create applications that incorporate semantic services. We support a comprehensive
approach to service description (which was presented in Chapter 4), discovery, composition,
adaptation and execution. Our solution includes a number of features an application developer
can use when discovering and composing the services to be used by an application, including:
for the former, context-aware and quality-of-service based service discovery, for the latter,
workflow-based service composition, strategy-based service composition and event-based
service composition. Currently, these features are provided as distinct alternatives; however,
they will be integrated in later releases.

5.1.1 Objectives and principles

5.1.1.1 Workflow-based service composition
We have developed an approach to Service Description – Service Discovery, workflow-based
Composition, Adaptation and Execution, which we call SD-SDCAE. The SD-SDCAE solution
aims to enable user applications to exploit services deployed in the Amigo home. In the static
case, we know in advance which single or multiple services we need to invoke or to compose.
We also know the interfaces and the behaviour (i.e., workflow) of these services. These
services may be looked up by name and invoked employing the basic service discovery and
service interaction (see Chapter 2). However, in the dynamic case, we do not know in advance
which services to employ nor their exact interfaces and behaviours. We thus rely on discovery
of services based on the semantics of required functionalities.

For this, both our “abstract” request (since we do not know in advance the services that we will
finally employ) and the available provided services are semantically described. Our request is
described in the form of a task, which is an abstract workflow. Then, we carry out: semantic
service discovery, filtering on QoS and context properties as required; service workflow
composition if no single service satisfies our request but the composite usage of several
services does; and adaptation of our “abstract expectation” to the available service(s). Finally,
we execute the “adapted expectation” invoking the single or multiple composed services.

5.1.1.2 Strategy-based service composition
The strategy-based service composition framework is an example of applying design patterns
to an adaptive service composition problem. The composition logic can be tested interactively
with the VantagePoint tool [D3.3] which is based on semantic modelling of intelligent homes.

5.1.1.3 Context-aware service discovery
A client interested in accessing a service obtains information about the existence of a service,
its applicable parameters, and terms, through service discovery. The existing service
discovery protocols, such as WS-Discovery, match services considering only the keywords
from the user’s query and the terms in the service descriptions. These protocols do not
consider the context information of the services and clients.

Context-aware computing is a paradigm closely related to mobile computing. Mobile clients
usually prefer using services based on several context parameters such as location, time, user
identity and profile, device capabilities, etc. This indicates that the client and services context

May 2007 Public

Amigo IST-2004-004182 47/103

information influences the quality of the service matching and therefore should be taken into
account in the service matching process itself, which is the main purpose of the Context Aware
Service Discovery service:

To take into account different types of context from the client (looking for services) as well as
from the services (that are potential matches to the clients’ service discovery request) in order
to improve the matching results.

The specific type of context information to take into account depends on the service discovery
request from the client (e.g. does it want the closest or the cheapest service).

The objective of the Context Aware Service Discovery (CASD) mechanism therefore is to
provide application developers with the means to make the composition of the services and
programs which they develop context-aware. This in turn means that the mechanisms used to
discover services and applications (service discovery) have to be made context-aware.

5.1.1.4 Quality of service-aware service discovery
A plethora of services will eventually be deployed in the Amigo home. Many of these services
will be offering similar functionality. For serving a specific service request of a user, the Amigo
home middleware should be able to select the most suitable one among services with similar
functionality and similar IOPE (Inputs-Outputs-Preconditions-Effects) parameters, all
addressing the user requirements. Thus, in the context of QoS-aware service selection, a
client submits its service request to the QoS-Aware Service Selection Tool (QASST). The
QASST uses the base service discovery mechanism to identify the services matching the
functional requirements of the service request received. Then, it retrieves the user’s QoS
preferences from the User Modelling and Profiling Service (UMPS) of the WP4 Intelligent User
Services layer. Subsequently, the matching mechanism of QASST takes control, filters out the
services that do not address the user’s QoS requirements and finally selects the most
appropriate one based on an efficient service selection algorithm. The selected service is then
invoked in a completely transparent to the user manner through the middleware mechanisms.

In a nutshell, QASST is provided by the Amigo Middleware and implements QoS-aware
service selection mechanisms adequate for services concerning in-home activities, for
example content delivery services that reside on Amigo home devices, in order for the users to
be provided with services that address their QoS requirements as much as possible.

5.1.1.5 Event-based service composition
Our goal is to provide a Domain-Specific Language (DSL), namely Pantachou, to ease service
development. This scripting language will provide high-level abstractions to heterogeneous
communication modes, i.e., command and event.

Programmers use a small yet expressive scripting language to develop applications. These
applications can communicate via command and event operations. They are compiled to
standard Java code and run smoothly in the Amigo framework.

5.1.2 Features

5.1.2.1 Workflow-based service composition
The features of developing an application using Amigo-S and SD-SDCAE include:

• A user task provides an abstract description of the required capabilities of an
application.

• The required capabilities of a task can be identified by the semantic of the capability
and of its inputs and outputs.

May 2007 Public

Amigo IST-2004-004182 48/103

• An application may invoke capabilities of varying complexity, from lightweight atomic
calls to complex, interleaved conversations (i.e., service workflows), for one or many
tasks from within the same application.

• The conversation (workflow) of a required capability of a task is automatically
reconstituted by weaving together the conversations (workflows) of the provided
capabilities of the available services.

• The resulting (composed) service is generated as an executable ActiveBPEL bundle
and automatically deployed.

5.1.2.2 Strategy-based service composition
The strategy-based service composition framework is developed as platform independent
UML model. An implementation of the framework that is integrated with the VantagePoint tool
is provided for testing the compositions at development time.

5.1.2.3 Context-aware service discovery
Based on the motivation in the previous section, the design of a Context-Aware Service
Discovery (CASD) mechanism should be able to:

A. Determine the most suitable service by taking into account the context information of
both the service and client, and the ranking algorithm as requested by the client
(Closest, cheapest, etc).

B. In the event of a context change or the appearance of new services, if a more suitable
service is found, to notify the client of this more appropriate service by means of a
persistent service discovery mechanism (if the client wishes to be notified of this).

C. Use ontologies for context representation and processing during the service matching
process, to leverage results from other parts of the Amigo project, such as the Context
Management Service (CMS).

In the CASD model, every service and client may have one (or possibly more) context
sources. The context source provides context information about the associated service or
client.

The services register with the service directory (or other suitable service discovery
mechanisms) so they can be discovered. The assumption is that a service has knowledge
about its context sources, so that it can provide references to these context sources when the
service registers with the discovery mechanism in a way that is best suited for that particular
mechanism.

For basic discovery mechanisms it is usually possible to set general name/value properties,
such as with WS-Discovery. In this case a specifically named property of the service will be
set, with a value pointing to the context source providing information about the service, for
example:

 ContextSourceURL=http://my.fqdn.org:8080/context/locationCS.

By providing such a reference to a Context Source, which can provide context for a particular
service, the CASD is able to retrieve the context it wants at run-time from that context source
and use it in its matching process.

Since the context of the client may also be needed for producing a ranking based on context
(e.g. to find the closest service, the location of the client should be known) the client should
also specify a reference to a context source in the request it makes to the CASD service.

The ranking that the client requests (closest, cheapest, etc.) puts requirements on the type of
context that the different context sources should be able to provide.

May 2007 Public

Amigo IST-2004-004182 49/103

If the client makes a request for a suitable service with the CASD service, it includes a service
description of the service the client is looking for. This description is in a form appropriate for
the service discovery mechanism used (e.g. WS-Discovery). The request also includes the
ranking algorithm (closest, cheapest, etc.) that the CASD service should apply to the list of
matching services. The CASD service retrieves the services matching the service type
specified by the client after querying the basic service discovery mechanism. Such services
are referred to as basic matching services. The CASD service then collects the context
information of the basic services and of the client. It then further filters or ranks the basic
services based on that context information to return the most suitable service(s) to the client.

To provide an overview of what a developer can do with CASD, we explain a (WP5)
application referred to as the Crisis Response Application (CRA), which uses CASD. With the
help of this example, we will explain the prototype implementation and documentation for the
CASD.

The CRA is responsible to act whenever an emergency situation is detected. The CRA will be
made aware of any crisis situation in the home by subscribing to the Awareness and
Notification Service (ANS) with the specific rules to be aware of certain emergency conditions.
The ANS then notifies the CRA whenever the rule condition is satisfied.

For example, CRA specifies a rule in ANS to be notified when an intruder is detected. The
ANS will then subscribe to the Anti-Intrusion Service Context Source to provide certain context
data to ANS that ANS needs for executing that specific rule.

Once the CRA receives a notification from ANS that some type of emergency has occurred, it
will use the CASD service to request the proper type of service to contact for this particular
type of emergency, taking into account the context information of the emergency (e.g. time,
type of event, location) and of the Emergency Response Service (e.g. location, speed).

The type of emergency will determine the ranking algorithm requested from the CASD. What
this means in practice is that the CRA will for example ask CASD to provide the ‘closest’
(medical emergency) service in case of a medical emergency, and the ‘cheapest’ (plumbing)
service in case of a minor water leak. So depending on the type (and urgency) of the
emergency that has occurred, different types of context of both the service and client (the
CRA) will be taken into account.

5.1.2.4 Quality of service-aware service discovery
The Quality of Service Aware Service Selection Tool (QASST) provided by the Amigo
middleware supports a range of commonly required quality of service parameters including
throughput, cost, latency, response time, error rate, jitter, data encryption, and accessibility. In
this respect, it aims to select the services that address the user’s QoS preferences in the most
suitable manner, as well as perform a QoS semantic matching to select the most appropriate
QoS-aware services to be integrated in a QoS-aware composed application.

5.1.2.5 Event-based service composition
Pantachou provides abstractions to compose services and make them interact with each
other. These interactions can be defined in terms of commands or events. For events,
Pantachou provides some syntactic notations to receive and send events. They allow
programmers to concentrate on the goal of their applications without dealing with
implementation details.

A notion of “behaviour” describes the operations that must be performed when an event is
received. This behaviour can be dynamically changed to enable application reconfiguration.

May 2007 Public

Amigo IST-2004-004182 50/103

5.1.2.6 Future integration
Currently, these different styles of composition and enhanced service discovery are presented
as distinct approaches. A unified, integrated interface is currently being developed that will
apply globally Amigo-S service descriptions, use the common semantic service repository
introduced in Chapter 4, and allow client requests to use a combined, uniform Dispatcher API.
This Dispatcher will cleverly relay a client request to the appropriate discovery/composition
approach.

5.1.3 Assessment

5.1.3.1 Workflow-based service composition
The advantages of developing an application using Amigo-S and SD-SDCAE include:

• By describing a task in an abstract way, we are not bound to any particular remote
service in terms of the capabilities provided or the specific orchestration of these
capabilities, increasing the availability and promoting interoperability of the potentially
matching services.

• Identifying a task’s required capabilities by their semantic allows concrete details of the
services’ provided capabilities used in a composition to be reliably and automatically
adapted to the needs of the required capabilities in the absence of an exact match.

• By supporting a variety of depths of complexity of composition, the SD-SDCAE
mechanism allows the application developer to control the level of runtime overhead
consumed by the composition process to match the needs of the Amigo application.

• Complex conversations can be automatically and reliably composed, while offering
fine-grained control over the placement of capabilities in the task, and guaranteeing
that the data and control dependencies of each of the provided capabilities are
preserved.

• Orchestration of the execution of the composed service is handled automatically by the
ActiveBPEL execution engine.

• By separating the composition of service from its invocation, once a new, composed
service is created, it can be invoked many times without incurring the cost of
composition again.

5.1.3.2 Strategy-based service composition
The strategy-based composition framework provides means to describe reasoning related to
service composition in a declarative way. The composition logic can be interactively tested
against device libraries providing Amigo-S services with simulated scenarios using the
VantagePoint tool.

5.1.3.3 Context-aware service discovery
The Context-Aware Service Discovery (CASD) augments traditional service discovery
mechanisms with context-awareness. This means that the context information of both the
services and the client is taken into account in determining the list of services that are returned
to the client.

One of the features of CASD is that the client need not worry about selecting the most suitable
service from the large set of services returned by the service discovery mechanism, since the
CASD will provide a ranking of the services based on the context of services and client. The
specific ranking method used is determined by the client itself in its request to the CASD
service; so the returned list is optimised according to the wishes of the client.

The CASD service also introduces the concept of persistent service discovery, where the
clients will be notified whenever the resulting (order of the) list changes, e.g. because the
context of some of the services changes, or new services become available. The only change

May 2007 Public

Amigo IST-2004-004182 51/103

with respect to the standard mechanism is that the client also specifies a call-back reference in
its request to the CASD service, which the CASD service will use to notify the client whenever
the result of the request changes.

This mechanism promises to simplify the design of clients in pervasive environments as they
need not actively search for the best services when their context changes. This added
simplicity is due to the fact that they will be dynamically notified of better service matches as
they become available, meaning that clients will not have to adopt a ‘polling style’ service
discovery.

5.1.3.4 Quality of service-aware service discovery
QoS-aware Service Selection Tool (QASST) is used in order to select a single service from a
set of services, all addressing the functional capabilities of a user request. Semantic matching
mechanisms are applied, which filter out the services that do not address user’s QoS
preferences, and an efficient selection algorithm is used in order to identify the service that
best addresses the submitted request. Both the matching mechanisms and the selection
algorithm are based on the robust Amigo QoS semantic framework, which enables users to
create multiple QoS profiles for different service types (e.g. VideoDelivery, Gaming) and
facilitates the exact semantic matching. Furthermore, for each service type, the user is able to
specify not only value thresholds for each QoS parameter (i.e. providing upper, lower or both
value constraints), but also the level of significance of this particular QoS parameter. The
selection process is based on a straightforward and low-complexity service filtering algorithm
and a light-weight selection scheme that takes into consideration all the parameters above.
The QASST provides user-friendly interfaces and, once the user QoS preferences have been
specified, it selects the service that best addresses these preferences in a completely
transparent manner. Furthermore, the functionality of the QASST is extended to support the
integration of QoS-aware services in a composed application. One of the major innovations in
the proposed approach is that it establishes full scale QoS-awareness, an aspect rarely
addressed in Ambient Intelligence, while this is accomplished in a lightweight and transparent
manner.

5.1.3.5 Event-based service composition
Pantachou is dedicated to event-based service composition. It provides high-level abstractions
to express event-based asynchronous communication between services. These high-level
abstractions will reduce development time thanks to concise and easy to write applications.
Programmers will concentrate on what their applications should do instead of how they do it.
Pantachou reuses semantic service description and provides operations to compose semantic
services. Pantachou applications do not rely on specific service instances but on specific
service functionalities, which have been expressed in semantic descriptions. This high-level
composition enables deployment of Pantachou applications in several ubiquitous
environments with different services. The only requirement for such a deployment is that the
new targeted environment provides semantically equivalent service instances.

Moreover, compared to general-purpose languages, these DSL programs will be safer as
Pantachou enables more code verification. The Pantachou compiler could for instance ensure
valid compositions. To do so, it would analyze Pantachou applications and match them against
their corresponding semantic service descriptions. Pantachou applications and composed
event-based services must be compliant with their corresponding semantic descriptions.
Moreover, these semantic descriptions must be compliant with respect to the composition
expressed by the Pantachou application logic.

May 2007 Public

Amigo IST-2004-004182 52/103

5.2 How to develop an application that integrates complex service
workflows

In this section, we will walk through creating a task description in Amigo-S, and how the task is
realised by composing available Amigo-S services. This will include writing the task
description, registering the Amigo-S services developed in Chapter 4, calling the SD-SDCAE
mechanism to realise the task, and demonstrating how the resulting service can be executed
from Java code.

Before we begin creating our task description, it may be useful to examine Figure 5-1, which
gives an impression of the overall SD-SDCAE service composition process.

Figure 5-1: An overview of the steps involved in the SD-SDCAE composition process

The first step of developing an SD-SDCAE application is to create a task description. The task
specifies the set of required capabilities the application needs to run. The task is described
abstractly, it is not yet bound to any remote service either in terms of the set of required
capabilities to be provided by remote services or in the orchestration of these capabilities to be
matched with the conversations (workflows of capabilities) of the remote services.

Continuing the example from Chapter 4, we will create a task description for a multimedia
player application. The task description can be created using the application developer’s tools
of choice. As a guide, the source OWL XML of the multimedia player is provided below:
<?xml version="1.0"?>
<!DOCTYPE uridef[
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
 <!ENTITY process "http://www.daml.org/services/owl-s/1.1/Process.owl">
 <!ENTITY objList "http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl">
 <!ENTITY wsdl
 "http://www.hitech-projects.com/euprojects/amigo/MultimediaRenderer.wsdl">

May 2007 Public

Amigo IST-2004-004182 53/103

]>
<rdf:RDF
 xmlns:lang="http://www.hitech-projects.com/euprojects/amigo/Amigo-S.owl#"
 xmlns:capabilities=
 "http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#"
 xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#"
 xmlns:service="http://www.daml.org/services/owl-s/1.1/Service.owl#"
 xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
 xmlns:grounding="http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
 xmlns:objList="http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="http://www.hitech-projects.com/euprojects/amigo/MultimediaPlayer.owl#"
 xml:base="http://www.hitech-projects.com/euprojects/amigo/MultimediaPlayer.owl"
 xmlns:wsdl="http://www.hitech-projects.com/euprojects/amigo/MultimediaPlayer.wsdl">

 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource=
 "http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl"/>
 <owl:imports rdf:resource=
 "http://www.hitech-projects.com/euprojects/amigo/Amigo-S.owl"/>
 </owl:Ontology>

These set up the required namespaces and imports for a task. Next, we describe the required
capabilities needed by the application in the task’s service profile:
 <service:Service rdf:ID="MultimediaPlayerService">
 <service:presents>
 <capabilities:ServiceProfile rdf:ID="MultimediaPlayerProfile">

 <!-- Required capabilities -->
 <lang:hasRequiredCapability>
 <capabilities:ListMedia rdf:ID="ListMediaCapability">
 <lang:hasConversation rdf:resource="#ListMediaConversation"/>
 <lang:hasOutput rdf:resource="#ListMediaOutput"/>
 </capabilities:ListMedia>
 </lang:hasRequiredCapability>

 <lang:hasRequiredCapability>
 <capabilities:ListMostPlayedMedia rdf:ID="ListMostPlayedMediaCapability">
 <lang:hasConversation rdf:resource="#ListMostPlayedMediaConversation"/>
 <lang:hasInput rdf:resource="#ListMostPlayedMediaInput"/>
 <lang:hasOutput rdf:resource="#ListMostPlayedMediaOutput"/>
 </capabilities:ListMostPlayedMedia>
 </lang:hasRequiredCapability>

 <lang:hasRequiredCapability>
 <capabilities:PlayMedia rdf:ID="PlayMediaCapability">
 <lang:hasConversation rdf:resource="#PlayMediaConversation"/>
 <lang:hasInput rdf:resource="#PlayMediaInput"/>
 <lang:hasOutput rdf:resource="#PlayMediaOutput"/>
 </capabilities:PlayMedia>
 </lang:hasRequiredCapability>

 <!-- Sub-capabilities -->
 <lang:hasCapability>
 <capabilities:Login rdf:ID="LoginCapability">
 <lang:hasConversation rdf:resource="#LoginConversation"/>
 <lang:hasInput rdf:resource="#LoginInput"/>
 </capabilities:Login>
 </lang:hasCapability>

 <lang:hasCapability>
 <capabilities:CreateMostPlayedMediaList rdf:ID=
 "CreateMostPlayedMediaListCapability">
 <lang:hasConversation rdf:resource=
 "#CreateMostPlayedMediaListConversation"/>
 <lang:hasOutput rdf:resource="#CreateMostPlayedMediaListOutput"/>
 </capabilities:CreateMostPlayedMediaList>
 </lang:hasCapability>

May 2007 Public

Amigo IST-2004-004182 54/103

 <lang:hasCapability>
 <capabilities:SetMedia rdf:ID="SetMediaCapability">
 <lang:hasConversation rdf:resource="#SetMediaConversation"/>
 <lang:hasInput rdf:resource="#SetMediaInput"/>
 </capabilities:SetMedia>
 </lang:hasCapability>

 <lang:hasCapability>
 <capabilities:Play rdf:ID="PlayCapability">
 <lang:hasConversation rdf:resource="#PlayConversation"/>
 <lang:hasOutput rdf:resource="#PlayOutput"/>
 </capabilities:Play>
 </lang:hasCapability>

 <service:presentedBy rdf:resource="#MultimediaPlayerService"/>

 <profile:textDescription rdf:datatype=
 "http://www.w3.org/2001/XMLSchema#string">
 Example multimedia player service.
 </profile:textDescription>

 <profile:serviceName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 MultimediaPlayer Service
 </profile:serviceName>
 </capabilities:ServiceProfile>
 </service:presents>
 </service:Service>

Following this, we provide the structure of the conversations of the task’s capabilities:
 <!-- Conversations -->
 <process:AtomicProcess rdf:ID="ListMediaConversation">
 <process:hasOutput>
 <process:Output rdf:ID="ListMediaOutput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#MediaList
 </process:parameterType>
 </process:Output>
 </process:hasOutput>
 </process:AtomicProcess>

 <process:CompositeProcess rdf:ID="ListMostPlayedMediaConversation">
 <process:hasInput>
 <process:Input rdf:ID="ListMostPlayedMediaInput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#User
 </process:parameterType>
 </process:Input>
 </process:hasInput>

 <process:hasOutput>
 <process:Output rdf:ID="ListMostPlayedMediaOutput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#MediaList
 </process:parameterType>
 </process:Output>
 </process:hasOutput>

 <process:composedOf>
 <process:Sequence>
 <process:components>
 <process:ControlConstructList>
 <objList:first>
 <process:Perform rdf:ID="LoginPerform">
 <process:process rdf:resource="#LoginCapability"/>
 <!-- Parameter Bindings -->
 </process:Perform>
 </objList:first>
 <objList:rest>
 <process:ControlConstructList>
 <objList:first>
 <process:Perform rdf:ID="CreateMostPlayedMediaListPerform">
 <process:process rdf:resource="#CreateMostPlayedMediaListCapability"/>

May 2007 Public

Amigo IST-2004-004182 55/103

 <!-- Parameter Bindings -->
 </process:Perform>
 </objList:first>
 <objList:rest rdf:resource="&objList;#nil"/>
 </process:ControlConstructList>
 </objList:rest>

 </process:ControlConstructList>
 </process:components>
 </process:Sequence>
 </process:composedOf>
 </process:CompositeProcess>

 <process:AtomicProcess rdf:ID="LoginConversation">
 <process:hasInput>
 <process:Input rdf:ID="LoginInput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#User
 </process:parameterType>
 </process:Input>
 </process:hasInput>
 </process:AtomicProcess>

 <process:AtomicProcess rdf:ID="CreateMostPlayedMediaListConversation">
 <process:hasOutput>
 <process:Output rdf:ID="CreateMostPlayedMediaListOutput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#MediaList
 </process:parameterType>
 </process:Output>
 </process:hasOutput>
 </process:AtomicProcess>

 <process:CompositeProcess rdf:ID="PlayMediaConversation">
 <process:hasInput>
 <process:Input rdf:ID="PlayMediaInput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#Media
 </process:parameterType>
 </process:Input>
 </process:hasInput>

 <process:hasOutput>
 <process:Output rdf:ID="PlayMediaOutput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.w3.org/2001/XMLSchema#boolean
 </process:parameterType>
 </process:Output>
 </process:hasOutput>

 <process:composedOf>
 <process:Sequence>
 <process:components>
 <process:ControlConstructList>
 <objList:first>
 <process:Perform rdf:ID="SetMediaPerform">
 <process:process rdf:resource="#SetMediaCapability"/>
 <!-- Parameter Bindings -->
 </process:Perform>
 </objList:first>
 <objList:rest>
 <process:ControlConstructList>
 <objList:first>
 <process:Perform rdf:ID="PlayPerform">
 <process:process rdf:resource="#PlayCapability"/>
 <!-- Parameter Bindings -->
 </process:Perform>
 </objList:first>
 <objList:rest rdf:resource="&objList;#nil"/>
 </process:ControlConstructList>
 </objList:rest>

 </process:ControlConstructList>
 </process:components>
 </process:Sequence>

May 2007 Public

Amigo IST-2004-004182 56/103

 </process:composedOf>
 </process:CompositeProcess>

 <process:AtomicProcess rdf:ID="SetMediaConversation">
 <process:hasInput>
 <process:Input rdf:ID="SetMediaInput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.hitech-projects.com/euprojects/amigo/Capabilities.owl#Media
 </process:parameterType>
 </process:Input>
 </process:hasInput>
 </process:AtomicProcess>

 <process:AtomicProcess rdf:ID="PlayConversation">
 <process:hasOutput>
 <process:Output rdf:ID="PlayOutput">
 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
 http://www.w3.org/2001/XMLSchema#boolean
 </process:parameterType>
 </process:Output>
 </process:hasOutput>
 </process:AtomicProcess>
</rdf:RDF>

Note that no grounding is defined, as the task is an abstract description.

Now that we have a task description for the multimedia player application, and service
descriptions for matching services, we are ready to deploy the application.

First, in order to make the services available to the SD-SDCAE mechanism, we must register
the services with the service repository. The service repository will typically be hosted on a
server machine within the networked home environment, though the services themselves may
be hosted on any device within the environment.

The repository can be discovered via the dynamic discovery mechanisms provided by the
OSGi programming framework, please refer to Chapter 2 for examples of using dynamic
discovery.

For example, to register the MultimediaBrowser service (detailed in Chapter 4), we would call
the ‘addService’ method like this:
 String multimediaBrowserURI = repository.addService(multimediaBrowserServiceDescriptionURI,
 multimediaBrowserWsdlGroundingURI);

Now that the services are registered, we can call SD-SDCAE to realize our task. To do this,
we first discover the SD-SDCAE composition engine, again using the discovery mechanisms
of the OSGi programming framework. Then, we must execute the following code:
 Boolean success = compositionEngine.deployAsService(taskURI);
 CapabilityInvoker invoker = null;
 if (success.equals(Boolean.TRUE)) {
 invoker = compositionEngine.getCapabilityInvoker(taskURI);
 }

The deployAsService method takes the URI of the task description as a parameter. When this
method is called, the SD-SDCAE attempts to realise the required capabilities of the task by
composing the provided capabilities of the available services. If a composition is found that
satisfies the requirements of the task, SD-SDCAE generates an executable BPEL bundle for
each required capability of the task. These bundles are then deployed on a suitable host
machine. Typically, this host will be a server machine within the home environment, though the
application which invokes these bundles may be hosted on any device within the environment.
Note that the application is shielded from these implementation details – in order to invoke the
required capabilities of the task, we only need check that the composition succeeded, and
obtain the capability invoker for the task, as in the code snippet above.

May 2007 Public

Amigo IST-2004-004182 57/103

Once we have obtained the capability invoker for the task, we can invoke any of the task
capabilities as desired. For example, the code for the multimedia player application makes the
following invocations:
 String media = null;
 if (mode.equals(Mode.SHUFFLE)) {
 List<String> allMedia = invoker.invoke("ListMediaCapability");
 media = allMedia.get(random.nextInt(allMedia.size()));
 }
 else if (mode.equals(Mode.SHUFFLE_MOST_PLAYED)) {
 List<String> mostPlayedMedia =
 invoker.invoke("ListMostPlayedMediaCapability", "ListMostPlayedMediaInput=" + userID);
 media = mostPlayedMedia.get(random.nextInt(mostPlayedMedia.size()));
 }

 if (media != null) {
 invoker.invoke("PlayMediaCapability", "PlayMediaInput=" + media);
 }

This completes our walkthrough of creating and deploying a task using the core language of
Amigo-S.

5.3 How to develop an application using strategy-based composition and
a composition visualisation tool

5.3.1 Overview of the composition framework
The composition framework is a set of design patterns and knowledge-based approaches. The
goal is to provide a conceptual model described in UML that can be implemented with various
programming languages. The prototype is implemented with Java using MDA-based
approaches.

The resulting Java framework suits best for checking the context conditions of system before
selecting required QoS parameters for the services to be discovered. The use of semantic
service discovery and Context Management System is integrated with the framework (for the
latter, see the [D4.X] deliverables).

A designer can describe an adaptive composition as a set of hierarchical and prioritized
composition rules. The leaf level rules define primitive compositions and support a specific
composition strategy. The framework is integrated with VantagePoint [D3.3] so that the
composition can be simulated against different application scenarios.

The composition framework can use one or more composition strategies. One of the strategies
can be workflow-based, another a user-defined agent-based Java architecture. A composition
strategy must support sequential composition of primitive composition fragments into a larger
composition.

The composition framework restricts the application to one type of composition strategy at a
time, i.e. workflow-based composition cannot be freely combined with Java code.

5.3.2 An example scenario
Ambience sharing application may be considered as a context-adaptive extension of traditional
person to person visual communication services such as videoconference.

It is composed of several A/V capture and A/V rendering services. Depending on the situation,
the service composition system dynamically selects relevant capture and rendering services
and establishes a connection (i.e. stream redirection) between them through the A/V relay
service.

In the example we consider a static situation where a User activates the Ambience sharing
application in a room and the composition is done using the services available in the room.

May 2007 Public

Amigo IST-2004-004182 58/103

Later we also discuss the dynamic situation where the user can move from one room to
another and the Ambience sharing application uses the services provided by the devices that
are available in the room every time when the user moves from one room to another.

5.3.3 Simulating service composition logic using the VantagePoint tool
The VantagePoint tool helps an application developer to develop an application composing the
available services in different Amigo homes. With VantagePoint the developer can create
visualisations of application related scenarios and by editing the model simulate the contextual
changes associated with the scenario. A library of devices providing Amigo-S services
supports the developer. With these the developer can design one or more intelligent home
scenarios and test and verify the resulting composition.

Figure 5-2 shows a visualisation of scenario discussed earlier. There are two houses defined
for the scenario with a person each (Roberto and Maria). The house of Roberto is modelled in
more detail so that we can test the composition logic with different set of devices providing the
required A/V services for the application. The rooms in Maria’s house have not been defined in
more detail.

Figure 5-2: Example scenario visualization in VantagePoint

The service composition problem for the example scenario is described in Figure 5-3.

May 2007 Public

Amigo IST-2004-004182 59/103

Figure 5-3: Services to be composed

The simulation of service composition in VantagePoint is done by using SPARQL queries and
listening for VantagePoint events triggered by a user. By implementing the VPEventListener
interface and registering as a listener, a Java class can be aware of what happens in the
virtual environment. Then queries can be executed according to events such as “item added”
or “item removed” to gather relevant data from the VantagePoint model. This data is then used
to make the service related computations.

Figure 5-4: Participating modules in simulation

Ambience Sharing
Application between
Roberto and Maria

Ambience Sharing
Service for Roberto

Ambience Sharing
Service for Maria

A/V Relay Service

Most suitable
MediaRenderer

Service provided by a
device in the same
room as Roberto

Most suitable
MediaCapture

Service provided by a
device in the same
room as Roberto

May 2007 Public

Amigo IST-2004-004182 60/103

Figure 5-5: Query sequence

Adding new service descriptions to VantagePoint item library
VantagePoint has an item library which contains predefined items that the user can drag and
drop into the virtual environment. Items are basically instances of user specified OWL classes
that have icon information attached to them and possibly some extra data, for example service
description. This extra data is referenced in the item description. In the example below there is
a single item from the item library. It is an instance of OWL class “Speaker”, it uses
VantagePoint’s icon set “speakerIconSet1” and references a service instance.

<rdf:Description rdf:about="&ItemLibrary;MySpeakerItem">
 <iconSet>speakerIconSet1</iconSet>
 <rdf:type rdf:resource="&Amigo;Speaker"/>
 <Amigo:deploysService rdf:resource="&Amigo;SpeakerServiceInstance"/>
</rdf:Description>

The class definitions and the actual service instance have to be imported to the VantagePoint
model in order to make the querying work correctly and the service description available. In
the case of the example above, the OWL file that specifies the class “Speaker” and instance
“SpeakerServiceInstance” should be imported to the VantagePoint model. Importing has to be
done manually, at the moment, by adding the desired OWL file references in the
WorldModel.owl import list.

After the item library has items that provide services, the service composition simulation can
begin.

Static service discovery

May 2007 Public

Amigo IST-2004-004182 61/103

Figure 5-6: Service discovery simulation

The Figure 5-6 goes through the sequence of messages and commands that take place in the
service discovery simulation. In addition to VantagePoint and the service composition
application there are separate classes to simulate the service discovery and context
management system, which will be demonstrated later.

1. User loads a model of a house which is the scenario for this simulation. The house
model contains the items that provide services for this case.

2. Service composition application makes a service request. Context constraints here
mean for example the area from which to search for matching services. The discovery
simulation queries VantagePoint for services in an area and gets the results and
parses them in to a service description. Then the list of matching services is returned
back to the requesting application. This step is the basic example of service discovery.

The place for service registry implementation is between VantagePoint and discovery
simulation. Discovery simulation would communicate only with service registry and
VantagePoint would be the responsible for updating the registry.

May 2007 Public

Amigo IST-2004-004182 62/103

Dynamic service discovery

Figure 5-7: Dynamic discovery of services

User can add items to the VantagePoint model by dragging and dropping. This user gesture
starts the dynamic service discovery sequence. VantagePoint sends the recently added item
URI to the applications that are registered as its listeners. Then applications can react to this
event by querying the new item about its services.

1. User loads a model of a house.
2. Service composition application makes a permanent service request. This means that

it wants to be notified whenever a matching service is discovered. Context constraints
could define the area from where to search for matching services.

3. User drops an item to the virtual environment. An “item added” event is generated.
Now the discovery simulation queries VantagePoint if the new item should have any
services to provide and whether the services match with the permanent service
request. Matching service descriptions are then sent to service composition
application.

May 2007 Public

Amigo IST-2004-004182 63/103

Simulating context events

Figure 5-8: Simulating context events

By moving items around in the VantagePoint model user creates context events. The
ServiceSimulation can be notified about these events so that it can react in appropriate way.
The sequence of context events simulation goes as follows.

1. User loads a model of a house which is the scenario for this simulation. The house
model contains the items that provide services for this case.

2. Service composition application subscribes a context event. It wants to be notified if
this particular context event occurs. In this case the interesting event is person moving
from area to another area and the goal is to perform “follow me” –type of tasks.

3. User moves an item representing a person from area to another area. An “item moved”
event is generated. Then the CMSSimulation registered to listen to VantagePoint
events queries if the item is a person and moved from area to another. If so, it notifies
the service composition application for this event.

4. Service composition application reacts to context changes and performs a new service
request for the area where the person has moved into.

5.3.4 Describing a composition using the ESRR framework
The service composition is described by defining one or more composition rule classes that
describe the composition logic and by selecting a suitable composition strategy to describe
how the selected services are composed into task that can be executed. The composition

May 2007 Public

Amigo IST-2004-004182 64/103

strategy can be a simple Java code fragment that calls the selected web services, or it can be
a new Amigo-S abstract composite service.

The services used by ambience sharing composition logic are:

MediaRendering: This service renders A/V streams and can be deployed on every screen in
the house.

MediaCapture: This is a MultimediaMediaServer service that provides captured A/V streams
and can be deployed on every camera and microphone in the house.

MediaControlPoint: the role of this service is to obtain streams from A/V capture services and
to direct them to A/V rendering services. The service provides an interface for configuring the
streams directions (i.e. which capture services to receive from and which rendering services to
render to).

For the example scenario we show how to compose PersonAmbience service that can be
used by an ambience sharing application to capture the person related A/V stream and render
ambience A/V streams provided for another person in other house.

The composition logic is described using hierarchical reasoning. A composition has to first
know where the user is in order to be able to discover the suitable MediaRendering and
MediaCapture services. We first create a VantagePoint query template to check in what room
the person is.
 ”SELECT ?room WHERE #INSTANCE# <Amigo.owl#IsLocatedIn> room”

This query can be tested in the simulated scenario with VantagePoint query support so that it
provides the correct results.

The compositions rule is defined by creating a subclass of the ESSR.Composition class. The
overall logic of reasoning is given as a comment:

/* COMPOSITION PersonAmbianceSharing for User1
R1: CONDITION User1 is located in Room
 ACTION COMPOSE PersonAmbienceSharingInRoom(Person,Room)
 DEFAULT: do nothing*/

public PersonAmbianceSharing extends ESRR.Composition {
 public PersonAmbianceSharing (String User1)
 {
 R1 is new ESRR.Rule;
 R1.Condition.Query =
 ”SELECT ?room WHERE” + User1 + “<Amigo.owl#IsLocatedIn> room” ;
 R1.Action = new ESRR.CompositeStrategy();
 R1.Action.add(new PersonAmbienceSharingInRoom(User1, R1.Condition.Result));
 }
}

The logic can be refined in our context application with new rules that provide logic that the
services are available. The next level rule will refine this reasoning by for example using the
following logic:
/*ESR Peson ambience sharing in Room
 R1: User has requested privacy in the room (check using Amigo UMPS service).
 ELSE R2: MediaRendering and MediaCapture services are discovered in the Room
 ELSE R3: MediaRendering services are discovered in the Room
 ELSE R4: MediaCapture services are discovered in the Room
 DEFAULT No available A/V services */

This logic of high level adaptive composition logic can now be invoked by Java commands:

RobertoAmbience = new PersonAmbienceSharing(“TestPersons.owl#Roberto”);
RobertoAmbience.Trigger();
MariaAmbience = new PersonAmbienceSharing(“TestPersons.owl#Roberto”);
MariaAmbience.Trigger();

May 2007 Public

Amigo IST-2004-004182 65/103

The execution of resulting composition depends on the selected composition strategy. One
such strategy will be to use rules to select a suitable abstract service for the situation leaving
the details of composition and execution to SD-SDCAE, or it can simply be the execution of a
user-defined agent programmed in Java that is selected by the rules and uses the selected
services to publish a new composed service.

The trace of composition logic in the selected scenario can be examined in VantagePoint to
verify that it works as expected against the set of Amigo-S services that are available in the
current room.

5.4 How to develop an application that integrates context-aware services
The current version of the CASD service is based on basic service discovery (WS-Discovery).
The following section will describe the run-time behaviour and examples of the context
descriptions of the service and the client. For integration with the semantic discovery a number
of subjects should be addressed:

• The service description as passed to CASD should be changed to a semantic
description as is used for semantic service discovery.

• The underlying service discovery mechanism should be changed from something like
WS-Discovery to the semantic discovery.

• The manner in which context is linked (dynamically) to a service, currently done with a
property pointing to a context source, should be changed to be compatible with the
semantic service discovery. Optionally this can be done when the service registers with
the semantic service repository by including the link to the context source in the
semantic service description. Additionally the types of context that are supported y this
context source can be included in the description. Having the context itself included in
the service description is inefficient, since the very nature of context is dynamic and
would therefore lead to a lot of service description updates (whenever the context
changes).

CASD service interface
The CASD service has the interface shown below in code.

The lookup method is used for the request/response style of service discovery (i.e. lookup
services taking context of this moment into account, but do not provide further updates).

The doPersistentLookup and unsubscribePersistentLookup methods are used for persistent context aware
service discovery, so in case a discovery client wants to be notified whenever a ‘better’ service
becomes available based on the context aware matching done by CASD.
public interface IAmigoCASD {

/* Active Service Discovery */
public String[] lookup (String requiredServiceDescription, String[] contextSourceAmigoRefs,

String casdSelectionIdentifier);

/* Subscribe for the persistent service discovery */
public String[] doPersistentLookup(String requiredServiceDescription,

String[] contextSourceAmigoRefs, String casdSelectionIdentifier,
String callBackServiceReference);

/* Unsubscribe from the persistent service discovery */
public void unsubscribePersistentLookup(String callBackServiceReference);

}
The lookup and doPersistentLookup methods return the strings representing the Amigo Service
References. With the persistent lookup, the callbackReference specifies the reference of the
client that has to be called whenever the result of the lookup changes.

May 2007 Public

Amigo IST-2004-004182 66/103

CASD service client
When a client wishes to make a Lookup or persistentLookup request, then it needs to:

A. Obtain a handle on the CASDAmigoService

B. Describe the service that it is looking for, represented as requiredServiceDescription above.

C. Provide a reference to the client context sources represented as contextSourceAmigoRefs
above.

D. Specify which criteria should be used to select the most appropriate service
represented by casdSelectionIdentifier, which is the ranking algorithm mentioned earlier. At
the moment the following criteria are envisioned: Closest, Fastest, and Cheapest. The
client needs to make sure that its context source provides the required information so
that casdSelectionIdentifier can be used. E.g. for the Closest service, the client context
source should provide client’s location as described using the Amigo ontology.

E. If the client is interested in a persistentLookup request, then it also needs to implement
callBackServiceInterface and send this reference in the query represented by
callBackServiceReference above.

Client's context description
The Client is the entity which plans to issue a service discovery request towards the CASD
service and thus needs to be able to describe its context to perform service selection based on
the casdSelectionIdentifier. Within Amigo WP4, there has been extensive work performed on
developing a Context-Aware infrastructure that leverages the ontology developed within WP3.
It is convenient for the client to utilise the facilities offered by WP4 with respect to describing its
context and making it available.

For example: Consider a client that has a certain location and also wishes to optimise its
service selection based upon closeness (in terms of GPS coordinates). In this case, the client
would describe its location in the longitude, latitude and altitude format using the following
RDF fragment (namespaces and data types excluded for the sake of brevity).
<?xml version="1.0"?>
<rdf:RDF >
 <UserLocation>
 <probability>0.9</probability>
 <timestamp>2006-10-18T00:00:00</timestamp>
 <hasAbsoluteLocation>
 <AmigoICCS:WGS84Location rdf:ID="location1">
 <longitude>6.8897</longitude>
 <latitude>52.2328</latitude>
 <altitude>0.00</altitude>
 </AmigoICCS:WGS84Location>"
 </hasAbsoluteLocation>
 </UserLocation>
</rdf:RDF >

Service's context description
For the CASD service to perform service selection based on the casdSelectionIdentifier, it also
needs to provide the information about its context sources in the service description as well as
the context sources should provide necessary context information so that a query based on
the casdSelectionIdentifier can be executed, this is currently done by setting a property to point to
the CS.

An example of the ambulance location context source has already been given in Chapter 4.

May 2007 Public

Amigo IST-2004-004182 67/103

Services need to publish a reference to their ContextSource when they advertise themselves.
For the WS-Discovery case this is done by adding a property ContextSourceURL to the Amigo
service description; in the OSGi deployment framework this can be done as follows:
ambulanceService.addProperty("ContextSourceURL",serviceContextSource.getReference().getUrl());

Where serviceContextSource is the context source providing context about this particular
service.

Obtain a handle on the Context Aware Service Discovery service
The serviceType of CASD service in the Amigo Framework is CASDService. The CRA executes
the following (pseudo-code) function to obtain a handle on the CASDService:
private AmigoService FindCASDService() {

// AmigoLdapLookup lookup is the normal discovery service
CASDService = lookup.lookupFirstService("urn:amigo", "CASDService");

 if (CASDService == null) {
return null;

} else {
return CASDService;

}
}

Reference to the CRA context source
In the final CRA prototype, the CRA service will use the context source, the context
information of which will trigger the rule at ANS. However, CRA is not yet integrated with ANS.
Hence, we create a location context source for CRA and provide this information to the CASD
service.

The CRA Context Source which provides location is activated as follows. Please note that
some steps are omitted for brevity. Refer to the CMS tutorial to see how to develop Context
Sources for the Amigo framework.

ContextSourceManager manager;
LocationContextSource locationcs = new LocationContextSource(manager);
locationcs.init();

The reference to the locationContextSource is obtained as follows:
String[] contextSourceRefs = new String[] { locationcs.getAmigoReference().toString() }

Specification of the casdSelectionIdentifier
CRA is currently interested to find the closest ambulance service. Hence it uses the following
casdSelectionIdentifier:

String selectionIdentifier = "CLOSEST";

Invoking the CASD service
Once the above parameters are specified, the CASDlookup function is invoked as follows:
GenericStub stub = SSMDservice.getGenericStub();
String[] argNames = new String[]{"requiredServiceDescription", "contextSources", "casdSelectionIdentifier"};

Object[] argValues = new Object[]{desc, refs, selectionIdentifier};
Object response = stub.invoke("lookup", argNames, argValues);

Based on this information, the CASD service will return the CLOSEST ambulance service.

May 2007 Public

Amigo IST-2004-004182 68/103

Interpreting the CASD service response
After obtaining the response from the CASD service, one needs to obtain the Amigo reference
of the returned service(s). How this can be done is show using the following pseudo-code:
Vector references = (Vector) response;
String refString = (String)references.elementAt(0);
AmigoReference ref = new AmigoReference(refString);

This Amigo Reference to the service is to be used to invoke the service.

Using persistent lookup
To use the CASD Persistent Lookup, the CRA implements the following interface:
public interface ICASDCallBack {

public void notifyServiceChange(String[] newServiceRef);
}

The reference to the callBackInterfaceImpl is obtained as follows:
String callBackServiceRef = new String (this.callBack.getAmigoReference().toString());

The persistentLookup is invoked as follows:
String[] argNames = new String[]{"requiredServiceDescription", "contextSourceAmigoRefs",

"casdSelectionIdentifier", "callBackServiceRef"};
Object[] argValues = new Object[]{requiredERServiceDescription, contextSourceAmigoRefs,

casdSelectionIdentifier, callBackServiceRef};
Object response = stub.invoke("doPersistentLookup", argNames, argValues);

The request to unsubscribe from the Persistent Lookup is invoked as follows:
String[] argNames = new String[]{"callBackServiceReference"};
Object[] argValues = new Object[]{callBackServiceReference};
Object response = stub.invoke("unsubscribePersistentLookup", argNames, argValues);

Specification of the service context source
Currently the AmbulanceService is the only implemented Emergency Response Service. The
AmbulanceService Context Source, which provides its location, is activated similar to the CRA
Context Source as follows. Please note that some steps are omitted for brevity.
ContextSourceManager manager;
LocationContextSource locationcs = new LocationContextSource(manager);
locationcs.init();

The CotnextSourceURL property is published as follows:
AmbulanceService.addProperty("ContextSourceURL", locationcs.getReference().getUrl());

5.5 How to develop an application that integrates QoS-aware services
In this section, the steps that take place in order to instantiate an application that integrates
QoS-aware services are described. A client, herein called a User, submits a request to the
Dispatcher, which was sketched in Section 5.1.2.6 for our future integration of approaches.
Subsequently, the Dispatcher initializes the QoS-aware Service Selection Tool (QASST)
accompanied with the User Task (i.e., task), which describes the required functional
capabilities of the requested service set by the User, and the identifier of the Dispatcher itself.
QASST uses this User Task object and the SD-SDCAE mechanisms in order to obtain a list of
services from the service repository. Thus, QASST obtains a WSDL file from the Service
Repository describing the functional and non-functional capabilities of the services that match
the submitted request. Having obtained this list of services, QASST applies a selection
algorithm and identifies the most appropriate service for this request. In order for the QASST
to function properly, the specific QoS preferences of the User for this service type have to be

May 2007 Public

Amigo IST-2004-004182 69/103

obtained (service type is described in the WSDL document and declares what is the type of
the service, for example the VideoDelivery service described in Chapter 4). Initially, it
communicates with the Context Management Service (CMS) component and gets the
identification of the User that submitted the request and afterwards it communicates with the
User Modelling and Profiling Service (UMPS) component (for CMS and UMPS, see the Amigo
[D4.X] deliverables) and obtains the QoS preferences of this User for this service type. Then, a
semantic matching takes place and filters out the services that do not address the QoS
preferences of the User. Subsequently, a selection algorithm is applied and a single service is
selected as the most appropriate one with regards to the specific QoS preferences of the User
and the provided QoS capabilities of the services. A reference of this service is passed then to
the Dispatcher (through the Dispatcher identifier). The following diagram depicts the steps that
have just been described. In case the requested application requires the integration of more
than one QoS-aware services, the process that takes place is similar. The QASST matches
sequentially the QoS properties required with the QoS properties provided and identifies the
most appropriate services that need to be composed to provide an integrated QoS-aware
application.

User QASST UMPSDispatcher

Get User Identity

Service Repository

Service Request

CMS

Get User's QoS Preferences

Get List Of Services

Select Service

Init QASST

Service Reference

Figure 5-9: QoS-aware service selection process

5.6 How to develop an application that integrates event-based services
An event-based application is written using a scripting language, named Pantachou, which
integrates ontology elements such as semantic services with their parameters. Therefore, a
semantic description must be provided. A guideline to provide such a description is available in
section 4.2.4.

The use of the Pantachou language to develop an event-based application is described
through the LightManager example shown in Figure 5-10. First, the name of the service is
defined as a URI (Line 1). The semantic service (LightManager, Line 1) defines the type of the
Pantachou program and introduces constraints on the service. Then, required services are
declared as in the lumSender statement (Lines 3 to 9). This statement defines the profile of
these services, namely the LuminosityEventOuputProfile profile. Besides, the profile is refined

May 2007 Public

Amigo IST-2004-004182 70/103

by specifying service properties such as its location. At runtime, the lumSender statement will
be instantiated as light sensors by the service discovery process.

A service may send several types of events, involving several profiles. To select the right
event, the event declaration (line 11) specifies the expected type of values (e.g., Luminosity
from lumSender services).

The receptionBehavior declaration (line 13) defines operations performed when a unique kind
of event is received (line 14). The initial statement (line 25) initializes the service. In Figure
5-10, the previously defined lumEvtBehavior behaviour is selected via the adopt statement.

Note that you can attach another behaviour to a given event of the same kind during the life
cycle of the service. The previous behaviour of the event will be automatically released. Thus,
a single behaviour is attached to a given event. The behaviour concept allows the dynamic
reconfiguration of Pantachou services.

The service discovery is performed at runtime. Besides, discovered services are regularly
updated towards the expected profile and properties. So, new services are taken into account
and unavailable services are not considered any more.

For example, when new light sensors are deployed, the light manager automatically receives
events from them. Likewise, when an on/off command is performed on lights, lights registered
after the LightManager service deployment, also receive the command. Furthermore, the
resulting Pantachou application only exposes the functionalities it requires, thus improving its
portability, including making it forward compatible with future or refined versions of the
requested services (e.g., lights and light sensors).

1 'http://ws.amigo.eu/light_manager' instantiates LightManager {
2
3 service Light light {
4 location = hall;
5 };
6 service with output event<Luminosity> lumSender {
7 location = outdoor;
8 unit = binary; // the event will be able to take only two values
9 };

10
11 event<Luminosity> lumEvt from lumSender<*> { };
12
13 receptionBehavior lumEvtBehavior {
14 void receive(lumEvt e) {
15 if (e.value == "NIGHT") {
16 light<*>.on();
17 } else {
18 light<*>.off();
19 }
20 }
21 };
22
23 // ------- Main Section --------
24
25 initial {
26 adopt(lumEvtBehavior);
27 }
28 }

Figure 5-10: Pantachou example of the LightManager

5.7 Resources
[D3.3] Amigo Consortium. Deliverable D3.3: Amigo Middleware Core Enhanced:

Prototype Implementation & Documentation. October 2006. Available at:
http://www.hitech-projects.com/euprojects/amigo/index.htm.

May 2007 Public

Amigo IST-2004-004182 71/103

[D4.X] The D4.X deliverables are available at the Amigo public website:
http://www.hitech-projects.com/euprojects/amigo/index.htm.

May 2007 Public

Amigo IST-2004-004182 72/103

6 How to develop a domotic service

6.1 Overview

6.1.1 Objectives
There are a number of off-the-shelf domotic systems and devices that can be installed at
home but that can’t be directly integrated within the Amigo platform.

Therefore, the current document will describe the steps required to develop a domotic service,
integrating a domotic device into the Amigo system, by means of Microsoft C# code snippets.

Besides its particularity, a domotic service is a basic Amigo service and employs the Amigo
.Net programming and deployment framework (see Chapter 2).

6.1.2 Principles and features
The Amigo Domotic Infrastructure aims at presenting heterogeneous physical hardware
devices as unified software services using standard service technologies. Nowadays, there is
a great diversity of physical device technologies and protocols. Further, there are a number of
service technologies that should be supported within the Amigo system.

Therefore, the purpose of the Amigo Domotic Infrastructure is to enable the integration of
different device technologies presenting them by means of software services, but isolating the
final users (service clients) from the specific base technologies.

Figure 6-1 depicts the proposed architecture. The architecture is based on extracting the
required information about the physical devices by means of drivers to the base technologies
(BDF, EIB, X10…); modelling the services using a well-known domotic service specification;
and building proxies for the domotic model instances using standard service technologies
(UPnP, Web Services…).

The intermediate domotic instances decouple the low level drivers from the high level drivers.

Interoperability is achieved by providing several service infrastructures (UPnP, Web
Services…) simultaneously to access the same device: for instance, a washing-machine or a
lamp can be discovered and controlled either using UPnP or a Web Service (WS-Discovery).

The following components will be developed:

• Domotic Service Model Specification

• Low Level Drivers

• High Level Drivers

6.1.3 Assessment
The Amigo Domotic Infrastructure provides an extensible solution for incorporating the
functionalities offered by domotic devices into the Amigo system. Devices belonging to
different domotic technologies are abstracted as software services, isolating the final users
(service clients) from the specific base technologies. The main advantages of using this
feature are simplicity for application developers and extensibility for middleware developers.
More specifically, application developers are isolated from low-level issues like base
technologies, domotic networks, protocols and communications, and only deal with well-known
service infrastructures like UPnP and Web Services.

Further, extensibility is assured in two ways. First, new domotic networks and protocols can be
incorporated into the current system, by just adding a new low-level driver that will benefit from

May 2007 Public

Amigo IST-2004-004182 73/103

the existence of high-level drivers to publish the new services. And second, hitherto
unsupported service infrastructures can also be incorporated, by just implementing a new
high-level driver that will benefit from the existing low-level drivers to get access to base
technologies.

BDF
W M

WSUPnP

BDF
Driver

UPnP Device
Builder

EIB
Driver ...

Web Service
Builder

Lo
w

 le
ve

l
dr

iv
er

s
H

ig
h

le
ve

l
dr

iv
er

s

Domotic Service
Model Specification

... Service
Builder

BDF
Lamp

EIB
Lamp

WM Lamp Lamp

UPnP
W M

UPnP
Lamp UPnP

Lamp
WM

W ebService

Lamp
WebService Lamp

W ebService

UPnP Client WS Client

Physical devicesBDF
W M

WSUPnP

BDF
Driver

UPnP Device
Builder

EIB
Driver ...

Web Service
Builder

Lo
w

 le
ve

l
dr

iv
er

s
H

ig
h

le
ve

l
dr

iv
er

s

Domotic Service
Model Specification

... Service
Builder

BDF
Lamp

EIB
Lamp

WM Lamp Lamp

UPnP
W M

UPnP
Lamp UPnP

Lamp
WM

W ebService

Lamp
WebService Lamp

W ebService

UPnP Client WS Client

Physical devices

Figure 6-1: The Amigo Domotic Infrastructure

6.2 Motivating example
As previously mentioned, a set of domotic devices can be easily purchased. But two main
difficulties will arise when trying to integrate them with our Amigo home system:

• Proprietary protocols: they will not be able to “speak” with each other.

• Not directly supported by Amigo system (none of them will be accessible by means of
service technologies supported by Amigo).

May 2007 Public

Amigo IST-2004-004182 74/103

For instance, Amigo users decide to install at home a domotic lamp, a proximity sensor and a
domotic washing-machine. The three of them use proprietary, not-interoperable protocols, so
trying to use them together is not an easy task.

The three manufacturers provide us with a Software Development Kit (SDK) for their own
device, but unfortunately they are absolutely different: the sensor is accessed using a
proprietary protocol over RS232, the washing-machine is based on ActiveX components and
the lamp is based on some .NET classes.

The Amigo Domotic Infrastructure will allow users to use the three devices, discovering and
interacting with software services: Web Services or UPnP devices.

6.3 Understanding the domotic service model
In order to integrate heterogeneous domotic devices, an abstract description of the available
services, not attached to specific domotic technologies, must be specified. This intermediate
description is the common element in the domotic proxy generation process. This component
provides any domotic service developer with the abstract reference of the service description.

Any domotic device can be modelled as a provider of a set of services:

Conceptually, any lamp offers a “lighting” service that consists of a state variable that
describes the state of the lamp (on/off), a method to set this state, a method to retrieve it and,
probably, an event that notifies the change of the state. In a similar way, a proximity sensor
can be seen as a service that raises an event when movement is detected nearby. Finally, a
washing-machine could be described as a set of properties (status, program, temperature,
level of water, start time…), a set of methods (on, off, change program, pause…) and some
events (program is finished, water leak alarm…).

Depending on the device capabilities and complexity, it will require more or less methods,
properties and events, but the functionality of any device should be capable of being described
using these terms.

Further, any device could have non functional properties like owner, location, authorization
policies… that can be modelled as metadata as well.

Therefore, a number of interfaces are defined to model any domotic device. Figure 6-2 shows
these interfaces and some of their relations. For the sake of simplicity, only a subset of
members has been depicted.

May 2007 Public

Amigo IST-2004-004182 75/103

+getName()
+getMethods()
+getEvents()
+getProperties()

-nativeService
Service

+getServices()
+getMetadata()

ServiceProvider

+invoke(in params)
+getName()
+getParameters()
+getReturnValue()
+getMetadata()

Method

+getName()
+getType()
+getValue()
+getMetadata()

Property

+getName()
+getParameters()
+addListener()
+removeListener()
+getMetadata()

Event

+getName()
+getType()
+getValue()
+getDirection()

Parameter

Type

+getType()
+getValue()

ReturnValue

+getProperties()

Metadata

Direction

+newEvent(in eventName, in params)

EventListener

* * * *

*

* *

Figure 6-2: Domotic service model interfaces

The interfaces are listed below:

• Service Provider: any device can be modelled as a Service Provider that has a name,
some Metadata and offers some services.
public interface IServiceProvider
{

string getName();
 Hashtable getServices();
 IMetadata getMetadata();
 bool addService(IService objService);
 void setMetadata(IMetadata objMetadata);
}

• Metadata: consists of a group of properties.
public interface IMetadata
{

Hashtable getProperties();
bool addProperty(Property objProperty);

}

• Service: has a name, some methods, some properties and some events.
public interface IService

{
string getName();

 Hashtable getMethods();
 IMethod getServiceMethod(string methodName);

IProperty getServiceProperty(string propertyName);
IEvent getServiceEvent(string eventName);

May 2007 Public

Amigo IST-2004-004182 76/103

 Hashtable getEvents();
 Hashtable getProperties();
 IMetadata getMetadata();
 bool addMethod (IMethod objMethod);
 bool addEvent (IEvent objEvent);
 bool addProperty(IProperty objProperty);
 void setMetadata(IMetadata objMetadata);
}

• Method: is defined by a name, some parameters, a return value and metadata.
 public interface IMethod
 {
 IMetadata getMetadata();
 IReturnValue getReturnValue();
 ArrayList getParameters();
 IReturnValue invoke(ArrayList parameters);
 void setObject(object obj);
 void setMethodInfo(System.Reflection.MethodInfo methInfo);
 void setMetadata(IMetadata objMetadata);
 void setReturnValue(IReturnValue objReturnValue);
 bool addParameter(IParameter objParameter);
 string getName();

}

• ReturnValue: has a type and a value.
 public interface IReturnValue
 {
 System.Type getReturnValueType();
 void setType(System.Type objType);
 object getValue();
 void setValue(Object objValue);

}

• Parameter: is described by its name, value, direction, type and metadata.
 public interface IParameter
 {
 string getName();
 void setName(string strName);
 System.Type getParameterType();
 void setType(System.Type objType);
 object getValue();
 Direction getDirection();
 void setDirection(Direction direction);
 void setValue(Object objValue);

}

• Direction
public enum IDirection
{

IN, OUT
}

• Property: has a name, value, type and metadata.
 public interface IProperty
 {
 string getName();
 object getValue();
 System.Type getPropertyType();
 IMetadata getMetadata();
 void setMetadata(IMetadata objMetadata);
 void setValue(Object objValue);
 void setType(System.Type objType);
 void notifyListeners();
 void setObject(object obj);
 void setPropertyInfo(System.Reflection.PropertyInfo propInfo);
 void eventHandler(ArrayList parameters);

}

May 2007 Public

Amigo IST-2004-004182 77/103

• Event: described by its name, parameters and metadata.

 public interface IEvent
 {
 string getName();
 ArrayList getParameters();
 IMetadata getMetadata();
 bool addListener(IEventListener listener);
 bool removeListener(IEventListener listener);
 void setMetadata(IMetadata objMetadata);
 void notifyListeners(ArrayList parameters);
 bool addParameter(IParameter objParameter);
 void eventHandler(ArrayList parameters);

}

• EventListener: defines the interface that event listeners must implement.
 public interface IEventListener
 {
 void newEvent(string strEventName, ArrayList parameters);

}

6.3.1 Use example
The following example shows how to model a lamp, instantiating a service provider. The
manufacturer offers a .NET class to interact with the lamp: LampManufacturer.clsLamp

This class offers:

• Two methods (GetStatus and SendStatus)
 public bool GetStatus()

public void SetStatus(bool blnStatus)

• An event (NewStatus)
 public delegate void StatusChangedDelegate(bool blnNewStatus);
 public event StatusChangedDelegate NewStatus;

An object of this class could be instantiated, granting the access to the physical lamp.
LampManufacturer.clsLamp legacyLamp = new LampManufacturer.clsLamp();

Considering that:

• IUSM (Interfaces Unified Service Model) defines a namespace for the interfaces

• USM (Unified Service Model) defines a namespace for a set of classes that implement
those interfaces

ServiceProvider
The physical lamp (located in the bedroom) can be modelled as a ServiceProvider called
“BedroomLamp”.

 USM.ServiceProvider myLamp = new USM.ServiceProvider("BedroomLamp");

Service
The lamp will offer a service (lighting service), so we should instantiate a Service called
“LightingService”:

USM.Service myLightingService = new USM.Service("LightingService");

This service is provided by myLamp so it should be assigned properly:

May 2007 Public

Amigo IST-2004-004182 78/103

myLamp.addService(myLightingService);

Method
The GetStatus method should be defined in a similar way:

USM.Method GetStatusMethod = new USM.Method("GetStatus");

GetStatus has a return value, so it should be defined and assigned to the method:
USM.ReturnValue GetStatusMethodReturnValue = new USM.ReturnValue ();
GetStatusMethod.setReturnValue(GetStatusMethodReturnValue);

This method should be linked with the native method (GetStatus) so that invoking the
modelled method should invoke the native one. This could be implemented using Reflection
techniques.

GetStatusMethod.setMethodInfo(
legacyLamp.GetType.GetMethod("GetStatus"));

 GetStatusMethod.setObject(legacyLamp);

Now, the modelled method has a reference to the native one.

Finally the method should be assigned to the service:
 myLightingService.addMethod(GetStatusMethod);

The SetStatus method should also be defined:
USM.Method SetStatusMethod = new USM.Method("SetStatus");

The SetStatus method has a parameter that must be defined and assigned to the method:
USM.Parameter SetStatusParameter = new USM.Parameter("blnStatus");
SetStatusParameter.setDirection(IUSM.Direction.IN);
SetStatusParameter.setType(typeof(bool));
SetStatusMethod.addParameter(SetStatusParameter);

And finally the method should be assigned to the service:

myLightingService.addMethod(SetStatusMethod);

Event
Events follow the same principles. First it must be defined:

USM.Event StatusChangedEvent = new USM.Event("StatusChanged");

Then a parameter must be defined and assigned:
USM.Parameter NewStatusParameter = new USM.Parameter ("NewStatus");
NewStatusParameter.setDirection(IUSM.Direction.IN);
NewStatusParameter.setType (typeof(bool));
StatusChangedEvent.addParameter (NewStatusParameter);

Modelled events should also be linked to native ones using Reflection techniques, and finally
the event should be assigned to the service:

myLightingService.addEvent(StatusChangedEvent);

Metadata
Additionally, Metadata can be added to any of the previously described elements.

For instance, the location of the lamp can be expressed in the following way:
USM.Metadata LampMetadata = myLamp.getMetadata ();

USM.Property LampLocationProperty = new USM.Property ("Location");

May 2007 Public

Amigo IST-2004-004182 79/103

LampLocationProperty.setType (typeof(string));
LampLocationProperty.setValue("Bedroom");

LampMetadata.addProperty (LampLocationProperty);

And a method could also be annotated:
USM.Metadata SetStatusMetadata = SetStatusMethod.getMetadata ();
USM.Property AuthorizationProperty = new USM.Property ("Authorization");
…

6.4 How to develop a low-level driver
Low Level drivers are the components responsible for instantiating ServiceProviders. They act
as ServiceProvider factories and, obviously, they are base technology dependent, because
they depend on the legacy technology used to interact with the physical device.

They should follow the steps described in Section 6.3.1 with each base technology. In Section
6.2 three examples have been presented: a proprietary protocol over RS232, ActiveX
components and .NET classes, so three dedicated factories are required.

6.4.1 Use example
Let’s continue with the previous example, considering that instead of a single lamp, we want to
install five different lamps using a domotic bus like X10, BDF, EIB, etc. We could, for instance,
purchase five off-the-shelf X10 lamps that unfortunately are constrained to X10 proprietary
protocols, but not Amigo aware service protocols. So, we require an X10 SDK to be able to
“speak” with the X10 bus, exchanging messages with the physical lamps.

Although this SDK is out of the scope of this document, it’s enough to know that it should offer
mechanisms to interact with the lamps. So, an X10 low-driver, by means of this SDK, should
have the responsibility of instantiating as many ServiceProviders as there are lamps in the
network, linking the corresponding modelled methods with the interfaces provided by the SDK.

For instance, the X10 SDK could offer the following methods:
string[] GetX10Devices()
bool SwitchOn(string DeviceAddress)
bool SwitchOff(string DeviceAddress)
bool AllLightsOn()

 …

GetX10Devices would return an array of strings containing the addresses of the present lamps
(“A1”, “A2”, “A3”, “A4”, “A5”); SwitchOn/Off would switch on/off the lamps addressed by
DeviceAddress; and AllLightsOn would switch all the lights on.

The X10 driver could, at runtime, interrogate the bus about the lamps using GetX10Devices,
and instantiate a ServiceProvider for each lamp.

string[]CurrentLampAddresses = X10SDK.GetX10Devices();

foreach (string strLampAddress in CurrentLampAddresses)

 {
USM.ServiceProvider Lamp = BuildLamp(strLampAddress);

 …
 }

Where BuildLamp could be also defined like:
private USM.ServiceProvider BuildLamp(string strAddress)
{

USM.ServiceProvider TempLamp;
TempLamp = new USM.ServiceProvider(strAddress);
/*All required methods, properties, events should be instantiated as described in 6.3.1. */

May 2007 Public

Amigo IST-2004-004182 80/103

…
USM.Method OnMethod = new USM.Method("On");
…
//The modeled methods should be linked to the native SDK methods
OnMethod.setObject(X10SDK)
OnMethod.setMethodInfo(X10SDK.GetType.GetMethod("SwitchOn"))
…
return TempLamp;

}

6.5 How to use a high-level driver
The goal of a high-level driver component is to instantiate High Level proxies (Web Services,
or UPnP devices) starting from the generic instances described by the Domotic Service Model
component (ServiceProviders).

A high-level driver is absolutely independent from the base technologies because it only
requires the information provided by the modelled ServiceProviders.

As shown in Figure 6-1 two high-level drivers are available:

• Web Service builder

• UPnP Device builder

Both of them offer a very simple interface to generate the corresponding proxies.

6.5.1 WebService builder
This component uses the .Net Discovery Framework (see Chapter 2), so the instantiated
services can be discovered using WS-Discovery: services will automatically advertise
themselves on the network when they are instantiated (WS-Discovery: Hello) and announce
their leaving (WS-Discovery: Bye) when they are disposed. They also respond to queries (WS-
Discovery: Probe and Resolve).

Reflection emit is a run-time feature that allows code to create dynamic assemblies, modules,
and types. Instances representing the domotic services, according to the Domotic Service
Model component specification, are dynamically created using this feature.

DiscoverableService createWS(USM.ServiceProvider serviceProvider)
{
 …

DiscoverableService miSW = this.createService(service);
…
return miSW;

}

6.5.2 UPnP device builder
This high-level driver instantiates high-level proxies (UPnP proxies) starting from the generic
instances described by the Domotic Service Model component.

The proxy instantiation is also a dynamic runtime process. Only a ServiceProvider instance is
required to generate the UPnP proxy.
 UPnPDevice createUPnPProxy(USM.ServiceProvider serviceProvider)
 {

…
UPnPDevice device = UPnPDevice.CreateRootDevice();
…

 return device;
}

May 2007 Public

Amigo IST-2004-004182 81/103

7 How to develop a multimedia content
application

7.1 Overview
In this chapter, the motivation of building an application that uses the Amigo Middleware to
manage and render multimedia content, together with the overall methodology to follow, is
presented. The following sections are an effort to achieve quick reference documentation for
developers and at the same time an overall description of the middleware functionality when
dealing with multimedia content. In the examples, Java and C# code samples are provided to
illustrate, from a general point of view, how developers may access the described middleware
functionalities.

7.1.1 Objectives and principles
The Amigo Middleware intends to provide a set of functionalities regarding multimedia content
in the home that allows application developers to concentrate on the application itself, and not
having to deal with underlying technical problems that arise from the existing technologies and
devices related to this domain. At the same time, the middleware should provide functionalities
that might lead to innovative applications dealing with multimedia content.

7.1.2 Features
The Amigo Middleware provides methods for retrieving and modifying information about UPnP
AV devices currently online as well as all of those known by the middleware although currently
offline. Some of this information is editable. The middleware provides methods for performing
searches, in terms of metadata, through all content present in the home network via UPnP AV
servers. Modification of this metadata is also possible. Semantic annotation of content based
on OWL can be stored using the middleware, so that semantic information related to given
content is available to all applications. Semantic queries can also be executed by the
middleware upon the whole semantic knowledge base related to the content at home.
Furthermore, methods are provided to select and possibly create resources associated with a
given content in formats that are compatible with a given renderer, either automatically by the
middleware and thus transparent, or explicitly by the application. Finally, establishing a
multimedia rendering session (i.e. playing content on a renderer) and controlling it can also be
done through the middleware using only references, without further knowledge of where the
content and the renderer actually are.

7.1.3 Assessment
The middleware provides transparency to searches, semantic queries and metadata
modification when dealing with distributed content. Transparency is provided in the sense that
applications deal with a unique interface with no need to maintain dynamic structures
representing not always available content items, devices and sessions: discovery of these
entities is hidden by the middleware and data structures, persistent and not persistent, are
maintained within. In other words, the intrinsically complex state model of devices’ discovery,
session management and content management in a dynamic environment is reduced by the
middleware to a simple RPC model, leading to simple state model or even stateless
applications. This enables the application developer to concentrate in the application
functionalities themselves rather than on underlying, protocol dependent problems.
Furthermore, the existence within the middleware of a semantic knowledge base related to
content enables enrichment of content descriptions in a model that also enables reasoning
upon it, leading to a wide variety of possible applications. This enrichment is possible using the

May 2007 Public

Amigo IST-2004-004182 82/103

OWL import mechanism fully supported by the middleware in a transparent way thus enabling
reusability of ontologies external to the Amigo project, which may be richer in a certain
knowledge domain, exploiting in this way the reusability principle of ontologies. For instance, a
given content semantic description, let’s say a film, could be enriched by adding entities
defined in an external ontology, let’s say an exhaustive knowledge base of film directors.
Then an external property (i.e. directedBy) relating the “Film” or “Thing” class to the “Director”
class would provide a mechanism for establishing a semantic link within the given film and a
complete semantic description of the appropriate director provided by experts in this domain.
Furthermore, the middleware provides a method for selecting content items by performing an
RDQL query.

7.2 Motivating example
Digital entertainment is establishing steadily in our homes. The quantity of content delivered in
digital format to the home has risen very significantly over the last ten years. Therefore users
are interested in accessing movies, music, pictures… and viewing them in their favourite
devices in a seamless way. However, this can not be done nowadays since the user must
interact directly with the devices containing the content. An application developer may want
new ways of achieving this purpose allowing the homeowner to perform these operations from
a variety of UI devices.

For instance, a developer may want to produce an application that enables the user to
navigate through the content distributed in different devices acting as servers in a seamless
way. He will probably want the user to be able to search content within all the content available
at home, not caring where it specifically lies. He would probably also want content inside
portable devices to be shown by his application together with their descriptions when brought
home by a user, and its contents to disappear from the application navigation screen upon
disappearance of the device. It is most probable that a user would like to play content after
finding it; so the user being able to select a content item and a renderer, starting a multimedia
session and controlling the playback of the item (i.e. play, stop, pause, etc.) seems
reasonable. The Media Manager Core application that is under development within the project
is an example of this kind of application and it will appear through the following sections as an
illustrative example.

7.3 Content distribution set up
The Content Distribution functional block of the middleware is made up of four distributed
components deeply related. All of them must be running in the same network and, of course,
have connectivity with each other. The setup is presented in Figure 7-1.

The Content Distribution Service is the entry-point to all Content Distribution functionalities
except generic data storage. The latter is performed by direct dialogue between the application
and the Data Store component. The Content Discovery component is in charge of dynamic
content discovery, metadata aggregation and semantic functionalities. The Content Adaptation
Server provides content transcoding methods based in a plug-in architecture and at the same
time is a Content Server that provides storage for content that is desired to be persistent.
Specific details on installation and configuration of each component can be found in the
corresponding user guides at [AmigoRepository].

May 2007 Public

Amigo IST-2004-004182 83/103

di
sc

ov
er

s

Figure 7-1: Content Distribution Setup

7.4 Basic principles
As mentioned in the previous section, the Content Distribution Service is the entry point to the
system. Therefore, the developer should deal with this component in order to make use of the
Content Distribution functionalities. Content Distribution is provided as a Web Service and the
model describing it (WSDL) can be found at http://ContentDistributionMachineIP:2343/?wsdl
(see Content Distribution guides at [AmigoRepository]). Hence, a developer aiming to use
ContentDistribution should create a client to this service. In the following sections, sample
Java and C# clients are used to explain how to deal with the ContentDistribution interface.
This client could be dynamically generated once the ContentDistribution service has been
discovered using WS-Discovery, either via the Java or C# Amigo development frameworks, or
any other software that enables SOAP method invocation (.NET Framework native methods,
AXIS, etc.) and, optionally, WS-Discovery discovery.

Moreover, the developer will have to handle DIDL-Lite documents. These documents are used
to describe multimedia contents in the connected home by servers compliant with the UPnP
AV MediaServer specification [UPnPAVCD]. In order to ease the processing of these
documents, the Cyberlink API (see [Cyberlink]) is used together with some classes developed
in the present project and bundled in the AmigoCommons.jar (see CADMS or
ContentDiscovery javadoc at [AmigoRepository]). Specifically, the ContentNode class from this
API represents content described by a DIDL-Lite document and the DIDLLite class provides
marshalling and unmarshalling functionalities. Both are used in the samples of code of the
sections below.

7.5 How to browse content devices
The Amigo Middleware is able to discover all UPnP AV devices (software or hardware based)
available at home and organize them in two categories: servers and renderers. Server stands
for an UPnP AV MediaServer, a device that provides AV multimedia content to other UPnP
devices on the home network. Renderer stands for UPnP AV MediaRenderer, a device
capable of rendering AV content from the home network.

May 2007 Public

Amigo IST-2004-004182 84/103

In order to discover these devices two main methods are used from the ContentDistribution
class.

getRenderers(): that returns a GetRenderersResult object which contains all renderers
discovered by the Content Distribution service.

getContentServers(): that returns a GetContentServersResult which contains all servers
discovered by the Content Distribution service.

Furthermore it is possible to access all the properties of renderers and servers and modify
some of them in order to give the user the capacity of customizing the description of a
particular device. The following methods are available:

In order to get the description of a renderer we should invoke the method
getRendererDescriptions() from the GetRenderersResult class which returns an array of
RendererDescription items. This class offers getters and setters for the following properties of
a renderer: capabilities, friendlyName, manufacturer, manufacturerUrl, modelDescription,
modelName, modelNumber, modelUrl, online, rendererId, serialNumber, uniqueDeviceName,
universalProductCode, upnpDevice, and provides an object representation of the result data
type for the getRenderers() method specified in the WSDL description of the Content
Distribution Service. Specifically, this was generated using the wsdl2java tool but any other
strategy may be adopted. The following code samples in this and next sections presume the
usage of this kind of tool for code conciseness.

In the same way, to get the description of a server the method getContentServerDescriptions()
from the GetContentServersResult should be invoked, which returns an array of
ContentServerDescription items. This class offers getters and setters for the following
properties of a server: contentServerId, friendlyName, iconUrl, manufacturer, manufacturerUrl,
modelDescription, modelName, modelNumber, modelUrl.

An example of how to print the friendlyName of all renderers and servers available is given
below

// Access to the Content Distribution service (should be discovered)
ContentDistribution service;

// Get rendererDescriptions
RendererDescription[] rendererDescriptions = service.getRenderers().getRendererDescriptions();
// Get serverDescriptions
ContentServerDescription[] serverDescriptions = service.getContentServers().getContentServerDescriptions();

// Print data
for(int i = 0; i < rendererDescriptions.length; i++)
 System.out.println(rendererDescriptions[i].getFriendlyName());

for(int i = 0; i < serverDescriptions.length; i++)
 System.out.println(serverDescriptions[i].getFriendlyName());

An example of the MMC showing all the renderers and servers is shown in Figure 7-2.

May 2007 Public

Amigo IST-2004-004182 85/103

Figure 7-2: Devices List

7.6 How to find content
The Amigo Middleware allows looking for any content available at home in a seamless way. In
order to perform a search successfully the following methods should be used.

First of all a query should be created using the object representation of method parameter
types (see previous section).

Query query = new Query();

Then the query to execute should be specified.
query.setQueryString(aQueryString);

A query must follow the SearchCriteria syntax specified in the ContentDirectory service
template available at [UPnPAVCD] or RDQL syntax if the query is addressed to the semantic
model of content at the home. Depending on the syntax, Content Distribution will transparently
redirect the query to the underlying literal metadata database or semantic knowledge base
respectively.

Some examples of literal queries are listed below:

• All items (music, video, pictures, …) available: upnp:class derivedfrom "object.item"

• All video items: upnp:class derivedfrom "object.item.videoItem”

• All audio items: upnp:class derivedfrom "object.item.audioItem”

• All image items: upnp:class derivedfrom "object.item.imageItem”

• All movies where Tom Hanks plays: upnp:actor contains “Tom Hanks”

• All Shakira songs: upnp:artist contains “Shakira”

May 2007 Public

Amigo IST-2004-004182 86/103

Afterwards, the query should be executed.
FindContentResult contentResult = service.findContent(query);

The method getContentDescriptions() from the FindContentResult class can be used to get all
the descriptions of the items returned by the findContent query.

ContentDescription[] arrayOfContentDescription =
 contentResult.getContentDescriptions();

The ContentDescription class has a method called getDescription() to get the description of an
item as a string following the DIDL-Lite syntax. The DIDLLite class should be used to convert
this string into a ContentNode class that offers several options to manage items.

An example of how to list all the items with its properties available at home is given below:

// Access to the Content Distribution service (should be discovered)
ContentDistribution service;

// Search UPNP Criteria
String all = "upnp:class derivedfrom \"object.item\"";

// Create the query
Query query = new Query();

// Set the query
query.setQueryString(all);

// Get serverDescriptions
ContentServerDescription[] serverDescriptions =
 service.getContentServers().getContentServerDescriptions();

// Execute the query
FindContentResult contentResult = service.findContent(query);

// Get the Descriptions of Contents
ContentDescription[] contentDescriptions = contentResult.getContentDescriptions();

// Iterate through each Content Description
for (int i = 0; i < contentDescriptions.length; i++){
 // Get Description for Content at position i (DIDL Lite string file)
 String strDIDLLite = contentDescriptions[i].getDescription();

 // Replace < and > characters in DIDL Lite string
 strDIDLLite = strDIDLLite.replaceAll("<", "<");
 strDIDLLite = strDIDLLite.replaceAll(">", ">");

 // Create a DIDL Lite for Content description
 DIDLLite didl = new DIDLLite();

 // Get the Content Node from the DIDL Lite
 ContentNode contentNode = didl.toContentNode(strDIDLLite);

 for (int n = 0; n < contentNode.getNProperties(); n++){
 Property prop = contentNode.getProperty(n);
 System.out.println("Property " + prop.getName() + ": " + prop.getValue());
 }
}

An example of the MMC showing all the content available is shown in Figure 7-3.

May 2007 Public

Amigo IST-2004-004182 87/103

Figure 7-3: MMC Content Available screen

7.7 How to update content metadata
Each item has some content metadata associated with it. This content metadata can be
modified using the following methods:

// Access to the Content Distribution service (should be discovered)
ContentDistribution service;

// Content Node that we want to update
ContentNode contentNode;

// Update a property of the content Node
contentNode.setProperty(propertyName, propertyValue);

// Create a ContentNode list
ContentNodeList contentNodeList = new ContentNodeList();

// Add the ContentNode to the list
contentNodeList.add(contentNode);
DIDLLite didlLite = new DIDLLite();

// Convert the ContentNode to a DIDL Lite document
String didlDescription = didlLite.toString(contentNodeList);

// Create a ContentDescription from the ContentNode
ContentDescription cd =
 new ContentDescription(new ContentId(contentNode.getID()),didlDescription);

// Update the content metadata
service.updateContentDescription(cd.getContentId(), cd);

Many different kind of properties could be modified. These properties can be found in
ContentDirectory template available at [UPnPAVCD] . Some examples of are listed below:

• Title: "dc:title"

• Class: "upnp:class"

• Actor: "upnp:actor"

• Date: "dc:date"

May 2007 Public

Amigo IST-2004-004182 88/103

An example of the application MMC performing this action is shown in Figure 7-4:

Figure 7-4: MMC Modify Content

Semantic information is embedded in the DIDL-Lite description of multimedia items under a
<desc> element with the same id attribute as the item and nameSpace value of urn:amigo-
schemas:multimediaContent. Inside the <desc> element a single element <semantic> from
this namespace contains the semantic description as CDATA. The iterative embeddings are
there to keep a complete and valid DIDL-Lite instance (see [UPnPAVCD]). The following is an
example of semantic information embedded in the DIDL-Lite:

<item id="7" parentID="2" restricted="0">
 <dc:title>Sunflower</dc:title>
 <upnp:class>object.item.audioItem.musicTrack</upnp:class>
 <upnp:artist>Paul Weller</upnp:artist>
 <desc id="7" nameSpace="urn:amigo-schemas:multimediaContent">
 <semantic xmlns="urn:amigo-schemas:multimediaContent">
 <![CDATA[
 <rdf:RDF
 xmlns:amigo="http://www.owl-ontologies.com/Amigo/Amigo.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl=http://www.w3.org/2002/07/owl#
 …
 …>
 <owl:Ontology rdf:about="http://www.owl.org/Amigo/MultimediaContent.owl">
 <owl:imports rdf:resource="http://www.owl.org /Amigo/Amigo.owl"/>
 <owl:imports rdf:resource="http://www.owl.org/Amigo/Multimedia.owl"/>
 </owl:Ontology>
 …
 …
 </rdf:RDF>
]]>
 </semantic>
 </desc>
</item>

May 2007 Public

Amigo IST-2004-004182 89/103

The URL’s and semantic information inside the CDATA in the previous example are not
syntactically correct. However, it conveys the general idea. In a real application the data inside
CDATA must be a consistent OWL document. For detailed information see [OWL] and the
latest version of the Amigo Multimedia Content Ontology [MultimediaOWL]. Applications can
modify this information, enriching it with external public ontologies, and save it as the rest of
the metadata is done. However, usage of the Amigo Multimedia Content Ontology individuals
as a base is mandatory: the application is only free to relate these to external concepts using
external properties, but must not remove these individuals or substitute them by different ones.
This must be done using the appropriate content distribution service method for removal of
content items.

In order to modify semantic metadata, the code would be similar to the one above.

// Access to the Content Distribution service (should be discovered)
ContentDistribution service;

// Content Node that we want to update
ContentNode contentNode;

// Semantic info is a string containing <semantic xmlns="urn:amigo-
// schemas:multimediaContent"> … </semantic>

String semanticInfo;

//… Some code here completing the semanticInfo …

Property property= new Property(“desc”,semanticInfo);
property.addAttribute(“id”, cnode.getStringID());
property.addAttribute(“namespace”, ”urn:amigo-schemas:multimediaContent”);

// Update a property of the content Node
contentNode.setProperty(property);

// Create a ContentNode list
ContentNodeList contentNodeList = new ContentNodeList();
// Add the ContentNode to the list
contentNodeList.add(contentNode);
DIDLLite didlLite = new DIDLLite();
// Convert the ContentNode to a DIDL Lite document
String didlDescription = didlLite.toString(contentNodeList);

// Create a ContentDescription from the ContentNode
ContentDescription cd = new ContentDescription(new ContentId(contentNode.getID()), didlDescription);

// Update the content metadata
service.updateContentDescription(cd.getContentId(), cd);

7.8 How to start and control playback sessions
The Amigo Middleware offers the functionality of playing a selected item resource on a device.
A general description of how to achieve it is given below.

// Access to the Content Distribution service (should be discovered)
ContentDistribution service;

// Renderer id of the renderer where we want to play the data
RendererId rendererId

// Content id of the content that we want to play
ContentId contentId;

// Get the resources associated to a content
ResourceDescription[] resourceDescriptions =
 service.getResources(contentId).getResourceDescriptions();

// Get the resource id of the resource that we want to play

May 2007 Public

Amigo IST-2004-004182 90/103

ResourceId resourceId = resourceDescriptions[0].getResourceId();

// Play the content on the renderer
service.play(resourceId, rendererId);

// Retrieve session descriptions and pause all of them
SessionDescription[] sdescriptions = service.getSessions();
for (i=0; i< sdescriptions.length; i++)
 service.pause(sdescriptions[i].getSessionId());

Then by invoking the getSessions() method the ongoing media sessions are retrieved. Using
their ids, an application is able to control them. An example of the C# code performing pausing
all ongoing media sessions is provided below (above is the example in Java):

contentDistributionProxy.GetSessionsResult getSessionsResult;
getSessionsResult = contentDistributionProxy.GetSessions();

if (getSessionsResult.Success)
{
 foreach (contentDistributionProxy.SessionDescription sessionDescription
 in getSessionsResult.SessionDescriptions)
 {
// Simply pause all ongoing sessions
 contentDistributionProxy.Pause(sessionDescription.SessionId);
 }
}
else
{
 Console.WriteLine("Error: Gettting session list failed" +
 " with the following message: " + getSessionsResult.Reason);
}

An example of the MMC playing content is given in Figure 7-5:

Figure 7-5: MMC Play Content

May 2007 Public

Amigo IST-2004-004182 91/103

7.9 How to adapt and use adapted content
To support different hardware needs within the Amigo network, the Content Distribution
service supports an automatic adaptation of content to the needs of any renderer that is known
to the service. You can simply add a renderer description to the service which contains some
metadata and the device capabilities description as a XML rendered CC/PP profile. After a
certain amount of time that is needed for the adaptation process, adapted content will be
available that fits the need of any renderer known to the service.

The following example in C# shows how those two steps are accomplished. The first step
shows how a renderer is made visible to the system.

contentDistributionProxy.AddRendererResult addRendererResult;
contentDistributionProxy.RendererDescription rendererDescription =
 new contentDistributionProxy.RendererDescription();

rendererDescription.ModelDescription = "Example Renderer";
rendererDescription.UniqueDeviceName = "{68FF7123-4087-4ed6-A856-F7ADB211C4A9}";
rendererDescription.Capabilities = "…";
addRendererResult = proxy.AddRenderer(rendererDescription);

A new renderer is added manually to the system. Additionally to the already known renderers,
that can be found using SSDP and are automatically found by the service, there might be
some renderers that have to be added this way. A model description is assigned, as well as
the mandatory and unique device name, which is a GUID in our case. A string is assigned to
the capabilities member which contains the CC/PP profile. The specification of the CC/PP
profile is beyond the scope of this document; please see the References section for further
details.

After adding this renderer, the system will start to adapt the content for this specific device.
The adapted content can now be accessed like shown in the following example:

contentDistributionProxy.GetMatchingResourceResult
getMatchingResourceResult;
getMatchingResourceResult = contentDistributionProxy.GetMatchingResources
(contentID, rendererId, null);

if (getMatchingResourceResult.Success)
{
 if (getMatchingResourceResult.ResourceDescription != null)
 {
 // If there is a matching resource, just start to render it
 contentDistributionProxy.Play(
 getMatchingResourceResult.ResourceDescription.ResourceId,
 rendererId);
 }
}
else
{
 Console.WriteLine("Error: Gettting matching resources failed" +
 " with the following message: " + getMatchingResourceResult.Reason);
}

There are two variables, that have to be there in advance: contentId is the ID of a content
object which could have been retrieved by a call to the Find() function like in the example of
the respective section. The rendererId is the ID of a renderer device which could have been
retrieved by listing all renderers using a call to GetRenderers() like in the first example. Having
those two values, we can ask the service for a matching resource for the combination of the
specified content ID and renderer ID. If the system can find a matching resource, we can then
immediately start rendering it, by calling the Play() function with the returned resource ID. This

May 2007 Public

Amigo IST-2004-004182 92/103

call will create a new session ID which can then be retrieved by getting a list of all sessions
like in the example above.

7.10 Further examples and references
Additionally to the provided examples there is an implementation whose source code can be
used as a living example: The ContentDistributionClient application which is a C#
implementation and part of the source distribution of the Content Distribution installer.

For getting all the tools that are needed to compile and use the Content Distribution service
see [MSOFTDN].

For a detailed discussion of the technology of Web Services see: [MSOFTWS].

The CC/PP specification can be found here [CCPP].

For getting access to the installation packages which also contain the source code for the
service interface and the other three components see [AmigoRepository].

For a detailed overview of all the functions that are there in the content distribution interface,
see the automatically generated SDK documentation that comes along with the installation
package.

7.11 Resources
[AmigoRepository] Amigo Open Source Repository,

http://amigo.gforge.inria.fr/home/index.html.

[CCPP] Composite Capabilities/Preferences Profile Home Page
http://www.w3.org/Mobile/CCPP/

[Cyberlink] Cyberlink for Java, http://www.cybergarage.org/net/upnp/java/index.html

[MSOFTDN] Microsoft Download Center, http://download.microsoft.com

[MSOFTWS] Web Services and Other Distributed Technologies,
http://msdn.microsoft.com/webservices

[MultimediaOWL] Service Description Vocabulary Ontologies,
http://amigo.gforge.inria.fr/home/components/wp3/Ontologies_Vocabula
ry/download/index.html

[OWL] Web Ontology Language, 2004, http://www.w3.org/2004/OWL/

[UPnPAVCD] ContentDirectory:1 Service Template Version 1.01, June 25, 2002,
http://www.upnp.org/standardizeddcps/documents/ContentDirectory1.0.
pdf

May 2007 Public

Amigo IST-2004-004182 93/103

8 How to use the Datastore to store persistent
data within the Amigo network

8.1 Overview

8.1.1 Objectives and principles
The Datastore is a service that implements a simple persistency layer for storing data within
the Amigo network. This allows all services/applications within the Amigo network that need to
store data, just to use a common service, because storing of data is a need that most of the
services will have.

The service is network based and can be used via its Web Service interface. To make use of it
you need to create an application that can use Web Services and probably create a proxy
object using the Datastore’s WSDL document. The Datastore uses SQL Express as its
backend and this should be installed and configured correctly with the alias “AmigoDatabase”
pointing to a usable database.

Hint: Some implementations of Web Services calls restrain the size of Web Service call result.
Due to the fact that this is a database implementation and the result of such a call can be very
big, it can be necessary to increase this limit.

8.1.2 Features
The Datastore basically has the following functionalities:

• Create/manage compartments

• Modify data rows within a compartment

• Go back within history of a specific compartment/data row

• Send events about Datastore activities using WSEventing

• Automatic backups

Automatic backups are done by the Datastore service. In case of a database failure, these
backups are then automatically restored. The database backup path and backup interval can
be configured using the registry.

The following examples show how to work with the generated Datastore proxy. They assume
that a proxy is already generated and connected to the service. The name of the proxy is
assumed to be “dataStoreProxy”. For examples how to discover the service see the .Net
programming framework documentation.

8.1.3 Assessment
Quite some of the many services that exist in the Amigo context need to store persistent data.
Having every single one of them to design and implement their own persistency layer would
increase the overall system hardware and software requirements dramatically. The Datastore
provides a solution for those services which need persistency for simple, non relational data.
The Datastore service reduces the total number of dependents that all services within Amigo
have, because the common need for a persistence layer is satisfied once.

May 2007 Public

Amigo IST-2004-004182 94/103

8.2 How to create compartments
The following example shows how to add a new compartment to the Datastore. Every client
application or service can have an arbitrary number of independent compartments to store
their data in. A compartment is comparable to a data table in a database, but there are no
Datastore level connections between those compartments like in a relational database.
DatastoreProxy .AddCompartmentResult addCompartmentResult =
 DatastoreProxy.AddCompartment(clientCredentials, "New Compartment", "DATACONTRACT", 10);

if (addCompartmentResult.Success)
{
 MessageBox.Show("Succesfully added compartment.");
}
else
{
 MessageBox.Show("Adding of compartment failed: " + addCompartmentResult.Reason);
}

As you can see, the result of the method AddCompartment() has some members. This is true
for all functions of the Datastore interface. Additional to the expected result, there are always
two more members: Success and Reason. Success is a Boolean value indicating if the call
succeeded, or not. If Success has the value “false”, the call failed and the member Reason
contains a text describing why, so it can be presented to the user as an error describing text.
In this example, it is simply displayed in a message box.

To create a compartment we need four parameters: A client credentials object, a name for the
compartment and a datacontract. The client credentials specify the name of the calling service
to guarantee that there are no collissions with the compartment names of other services. The
name of the new compartment must be unique, otherwise the call will fail. The next string
specifies the data contract string, which must be replaced by a real datacontract xml
document. These documents can be generated using the datacontract editor that comes along
with the installation package of the service. An example data contract looks like this:
<?xml version="1.0"?>
<emicdc:DataContract xmlns:emicdc="DataContractSchema.xsd">
 <emicdc:Description>Music data contract</emicdc:Description>
 <emicdc:DataField>
 <emicdc:Name>Title</emicdc:Name>
 <emicdc:Type>TextField</emicdc:Type>
 <emicdc:Length>50</emicdc:Length>
 </emicdc:DataField>
 <emicdc:DataField>
 <emicdc:Name>Artist</emicdc:Name>
 <emicdc:Type>TextField</emicdc:Type>
 <emicdc:Length>50</emicdc:Length>
 </emicdc:DataField>
 <emicdc:DataField>
 <emicdc:Name>Year</emicdc:Name>
 <emicdc:Type>IntegerField</emicdc:Type>
 </emicdc:DataField>
 <emicdc:DataField>
 <emicdc:Name>Genre</emicdc:Name>
 <emicdc:Type>TextField</emicdc:Type>
 <emicdc:Length>30</emicdc:Length>
 </emicdc:DataField>
 <emicdc:DataField>
 <emicdc:Name>Price</emicdc:Name>
 <emicdc:Type>FloatField</emicdc:Type>
 </emicdc:DataField>
 <emicdc:DataField>
 <emicdc:Name>Article Number</emicdc:Name>
 <emicdc:Type>IntegerField</emicdc:Type>
 </emicdc:DataField>
 <emicdc:DataField>
 <emicdc:Name>Cover</emicdc:Name>
 <emicdc:Type>ByteField</emicdc:Type>
 </emicdc:DataField>
</emicdc:DataContract>

May 2007 Public

Amigo IST-2004-004182 95/103

The datacontract is called “Music data contract” and you can see the specification of 7 fields.
The field “Title” i.e. is specified as field with the type “TextField” with the length 50.

The last parameter of the AddDataContract() function is the versioning depth of the
compartment. Each compartment can have its own history which can be used to undo
changes made to its content. The versioning depth specifies how many steps for undoing will
be saved for the compartment.

After the call the new compartment is ready to use, for an example see the next section.

8.3 How to work with compartments
Within a compartment, which essentially can be understood as a data table, the user can add,
edit and delete data rows. Each operation on a specific data row will create a new version in
the history of the given row, if a history depth > 0 was specified for the according
compartment. The following example shows how some data rows are added to the
compartment.
DatastoreProxy .AddDataRowsResult addDataRowsResult =
 DatastoreProxy.AddDataRows(clientCredentials, compartmentName, newRows);

if (addDataRowsResult.Success)
{
 // The result of the AddDataRows call is a list of added data rows
 // These can be used to determine which rows have been added.
}
else
{
 MessageBox.Show("Adding of datarows failed with the " +

"following message: " + addDataRowsResult.Reason);
}

The code shows how a list of data rows is added to the compartment. This list of data rows is
specified as a DataStoreResultSet object. The result of the AddDataRows operation is a list of
data row IDs in the order of the rows in the DataStoreResultSet “newRows”.

The structure of a DataStoreResultSet and its dependent classes is the following:
public class DataStoreResultSet
{
 public string Name;

 public DataStoreResultRow[] Rows;

 public DataStoreResultColumn[] Columns;
}

public class DataStoreResultRow
{
 public DataStoreResultValue[] Values;
}

public partial class DataStoreResultColumn
{
 public string Name;

 public DataFieldType Type;
}

public enum DataFieldType
{
 TextField, IntegerField, FloatField, ByteField, DateTimeField
}

The DataStoreResultSet is a combination of a name for the result set, a list of columns and a
list of rows. The columns define the structure and the content types for the rows. Each row
must have a number of fields equal to the number of columns defined in the
DataStoreResultSet. Each value in a row must have a type equal the according column

May 2007 Public

Amigo IST-2004-004182 96/103

definition. Objects of the type DataStoreResultSet are returned when querying the Datastore
for a list of data rows, adding data rows or listing the history.

One of the above added data rows should now be removed again. We assume we have the
according data row id in the variable dataRowId.

DatastoreProxy .RemoveDataRowResult removeDataRowResult =
 DatastoreProxy.RemoveDataRow(clientCredentials, compartmentName, dataRowId);

if (removeDataRowResult.Success)
{
 Console.WriteLine("Datarow successfully deleted.");
}
else
{
 MessageBox.Show("Removing of datarow failed with the " +

"following message: " + removeDataRowResult.Reason);
}

8.4 How to use the history
As explained in the example above each compartment can have its own history. The following
example will show how to access and use the history of a compartment.

DatastoreProxy .ListHistoryResult listHistoryResult =
 DatastoreProxy.ListHistory(clientCredentials, compartmentName,
 dataRowId);

if (listHistoryResult.Success)
{
 // Do something with the history list, which is a
 // DataStoreResultSet object
}
else
{
 MessageBox.Show("Listing of history failed with the " +

"following message: " + listHistoryResult.Reason);
}

This call to ListHistory() will list the whole content of the comparment containing all revisions of
all datasets that exist within the history. The returned DataStoreResultSet object can then be
inspected and all revisions up the the specified history depth can be seen. Every datarow has
an implicit column called “id” whichs value can be used to access the datarow explicitly.

To revert the compartment to a point in history there are basically two functions:
RevertDataRowByDate() and RevertDataRowBySteps(). The first one is used to revert the
specified data into a state in which the datarow was at the specified point in time whereas the
second function will revert the datarow by the number of steps in its history. The functions can
be used like this:
DatastoreProxy.RevertDataRowByStepsResult revertDataRowByStepsResult =
 DatastoreProxy.RevertDataRowBySteps(clientCredentials, compartmentName, dataRowId, 3);

if (revertDataRowByStepsResult.Success)
{
 MessageBox.Show("Reverting the datarow was successful.");
}
else
{
 MessageBox.Show("Reverting of datarow failed with the " +

"following message: " + revertDataRowByStepsResult.Reason);
}

This call will revert the dataset with the given dataRowId, which can be drawn from a call of
“ListHistory()” i.e., 3 steps in history, that means the datarow is reverted to its state before the

May 2007 Public

Amigo IST-2004-004182 97/103

last 3 changes. The parameters clientCredentials and compartmentName work like discussed
in the first example.

8.5 Resources
For getting all the tools that are needed to compile and use the Datastore service see:
http://download.microsoft.com

For a detailed discussion of the technology of Web Services see:
http://msdn.microsoft.com/webservices

For getting access to the installation package which also contains the source code for the
service see: http://amigo.gforge.inria.fr/

For a detailed overview of all the functions that are there in the Datastore interface, see the
automatically generated SDK documentation that comes along with the installation package.

May 2007 Public

Amigo IST-2004-004182 98/103

9 How to use home system deployment,
configuration and management

9.1 Overview
Home system deployment, configuration and management stands at the crossing and is a
common concern of different efforts within Amigo. We list below some of these efforts:

• Programming frameworks provide some service deployment and configuration
capabilities.

• There is ongoing work on a management console for deploying software in the home
and checking its status.

• Mature as well as ongoing work on ontologies and related tooling supports contextual
models of the home.

• The security framework provides a base of identities and roles for users, devices,
services.

• The User Modelling and Profiling Service (WP4) provides a base of profiles for users.

• The Context Management Service (WP4) provides actual contextual configurations of
the home.

In this chapter, we present ongoing work that addresses the management console for software
deployment in the home.

9.1.1 Objectives and principles
The management console is the single point of contact regarding service control and
diagnostics for the home. For this, the management console relies on a (minimal)
implementation on the client side with a standardized (Web Service) interface: the client
deployment component. This component is installed during the bootstrapping phase of the
device installation in an Amigo home and ideally pre-installed on an Amigo device. All
additional software that is to be managed and diagnosed by the management console is
installed on top of and by this deployment component.

In this way, the management console is able to communicate (in a standardized way) with the
device to install/update and verify the state of software packages. Additionally, through this
component, the management console is able to collect different kinds of information from the
client (e.g. logging, performance and capacity information) and its installed software
components.

Software component development is simplified by an SDK that enables the deployment
component on the client to collect the required information from the software component. A
schematic overview is given in Figure 9-1.

Since this document primarily targets the software developer, a preliminary version of the .Net
SDK for client side software component development is described together with the
components that are part of the .Net deployment client that will enable the management
console to provide its intended functionality.

Additionally (also not directly intended for the target audience of this document), the Web
Service interface used by the Management Console itself is described.

May 2007 Public

Amigo IST-2004-004182 99/103

Figure 9-1: A schematic overview of the management console and deployment client

Note: the management console and client side deployment component are currently being
developed and the described SDK and Web Service interface are likely to change in the near
future.

9.1.2 Assessment
The Management Console provides a common interface for exposing home management
tasks. These tasks include “first time” deployment of Amigo services in a platform independent
way, software updates, and the diagnosis of both expected and unexpected problems.

The advantages of using the Management Console and supporting framework are that many
of these “overhead” tasks are already taken care of. This frees the application developer to
focus on the value-add of their application or service. The end user then has a simple and
consistent access point for this functionality.

9.2 Platform support
The Management Console itself is implemented using the .Net programming framework and
uses a Web Service interface towards the client deployment component. The client side might
use an existing deployment component and SDK (e.g. OSGi) extended with a specific bundle
that implements the Management Console Web Service interface (see How to use the
management console interface) or use its own implementation (as is the case for .Net).

Separating the Management Console from the client deployment component by a Web
Service interface ensures future compatibility and allows others to implement their own client
components targeting or developed towards the specific needs of that platform.

9.3 Overview of the deployment client component (.Net)
The .Net deployment component is a component that needs to be installed on the client
device. It hosts .Net software packages that are developed using the Deployment client SDK.
For .Net, this component is installed as a Windows service.

9.3.1 Packages
.Net software packages intended to be hosted by the .Net deployment client component are
called packages. These packages are containers for all the files (binaries, resources,
configuration files, etc.) necessary for the software component at runtime. Packages have
options describing their behaviour and can be digitally signed. The deployment client

May 2007 Public

Amigo IST-2004-004182 100/103

component can be configured to either reject unsigned packages or deploy them in a
sandboxed environment under restricted rights.

9.3.2 Package tool
Packages are created programmatically using the Packaging SDK or manually using the
package tool. This tool allows a developer to create a package containing the files for his/her
software component, set the necessary options and digitally sign the package.

9.4 How to use the deployment client SDK (.Net implementation)

9.4.1 Client side – deployment
.Net components that use the .Net deployment client must use the .Net deployment client
SDK. This SDK simplifies many tasks for the software developer and allows the Management
Console to control and collect information from it.

A simple example of a component using the SDK is given below:
using EMIC.DeploymentPlatform.Runtime;
…
{
 public class TestClass : Deployable
 {
 public override void OnInstallation()
 {

 this.IDeploymentContext.GetLogger().LogInformation("Installed”);
 }

 public override void OnStart()
 {
 this.IDeploymentContext.GetLogger().LogInformation("Started”);

 }

 public override void OnStop()
 {
 this.IDeploymentContext.GetLogger().LogInformation("Stopped”);
 }

 public override void OnUninstall()
 {
 this.IDeploymentContext.GetLogger().LogInformation("Uninstalled”);
 }
 }
}

The Deployable base class contains the core functionality for .Net deployment client software.
The deployment component will call the respective functions during Installation, starting,
stopping and uninstallation of the component.

Each function uses the IDeploymentContext interface to log its information. This information is
then collected by the deployment client that can then in turn send it to the Management
Console.

The code above serves as an example of a client component that uses the .Net deployment
SDK. Further details and functionality will be described in the online documentation.

May 2007 Public

Amigo IST-2004-004182 101/103

9.5 How to use the management console interface (Web Service)
The Management Console uses a standard Web Service interface to communicate with the
deployment client. To enable the future integration of different platforms, the interface is kept
language neutral.

The planned features require the interface to support deployment
(installation/uninstallation/updating), control (start/stop), diagnose (per installed software
component a status report, and a device status report).

Since the interface at this point in time is not finalized, the interface functions are shown in
pseudo language.

9.5.1 Deployment
The deployment feature handles the installation, update and un-installation of software
packages. To be platform independent, packages should be sent as a byte array. The result
should indicate first of all success or failure. In case of failure, a predefined error code with a
message should be returned.
DeploymentResult
{
 boolean success;
 ErrorCode errorCode;
 string errorDetails;
}

DeploymentResult = InstallPackage(byte[] package, string packageName);

Uninstallation takes a package name as a parameter and returns a similar result as the
InstallPackage routine:
DeploymentResult = UninstallPackage(string packageName);

Update is similar to InstallPackage:
DeploymentResult = UpdatePackage(byte[] package, string packageName);

9.5.2 Control
The control feature enables the starting and stopping of software packages by the
Management Console:
ControlResult
{
 boolean success;
 ErrorCode errorCode;
 string errorDetails;
}

ControlResult = StartPackage(string packageName);

ControlResult = StopPackage(string packageName);

9.5.3 Diagnose
There are two kinds of diagnostic functions. The first one addresses the installed software
packages and returns information about their state. The second one addresses the
deployment client/device and returns information about its state (loggings, memory, battery
capacity, free disk space, etc.).

May 2007 Public

Amigo IST-2004-004182 102/103

The information returned by both functions is in XML format. Since this functionality is under
development only an example of such a logging can be given. The schema definition will be
available when the component is first released.

Example logging:
<?xml version="1.0" encoding="utf-8"?>
<entries>
 <entry date="2/5/2007 8:11:21 PM">
 <type>information</type>
 <message>InstalledPackageRepository - creating.</message>
 </entry>
 <entry date="2/5/2007 8:11:21 PM">
 <type>information</type>
 <message>InstalledPackageRepository - created.</message>
 </entry>
</entries>

May 2007 Public

Amigo IST-2004-004182 103/103

10 Conclusion

This deliverable has presented a set of HOWTOs with the aim of providing the Amigo
developer with a means to quickly choose the most appropriate features of the Amigo
middleware that assist with the development task at hand, and to familiarize the developer with
how to use these features in the development of their own Amigo services and applications.

Chapter 2 covered how to use the OSGi and .Net programming frameworks provided by the
Amigo middleware. Chapter 3 detailed how to secure access to the Amigo services in the
home. Chapter 4 illustrated the range of options the Amigo developer has for describing
semantic services, including simple, atomic capability descriptions, complex conversation-
based capability descriptions, event-based service descriptions, as well as context-aware and
quality-of-service descriptions. This chapter also covered the use of the Amigo semantic
service repository. Chapter 5 demonstrated how the Amigo developer could exploit the suite of
service discovery and service composition methods that the Amigo middleware offers in their
applications, while domotic service development was covered in Chapter 6. For developers
interested in developing applications that incorporate multimedia content, Chapter 7 provided
a walkthrough of how to develop such an application. Using the persistent Datastore service
was the focus of Chapter 8. Finally, Chapter 9 gave an overview of the Amigo home
management console.

Having studied this deliverable, the Amigo developer will have the required knowledge and
sufficient confidence to begin developing Amigo applications on their own. The Amigo
middleware is an ongoing development however, and this deliverable will be updated in future
revisions to include further enhancements made to the comprehensive suite of features
offered by the Amigo middleware.

