

T
Univ
IST Amigo Project
Deliverable D10.2

raining activities
ersity of Paderborn

Public

IST-004182 Amigo

Project Number : IST-004182

Project Title : Amigo

Deliverable Type : Public

Deliverable Number : Deliverable D10.2

Title of Deliverable : Training Activities University of Paderborn

Nature of Deliverable : Training Report

Internal Document Number : Amigo_D10.2.doc

Contractual Delivery Date : 31.08.2005

Actual Delivery Date : 31.08.2005

Contributing WPs : WP 10

Author(s) : Reinhold Häb-Umbach, Jörg Schmalenströer

Abstract
This deliverable documents a student project on speech signal processing conducted at the
Department of Communications Engineering of the University of Paderborn. It describes
typical hardware equipment and software infrastructure suitable for real-time processing based
on the open source operating system Linux. Experiments on speaker position tracking and
acoustic echo cancellation have been set up and carried out. The gained experience serves as
valuable input for the design of training courses for SMEs or other industrial parties.

Keyword list
training activities, speech signal processing, acoustic infrastructure

Aug 31, 2005 Public 1/40

IST-004182 Amigo

Table of Contents

Abstract .. 1

Table of Contents... 2

1 Introduction ... 4

2 Hardware ... 5
2.1 ADAT...5
2.2 RME Hammerfall...5
2.3 TASCAM MA-8..6
2.4 RME ADI-8 PRO..7
2.5 Microphones..8

2.5.1 AKG C 400 BL...8
2.5.2 AKG D 3700 ..8
2.5.3 Technical data...9
2.5.4 Usage of microphones ..9

2.6 JBL Control 1C ..9
2.7 Yamaha P2040 ..10
2.8 Acoustic feedbacks ...10

3 Operating system... 11
3.1 Real-time module processing...11
3.2 Installation of Jack ...12
3.3 Mixer setup ...12

4 Hardware–Software Interface ... 14
4.1 Jack Audio Connection Kit ...14

4.1.1 Start parameters Jack Daemon ...14
4.1.2 C++ Implementation of a Jack Client...14

4.2 Spark Modules..15
4.3 View on the system ...17

5 Algorithmic Software and Modules .. 18
5.1 Resampling Methods..18

5.1.1 Downsampling Methods...18
5.1.2 Upsampling methods..19
5.1.3 Lowpass Filter Design..20

5.2 Filter-and-Sum-Beamformer...22
5.2.1 Direction-of-Arrival Estimation ...22

Aug 31, 2005 Public 2/40

IST-004182 Amigo

5.2.2 Microphone distance ..23
5.2.3 Maximum delay..24
5.2.4 Beamfomer properties ..24
5.2.5 System for position estimation ...25
5.2.6 Simulations...26

5.3 Adaptive-Interference-Canceller ..28

6 Experiments ... 31
6.1 Position Estimation...31
6.2 Echo cancellation..32

7 Lessons learned for SME Training ... 34

8 Conclusions .. 36

9 Appendix .. 37
9.1 Commands ..37
9.2 Configuration file Position.conf ..38
9.3 Configuration file Echo.conf..39

10 References .. 40

Aug 31, 2005 Public 3/40

IST-004182 Amigo

1 Introduction
In order to help home networking make inroads in the general public, the Amigo project
focuses on two key issues: First, it brings together major players of the communications,
computer, consumer and home automation domain to establish a truly interoperable open
middleware. Second, it develops intelligent user services to make the benefit of home
networking tangible to the end user.

This deliverable is concerned with training activities aiming at the second goal of the Amigo
project. It describes a student project on speech signal processing conducted at the University
of Paderborn. Speech is a major input / output modality of intelligent user services, from which
on the one hand an automatic speech recognizer may extract explicit user demands, but which
on the other hand, may also be used to glean information about the (social) context and thus
input for implicit reasoning. Further, speech signal processing is required for unobtrusive,
seamless human-to-human telecommunication, e.g. in the extended home environment.

As an example of the kind of processing required this deliverable describes the setup and
execution of experiments on speaker position tracking and acoustic echo cancellation. It
contains both a description of a typical hardware and software infrastructure and of application
software to realize the needed functionality.

The experiments have been setup and carried out by Electrical Engineering students under
supervision of members of the Department of Communication Engineering, University of
Paderborn.

This served as a “dry run“ for a later training of SMEs or other industrial parties. The design
and implementation of the experiments, as well as the experience gained during the actual
execution of the student project are valuable input for the later SME training courses, as is
documented in this deliverable.

The participating students came from different fields, such as Electrical Engineering, Computer
Science, and “Economics Engineering” (“Wirtschaftsingenieur”, a combination study
comprising Electrical Engineering and Economics). As such their background can be
considered representative of the background of people who attend the SME training to be
developed. Target groups of the SME training are:

• Project managers or other decision makers with an academic background in Electrical
Engineering, Computer Science or a related field

• Application developers and engineers from research and development departments
with some background in Digital Signal Processing and Communications but with no
special expertise in speech and audio processing.

The goals of this student project were that the participants acquire the following skills:

• To gain a basic familiarity with software and hardware for acoustic signal processing

• To develop a solid understanding of the potentials and limitations of state-of-the-art
speech processing

• To be able to assess the computational and memory demands of today’s speech signal
processing algorithms

This document is organized as follows. In section 2 the hardware equipment is described,
which is followed by a description of the operating system and the hardware-software
interface. Section 5 describes the application software and section 6 the actual experiments.
Finally, in section 7 we summarize the conclusions drawn for a later SME training, followed by
some general conclusions given in section 8.

Aug 31, 2005 Public 4/40

IST-004182 Amigo

2 Hardware
A short introduction of the hardware used in the laboratories of the Department of
Communication Engineering will be given in this section. More detailed information can be
found on the websites of the different companies or in newsgroups. Figure 2-1 shows the
basic setup of the hardware for the experiments.

The equipment should be treated with care. Amplifiers and volume controls should be used
with caution to avoid acoustic feedbacks and over modulation.

Figure 2-1: Basic setup of the hardware

2.1 ADAT
The ADAT (Alesis Digital Audio Tape) format was originally developed to record high quality
music on IDE-harddisks. As the format works very efficiently, other companies adopted it and
transferred it to other domains.

Our hardware uses the ADAT format to transfer the data via optical cables between the
Digital-Analog-Converter and the soundcard. The transmission takes place with 24 bit per
channel on 8 channels with full-duplex. If the transmission needs less bits, the least significant
bits are set to zero.

The ADAT cables consist of plastic (PMMA) with a 1 mm diameter and a maximum length of 5
meters. The connectors are called „Toslink Connectors“ and they are equal to the Toshiba
TOCP172 connectors, which conform with the RC-5720 standard. It is possible to use fibre
optic cables for larger distances.

2.2 RME Hammerfall
The RME Hammerfall soundcard is designed for the use in the x86 computer architecture in a
PCI-slot. It is able to handle 3 ADAT Input/Output ports, 2 analog I/O ports and one S/PDIF I/O
port. The 3 ADAT ports offer 24 independent digital input and output ports, which must have
been sampled at a frequency between 32kHz and 96kHz by a digital-analog converter (for
example the RME ADI 8 PRO).

RME Hammerfall technical data

• ADAT Digital In/Out, based on RME Bitclock PLL

• 1 x SPDIF Digital In/Out, based on RME DIGI96 technology
Aug 31, 2005 Public 5/40

IST-004182 Amigo

• 1 x wordclock In/Out (BNC) on expansion board

• 1 x Breakout cabel for coaxial SPDIF

• 1 x ADAT Sync In (9-pol Sub-D) for sample exact transfer

• Zero wait state PCI-busmaster Interface with additional burst FIFO (130 MB/s full-
duplex transfer rate)

• 52 Mono Channels in block mode, organized as 32 Bit ASIO doublebuffer

• Hardware ASIO; 0% CPU demand on using all 52 Channels

• 130 MB/s transfer rate using record and playback results in 9% PCI bus demand when
all 52 channels are used

• Enhanced zero latency monitoring

• Hardware S/MUX: 12 Channels Record / Playback at 96 kHz/24 Bit.

• Full support of ALSA / JACK on Linux systems

Figure 2-2: RME Hammerfall

2.3 TASCAM MA-8
The MA-8 converts balanced XLR microphone level input signals to unbalanced line level
output signals without any loss in sound quality. Ultra low-noise integrated circuits guarantee
pristine audio quality throughout the conversion process. The MA-8 can provide 48 V phantom
power for use with high-quality studio condenser microphones and each channel's 55 dB
input trim range ensures optimal level settings for a wide range of signals.

TASCAM MA-8 technical data:

• 8 high-quality microphone preamps

• 8 XLR balanced microphone inputs

• switchable 48 V phantom power

• Eight 6.3 mm direct output jacks

Aug 31, 2005 Public 6/40

IST-004182 Amigo

• 55 dB Input trim control on each channel

• Ground-Lift-Switch

Figure 2-3: TASCAM MA-8

2.4 RME ADI-8 PRO
The ADI-8 PRO is an 8 channel analog to digital and digital to analog converter. The compact
19" 1U rackmount enclosure includes several features, like Intelligent Clock Control (ICC),
SyncCheck®, SyncAlign®, TDIF/ADAT converter and Bit Splitter. AD- and DA-circuit
automatically operate either independently or linked. The 24 bit converters with 128 times
oversampling achieve more than 110 dB real dynamic range. All digital inputs and outputs
operate at full 24-bit resolution.

Technical data RME ADI-8 PRO

• 8 channel AD-Converter, completely symmetrical and DC-coupled audio path, 116 dBA
AD

• 8 channel DA-Converter, DC-coupled audio path, balanced output, 112 dBA DA

• ADAT optical inputs, 24 bit, based on RME's bitclock PLL for sample accurate lock

• ADAT optical outputs, 24 bit, fully compatible to all ADAT optical inputs

• TDIF-1 interface, 24 bit, Low Jitter PLL, Emphasis support, DA-88 compatible

• Bit Split/Combine, Yamaha 02R compatible technique to record 24 bit data onto 16 bit
machines

• Copy Mode adds a unique 24 bit ADAT to/from TDIF converter

• Bit Split/Combine, Copy Mode, ADAT and TDIF usable in all combinations

• Digital Patchbay operation, allows to copy, duplicate and distribute the digital input
signals

• SyncCheck, unique technology to check clock synchronization

• Virtual Sample Buffer, allows to use the internal Low Jitter Clock (quarz crystal) even
for DA-conversion

• Automatic storage of all settings

Aug 31, 2005 Public 7/40

IST-004182 Amigo

Figure 2-4: RME ADI-8 PRO

2.5 Microphones
During the experiments two types of microphones are used. These are boundary layer
microphones AKG C 400 BL and hand microphones AKG D 3700. Both microphone types are
useful for different tasks.

2.5.1 AKG C 400 BL
The AKG C 400 BL boundary layer microphones are typically used in conference rooms and
theatres, where distant talk microphones are needed. Working on a condenser converter with
permanent charge, the microphone needs a supply voltage of 9V to 52V. Integrated in the
XLR-connectors of the microphones are the phantom power converters, which reduce the
voltage to the required value. The distance between the speaker and the microphone can be
up to 5 meters and the frequency range of the microphone is optimized for the human speech.

Figure 2-5:AKG C 400BL

2.5.2 AKG D 3700
The AKG D 3700 microphone is a close-talk microphone designed for singers and optimized
for the human voice. So it has a broader frequency range than the AKG C400BL. Its concept
achieves the best results at short distances. A hypercardioid characteristic reduces acoustic
feedbacks, and thus improves the signal quality.

The microphone does not need a phantom power, but it is less sensitive than the boundary
layer microphone.

Figure 2-6: AKG D 3700

Aug 31, 2005 Public 8/40

IST-004182 Amigo

2.5.3 Technical data
 C 400 BL D 3700

Transducer Principle Condenser prepolarised Dynamic pressure gradient

Polar pattern Hypercardioid Hypercardioid

Frequency Range 150 - 10000 60 - 18000

Sensitivity 13,5 mV/PA (bei 1kHz) 2,5 mV/PA (bei 1kHz)

Electr. Impedance 200 Ohm < 600 Ohm

Load Impedance 2000 Ohm 2000 Ohm

Sound Pressure Level

THD 1% (3%)

95 (107) dB SPL 147 (156) db SPL

Boundary layer microphones (AKG C 400 BL) show a higher sensitivity than "normal" hand
microphones (AKG D 3700), so they can be used to build up microphone arrays.

2.5.4 Usage of microphones
Boundary layer microphones are used, if the distance between the speaker and the
microphone is larger than 0.5m. They are well suited for varying distances and normally used
in microphone arrays.

The hand microphones should only be used for short distances and if the speaker can carry
the microphone around.

The close-up range effect can be observed for all acoustic sources at short distances with all
types of dynamical microphones. It affects a strong accentuation of low frequencies, however
at high power levels the signal can be strongly modified, which results in intelligibility
problems. A short distance between speaker and microphone leads to a full and soft voice. If
the distance is increased the voice has more echoes.

If a microphone is used for short distances, the speaker should never speak directly into the
microphone. Otherwise breathing sounds are absorbed and the quality of the recording is
worse. This can be avoided by speaking just above the microphone, to receive a natural
sounding and balanced voice.

2.6 JBL Control 1C
The JBL Control 1C is a high quality loudspeaker for speech signals with a recommended
power amplifier range of 150 watts. It consists of a 5.25" woofer and a 0.75" tweeter and has a
nominal impedance of 4 ohms. Frequencies between 120Hz and 20 kHz can be played back.

Aug 31, 2005 Public 9/40

IST-004182 Amigo

Figure 2-7:JBL Control 1C

2.7 Yamaha P2040
The Yamaha P2040 is a high performance amplifier, which can be used in 4-channel and 2-
channel mode. For the experiments the 4-channel mode must be selected (switch on the rear
side).

Figure 2-8: Yamaha P2040

2.8 Acoustic feedbacks
Acoustic feedbacks occur, if the direct path between the microphones and the loudspeakers is
too short. An acoustic loop can be set up by the microphone, the loudspeakers and the
amplifiers, which causes an amplification of the recorded signals and a playback of these. The
power level increases autonomously and the loop can only be broken by reducing the
microphone amplifier level.

Pay attention that the distance between the microphones and the loudspeakers is well chosen
and that the microphones are not directed towards the loudspeakers, if the played signal is
also the recorded one.

Aug 31, 2005 Public 10/40

IST-004182 Amigo

3 Operating system
The operating system needs real-time performance to handle audio signals with low-latencies.
Additionally enough reserves are necessary in order to provide real-time processing for
subsequent processes like speech recognizers. The operating system described in the
following is running on a Dual Xeon Workstation with 1GB Ram and a Hammerfall soundcard
and is based on Linux and Open Source Software.

Suse Linux 9.2 with a linux-2.6.8-24.11 kernel is the basic operating system. All kernel patches
should be installed to minimize the risk of security holes. You can use YOU (Yast Online
Update) from the SuSe Linux AG for example. The kernel sources and the gcc compiler with
all libraries must be installed.

3.1 Real-time module processing
The standard kernel from most of the distributions has no real-time capabilities. This leads to
high latencies and major problems with real-time audio signal processing. The Jack Server for
example displays “xruns” to inform the user that samples got lost, because the Jack process
did not get enough CPU time. Other problems might be buffer overruns or underruns in the
Spark software. These problems must be minimized to get a stable audio processing system.
Spark (Speech Processing and Recognition Kit) is the proprietary speech processing software
developed at the Department of Communications Engineering, University of Paderborn.

First real-time capabilities for the kernel have been installed. For this the kernel got a new
module (realtime-lsm):

The following steps have been done:

• Download realtime-lsm-xxx.tar.gz from ''http://sourceforge.net/projects/realtime-lsm''
and unzip it in /root/realtime-lsm-xxx/ for example

• Become root

• cd /usr/src/linux

• zcat /proc/config.gz > .config

• make oldconfig

• make bzImage

• cd /root/realtime-lsm-xxx/

• make

• make install

• cd /usr/src/linux

• make modules

• cp System.map /boot

• Search for bzImage and

cp bzImage /boot/RealtimeKernel

• Add boot option to Bootloader

If everything works well, the kernel should be compiled and installed.

Aug 31, 2005 Public 11/40

IST-004182 Amigo

After rebooting the system the kernel has the ability to load the realtime-lsm module. The user
root has to enter the following commands, or these commands can be added to
/etc/init.d/boot.local

• modprobe realtime any=1

• modprobe realtime gid=29

• modprobe realtime mlock=0

Every user from the group 29 can now start processes with real-time privileges. On our system
this step improves the performance of the audio signal processing noticeably.

3.2 Installation of Jack
The sound server Jack is a Open Source Project and can be downloaded from
''http://jackit.sourceforge.net/download/''. It is also possible to install Jack directly from the CVS
system to get the newest version.

Installation from CVS is done by:

• cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/jackit login

Hit <enter> if it asks you for a password

• cvs -z3 -d : pserver:anonymous@cvs.sourceforge.net: /cvsroot/jackit co jack

• cd jack

• ./autogen.sh

• make

• make install

If stability problems are obvious, please install the latest stable version from the available rpm-
packages.

3.3 Mixer setup
Figure 3-1 shows the HDSP mixer panel. A detailed description of the software can be found
on the homepage of RME Audio. The basic fader options are (description from RME
Homepage):

• Top row: Hardware input signal level i. e. Fader. Per fader and routing window, any
input channel can be routed and mixed to any hardware output (third row.)

• Middle row: Playback channels (playback tracks of the software). Per fader and routing
window, any playback channel can be routed and mixed to any hardware output (third
row).

• Bottom row: Hardware outputs. Because they refer to the output of a subgroup, the
level can only be attenuated here (in order to avoid overloads), routing is not possible.
This row has two additional channels, the analog outputs.

Aug 31, 2005 Public 12/40

IST-004182 Amigo

Figure 3-1: HDSP mixer panel

For the experiments the faders should be placed as shown in the picture. In the top row the
faders must be zero and in the other rows the faders must be up. Sometimes it will be
necessary to reduce the input or output level to avoid overmodulation. If it occurs, a red light
above the fader flashes. In this case the signal has been truncated.

Aug 31, 2005 Public 13/40

IST-004182 Amigo

4 Hardware–Software Interface
The audio server Jack offers the opportunity to use the RME Hammerfall soundcard in real-
time and to work sample synchronous. Furthermore, Jack provides an abstract interface,
which can be used with every supported hardware. This increases the compatibility to
upcoming hardware and reduces the implementation effort.

We will give a short overview of Jack and Linux, as a starting point and after that the Spark
implementation of the jack frontend is briefly explained.

4.1 Jack Audio Connection Kit
Jack is a low-latency audio server, written for POSIX conformant operating systems such as
Linux. It can connect a number of different applications to an audio device, as well as allowing
them to share audio between them. Its clients can run in their own processes (ie. as normal
applications), or they can run within the Jack server (ie. as a "plugin").

Jack was designed basically for professional audio work, and its design focuses on two key
areas: synchronous execution of all clients, and low latency operation.

If special demands on real-time abilities exist, a special real-time kernel or a kernel with real-
time abilities must be installed. This allows programs to execute in a real-time environment.
Wrong implementations of loops can cause system crashes and some kernel patches have
security holes.

4.1.1 Start parameters Jack Daemon
After installing Jack and all demanded packages on the system, the Jack Server must be
started through the Jack Daemon process.

The system call is:

user@Linux:> jackd --realtime -d alsa -d hw:0 -p 128 –r 48000

This call starts the Jack Server with ALSA (Advanced Linux Sound Architecture) compatibility.
The sampling rate should be selected according to the hardware and if a downsampling step is
necessary, the ratio between the sample frequency and the desired frequency should be an
integer value. Through selecting the frames per period (parameter -p), the streaming rate of
jack and with this the delay is chosen. A small value (-p 64) results in a short latency and high
computational effort. So the value for the parameter “-p” should be also chosen accordingly to
the available computational power.

4.1.2 C++ Implementation of a Jack Client
The complete implementation of a Jack client can be seen on the Jack website. There are
simple examples for clients, which help to implement a client on your own. Here we will
present the principal process of creating and registering a Spark client on the Jack server.

The following steps must be done:

• client = jack_client_new (''SparkPlay'')

Create a new client named “SparkPlay” and register it to the Spark Server

• jack_set_process_callback (client, process, &thread_info)

The call-back function “process“ is chosen for the client, which is executed if the
hardware sends an interrupt. This is a hardware driven function call of a thread and
the “process” function should be small and fast, in order to minimize the latency. If the
function is too slow, the Jack Server will crash.

Aug 31, 2005 Public 14/40

IST-004182 Amigo

• jack_on_shutdown (client, jack_shutdown, &thread_info)

This call defines the function (''jack_shutdown'') executed after the determination of the
client.

• jack_activate (client)

The Jack client is activated and registered, but no types are defined.

• jack_port_register(client, name, JACK_DEFAULT_AUDIO_TYPE,JackPortIsOutput, 0)

This function call defines the client as an output and the client becomes visible in the
Jack connection manager. Before connecting the new client to other clients, ports
must be declared.

• jack_connect (client, jack_port_name(ports_name) ,dest_name)

This creates the port “dest_name” and a connection between the port and the port
''ports_name'' saved in “jack_port_name“.

This brief overview of the basic jack functions shows the necessary steps for registering a jack
client to the server. You can say, that the hardware is assigned to call selected functions as a
response to interrupts. So it is not necessary to wait for new data from the hardware, or to ask
for new data. The call-back functions are able to activate the processing functions of a system
after new data is available. If no data is available, the processing functions fall asleep and, by
doing this, minimize the computational effort. In combination with a real-time kernel a sound
processing with low-latency is possible.

4.2 Spark Modules
The software Spark consists of several modules for recording, playback and processing of
data. First we will present the implemented modules for recording and playback, which are
used in the experiments. Then we will discuss the advantages and disadvantages of the
chosen solution.

The main target of the implementation is a fast and failure-free processing of data. Easier
solutions for addressing a soundcard are known, but most of these approaches have the
problem of buffer underruns or overruns.

Think of a system, which runs normally in real-time, but for some time periods it is slower. An
online speech recognizer for example demands in speech pauses more computational power
than during speech sequences. In the mean it might run in real-time, but if the sound
architecture has not enough memory to save the samples, the speech recognizer will crash or
samples will be lost. Normally a buffer overrun is signalled and the speech recognizer is
stopped. This behaviour can be accepted on a test system, but never on a system for an end-
user. Imagine a home system crashing every few hours, because nobody gave a command.

The Spark architecture avoids these problems by using several ringbuffers in the main
memory. Actually the Jack Server is running as a asynchronous thread, starting the call-back
function to write the samples in the first ringbuffer. This is always possible and the call-back
function has the possibility to write over the read pointer of the ringbuffer. Loosing some
samples is better than crashing the whole system. The call-back function is a small one, in
order to guarantee a fast execution.

From the ringbuffer the thread “Mic_Thread” reads the data, resamples them from 48kHz to
16kHz and writes them to the ringbuffer “SparkBuffer”. This step is resource demanding, so a
multi-processor system spreading the tasks on several CPUs improves the system
recognizably. The Spark JackMic module can read the data from the ringbuffer and send it to
the other modules.
Aug 31, 2005 Public 15/40

IST-004182 Amigo

Mic process

RingBuffer

callback

write

read

Mic Thread SparkBuffer

write

read

Spark

48kHz

16kHz
Resampling

Figure 4-1: SparkMic module for Jack

If Spark is slower than real-time, the memory “SparkBuffer” is overwritten and samples are
lost. No interrupt will occur or error message will be displayed, to avoid irritated end-users.
Spark assumes that only a few samples are lost and that the impact is minimal for the running
system. Exceptional loss of data will lead to severe problems with speech recognizers and
other software modules, so the internal counter for buffer overruns should be checked while
developing the system.

Optimally a system should run faster than real-time, so that the basic system has resources for
exceptional tasks. The worst case is a system running real-time only in the mean, because this
might cause casually data loss.

In the above figure the schematic description of the Spark microphone module is given.
Clearly the three independent threads (process, Mic_Thread, Spark) are identifiable. On a
multiprocessor system this asynchronous implementation achieves good performance.

process

RingBuffer

callback

write

read

SparkBuffer

write

read

Spark

48kHz

16kHz
Resampling

Jack

Play Thread

Figure 4-2: SparkPlay module for Jack

In figure 4-2 the module for playback is depicted. The architecture is equal to the recording
module, with two ringbuffers and three asynchronous threads. For playback the sampling rate
must be changed from 16 kHz to 48 kHz, as all internal filters work with 16 kHz and the
hardware needs 48 kHz. The high resource demanding step of resampling is done by
Play_Thread.

Aug 31, 2005 Public 16/40

IST-004182 Amigo

4.3 View on the system
In this chapter some aspects of the system will be discussed. Each subsystem produces
delays, which have to be estimated by experiments. An optimal system would be sample
synchronous and delay free. Such a system is not realizable, because every system
component, like the lowpass filter for the resampling steps or the D/A-A/D converter delays the
signal. Minimizing these delays improves the system, but it is impossible to eliminate all
delays.

An efficient software design helps to build an approximately real-time system. But a personal
computer will never be a real-time system, because other tasks are running in parallel and
demand also the CPU power. Before building the real-time kernel and optimizing the software,
each system daemon and software should be deactivated to reduce the amount of running
tasks. Each running task can start processes during the experiments, so that the CPU may
experience more load and the speech processing system gets less CPU time. The result might
be, that the system sporadically crashes.

Another important aspect is the system transfer function of the audio hardware. It can be
measured by connecting the input ports of the DA/AD-Converter with its output ports. Playing
a known signal, for example white gaussian noise on these ports and recording it at the same
time, allows the estimation of the system response. Figure 4-3 shows a system response
measured with the described system.

50 100 150 200

−0.5

0

0.5

1

1.5

sample index n

h(
n)

Figure 4-3: System impulse response

Keep in mind that every played and recorded signal is modified by the system impulse
response and adds for example to the room impulse response.

Aug 31, 2005 Public 17/40

IST-004182 Amigo

5 Algorithmic Software and Modules
Specific aspects of the software used in the experiments will be the topic of the following
section. Resampling methods are introduced first, to show some basic processing steps. Then
the Filter-and-Sum-Beamformer (FSB) and the Adaptive-Interference-Canceller (AIC) are
described.

5.1 Resampling Methods
Resampling methods are an urgent need for the system, as the RME Hammerfall soundcard
can only handle signals at rates between 32 and 96 kHz. Theoretically it is possible to build up
the speech processing part in 48 kHz, but the computational effort would be too high for
available computers. Usually speech processing or speech recognition is done with sampling
rates between 8kHz and 16kHz. So we decided to implement a downsampling method for the
microphone signals and a upsampling method for the loudspeaker signals.

5.1.1 Downsampling Methods
Downsampling methods require lowpass filters to restrict the signal to a certain bandwidth.
The design of a filter assumes some basic knowledge about digital signal processing. For
detailed information about filter designed we refer to the literature. Here, we choose a 6th order
elliptic filter with a maximum passband attenuation of 0.01dB and a minimum stopband
attenuation of 40 dB. The filter has been designed with Matlab and a time domain
implementation in C++ with 130 filter taps is working in Spark.

Several filters were designed and tested with Matlab. The finally implemented filter has been
chosen as the best compromise between computational effort and speech quality.

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

sample index k

f(
k)

48 kHz
16 kHz

Figure 5-1: Downsampling example

Aug 31, 2005 Public 18/40

IST-004182 Amigo

5.1.2 Upsampling methods
Replaying a signal with the hardware requires an upsampling method and thus a lowpass
filter. If a broadband signal should be played, for example music, the filter length must be high
in order to attenuate the alias effects of the upsampling step. Alias effects can be heard as a
high frequency noise and they disturb the performance of an echo cancellation system for
example.

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

sample index k

f(
k)

16 kHz
48 kHz

Figure 5-2: Upsampling example

Upsampling can be done by filling in zeros between two samples and filtering the result with a
lowpass. It is necessary to remove the alias spectral components, otherwise the signal quality
is deteriorated.

5 10 15 20 25 30

−1.5

−1

−0.5

0

0.5

1

sample index k

f(
k)

UpSampled
TP Signal

Figure 5-3: Signal before and after lowpass

Aug 31, 2005 Public 19/40

IST-004182 Amigo

In figure 5-3 a signal is displayed before and after a lowpass filter. Before using the lowpass
the filled in zeros of the upsampled signal are clearly identifiable. After the lowpass the desired
signal is displayed, with the higher sampling rate.

5.1.3 Lowpass Filter Design
The lowpass filter has been designed with Matlab and in the following section some aspects of
the filter will be discussed. Figures 5-4, 5-5 and 5-6 show some results from the filter design
with a cutoff frequency of 8kHz.

Voice quality should be the objective of each filter design, because a filter with low complexity
and low voice quality is useless. Perfect voice quality with a short filter is impossible, so a
compromise has to be found. Filtering in the frequency domain might be a solution to this
problem, but new problems will come along, like stability for example. The FFT is a very
effective way to implement filter problems, but good filter results demands a high resolution of
the FFT. A high resolution needs long input blocks and this result in long system delays. A
time domain implementation avoids all these problems and a low latency lowpass with good
parameters can be designed. The filter used in the experiments is 130 samples long and
achieves good performance.

20 40 60 80 100 120

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

sample index k

h(
k)

Figure 5-4: Impulse response of lowpass

If the band between the passband and the stopband must be smaller than in the chosen filter
design, the amount of coefficients in the time domain must be increased or the stopband
attenuation must be decreased.

Aug 31, 2005 Public 20/40

IST-004182 Amigo

0 5 10 15 20
−120

−100

−80

−60

−40

−20

0

20

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Figure 5-5: Magnitude response of lowpass

0 5 10 15 20
−450

−400

−350

−300

−250

−200

−150

−100

−50

0

50

Frequency (kHz)

P
ha

se
 (

de
gr

ee
s)

Phase Response

Figure 5-6: Phase response of lowpass

Aug 31, 2005 Public 21/40

IST-004182 Amigo

5.2 Filter-and-Sum-Beamformer
The Filter-and-Sum-Beamformer (FSB) is an adaptive beamformer, where the microphone
signals are filtered by short FIR filters and then summed up as can be seen in figure 5-7. The
signal to noise power ratio of the output can be maximised by principle component analysis: A
stochastic gradient ascent algorithm estimates iteratively the eigenvector corresponding to the
largest eigenvalue of the cross power spectral density of the microphone signals. The
implemented algorithm shows fast adaptation and high robustness for tracking a moving
speaker.

Figure 5-7: Filter-and-Sum-Beamformer

The experiment for estimating the speaker position by microphone arrays shows the
advantage of the FSB. The algorithm can steer the main lobe of the beam pattern towards the
acoustic source. Then it is possible to use the correlation between the adaptive filter impulse
responses of two microphones, to calculate the time difference between the main peaks of the
filter impulse responses. This time correspond to the direct path length differences between
the acoustic source and two elements of the array and therefore to the speaker direction.

In combination with speaker identification software the speaker localisation might be used for
context aggregation and service composition.

5.2.1 Direction-of-Arrival Estimation
A linear microphone array can only be used to estimate the speaker direction or more
precisely the direction of arrival (DOA) of the audio signal. Position estimation can only be
done by two arrays, but in the following text position estimation is used synonymously to the
angle estimation, when a single microphone array is discussed.

The position estimation of a speaker for example is done by correlating the filter impulse
responses of the Filter-and-Sum Beamformer. The maximum of the correlation function is a
good estimate of the possible position of the speaker. An efficient implementation of the
correlation can be achieved by multiplying the filter transfer functions in the frequency domain
and transforming the result to the time domain. Some attention should be paid to cyclic
correlation effects.

Aug 31, 2005 Public 22/40

IST-004182 Amigo

Figure 5-8: Temporal change of filter impulse response

First we will have a look at the temporal change of a filter impulse response, when the speaker
position changes. Figure 5-8 shows the filter coefficients over time. The FSB has a filter length
of N=128 samples and the stereo sound file has been generated from a mono sound file as
reference for the first channel and a delayed version for the second channel (this means no
reverberation). Every 10 seconds the delay altered between 0 samples (first speaker position)
and 10 samples (second speaker position). This corresponds to a source direction at 0
degrees and 90 degrees broadside to the array, when the microphone distance is 0.22m and
the sampling frequency is 16 kHz. Both speakers talk alternately for 10 seconds. During this
time the FSB adapts to the speaker and with this the filter impulse response changes.

Examining figure 5-8 it can be observed, that the filter impulse response h(n) does not move
from one position to another. Instead, the amplitude at one point decrases and at another point
increases. In this figure the main amplitude at filter index n=63 decreases and the amplitude at
filter index n=53 spontaneously increases when the speaker changes. This also means, that
the correlation between two filter impulse responses will change erratically, if no interpolation
is used.

Using a FSB offers also the possibility to estimate delays smaller than 1/f with f as the
sampling frequency. To do that the correlation result has to be interpolated with the required
resolution.

5.2.2 Microphone distance
The distance between microphones is an important parameter for a microphone array. It limits
the maximum amount of samples, which can occur between the arrival at different
microphones (delay between two recorded signals). Furthermore, it affects the beamformer
through restricting the maximum resolvable frequency.

Aug 31, 2005 Public 23/40

IST-004182 Amigo

5.2.3 Maximum delay
Suppose the distance between two microphones is d=0.2m. In case, the speaker stands 90
degrees broadside to the array (endfire position), the largest delay between the two
microphone filter impulse responses can be expected. The maximum amount of samples is
calculated by

41.9116000
340

2.0
max =⋅=⋅=

s
s
m
mf

c
da A

if the sampling frequency is 16kHz and the speed of sound is c=340m/s. This means that the
maximum delay between the arrival of a signal at one microphone and the arrival at the other
microphone is 9.41 samples.

For estimating the delay between the channels, the correlation will be examined. As the
theoretical delay is limited, only the values and],0[maxa],[max NaN − must be examined, with
N as the filter length.

An interpolation step is applied to improve the resolution of the position estimation.
Experiments have shown that using 6 samples around the determined maximum of the
correlation is sufficient for an interpolation. The maximum resolution should be around 2-3
degrees. Higher resolutions do not make sense because normally the estimation error is much
higher than 1 degree.

5.2.4 Beamfomer properties
Spatial alias failures occur if the distance d between two microphones is too large. The
maximum allowable distance according to the sampling theorem is

minλ<d

where minλ is the wavelength of the signal. The maximum frequency belonging to the
minimum wavelength can be calculated as follows:

Hz
m
s
m

d
cf 1700

2.0

340
max ===

Accordingly a microphone array with d=0.2m resolves frequencies up to 1700Hz. All other
frequencies are recorded correctly, but the beamformer can not decide from which direction
the sound came.

This can be observed from the beampatterns of a beamformer. In figure 5-9 beampatterns for
different frequencies are displayed. With increasing frequencies the number of lobes increases
also.

Aug 31, 2005 Public 24/40

IST-004182 Amigo

 1

 2

30

210

60

240

90

270

120

300

150

330

180 0

1000Hz

 1

 2

30

210

60

240

90

270

120

300

150

330

180 0

2500Hz

 1

 2

30

210

60

240

90

270

120

300

150

330

180 0

4000Hz

 1

 2

30

210

60

240

90

270

120

300

150

330

180 0

5500Hz

Figure 5-9: Characteristics for different frequencies (d=0.2m ; f=16kHz)

This means, that a beamformer at a frequency above the maximum resolvable, collects
signals from the main lobe and combines them with signals from the other lobes. The
beamformer does not adapt correctly only to the desired speaker, but also to other sources.

One solution to this problem might be the usage of several microphones with smaller
distances. The microphones on the edges can be used to estimate the position of a speaker
and all the microphones together are used to get a small beamformer main lobe. It is also
possible to connect the microphones in groups, in order to use them in the postfilter to process
certain frequency intervals.

5.2.5 System for position estimation
As discussed in the previous sections, the speaker position relative to the microphone array is
estimated from the delay between the incoming signals.

For this the crosscorrelation function between 2 filter impulse responses is examined and with
the maximum of the correlation it is possible to estimate the speaker direction.

������

�����

��	�
����

���

���
�

��	�
����
���

������
� ��
��

������������
��

Figure 5-10: Position estimating system

Aug 31, 2005 Public 25/40

IST-004182 Amigo

In figure 5-10 you can see the position estimation system implemented in Spark. The module
FSBDelay calculates from the filter transfer functions of the FSB the crosscorrelation and from
this the angle between the array and the speaker. All displayed modules are scaleable, so that
the number of microphones can be easily increased.

5.2.6 Simulations
The sensor signals have been simulated by a mono recording as the first signal and a delayed
version of it as the second. For the following simulation the delay is between -10 and 10
samples. This is equal to the maximum delay between two microphones at a distance
d=0.22m at a sampling frequency of 16kHz.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
−10

−8
−6
−4
−2

0
2
4
6
8

10

t in s

D
el

ay

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
−10

−8
−6
−4
−2

0
2
4
6
8

10

t in s

D
el

ay

Figure 5-11: Signal delay estimation (a)with interpolation; (b) without interpolation

In order to get a higher resolution, an interpolation is applied on the result of the
crosscorrelation. The interpolation method uses a upsampling method to calculate the
interpolated values. For this the number of input values and the number of desired samples
between two input samples must be set. The maximum of the interpolated values is used for
position estimation. The amount of interpolated samples should not be too high, as the result
might show more details than needed.

The impact of the interpolation is observable in figure 5-11. Without interpolation the estimated
delay between the channels jumps from one integer value to another. An interpolation
smoothes the estimated delay, if the extremes of the correlation function are in the
interpolation interval during the change. If the difference from one delay to the next one is too
large, the correlation function will jump between them, as the extremes are not in the same
interpolation interval.

Aug 31, 2005 Public 26/40

IST-004182 Amigo

Figure 5-12: Interpolation example

The effect of the interpolation is more obvious, if the delay between two channels is not an
integer value. In figure 5-13 such an experiment is shown. Without interpolation the estimated
delay is rounded and jumps between the possible values around the real value. An
interpolation improves the estimate and thus reduces the error.

Figure 5-13: Interpolation of estimated delay

Aug 31, 2005 Public 27/40

IST-004182 Amigo

For figure 5-13 a mono recording with a sampling frequency of 32 kHz has been used. This
recording has been transformed to a stereo recording, with a delay of 9 samples between the
channels. After downsampling the file from 32kHz to 16 kHz the delay was 4.5 samples.

5.3 Adaptive-Interference-Canceller
The filter coefficients in the Adaptive-Interference-Canceller (AIC) are adjusted in such a way,
that the part of some input signal, which is correlated with the interfering signal, is removed.
The filter is updated iterative to minimize the result after the subtraction. The algorithm is
implemented in the frequency domain using an overlap-save method.

Figure 5-14 shows a typical example for a setup, where a AIC is used. The far-end speaker on
the right hand side speaks into a microphone and the recorded signal is transmitted to the
near end. Here the signal x is played by a loudspeaker and recorded at the same time by a
microphone. The adaptive filter tries to adjust the signal y in such a way that after the
subtraction the energy of the resulting signal e is minimized. This can be interpreted as the
fact, that the played signal is removed from the recorded microphone signal. This signal is
transmitted to the far end and hopefully the far-end speaker does not hear himself. In this
setup the adaptive filter works optimally, if the filter impulse response is equal to the room
impulse response of the near end.

������

���
 ��

!

������
 ��

"��������

�

#

�
�

Figure 5-14: Example for echo cancellation

This kind of echo cancellation system is used in many applications, for example mobile
phones or instant messengers.

Aug 31, 2005 Public 28/40

IST-004182 Amigo

take
last Block

conncatenate
2 Blocks

FFT

IFFT

x y

old new
....

discardone block has M/2 samples
each FFT has M samples

conj. komplex

d

-
append zeros e

IFFT

remove
last Block

append
Zeros

FFT

m

Delay

FFT

b1

b2

Delay

Figure 5-15: Adaptive-Interference-Canceller

Figure 5-15 depicts the frequency domain implementation of the AIC. The system works block
wise, with an input frame size equal to the filter length. If the filter length should be greater
than the input frame size, a different implementation must be chosen (for example Partitioned-
Block-AIC).

Aug 31, 2005 Public 29/40

IST-004182 Amigo

Aug 31, 2005 Public 30/40

IST-004182 Amigo

6 Experiments
This chapter describes the setup of some experiments. First the focus lies on multi-
microphone signal processing with beamforming and position estimation. The second
objective is an experimental setup for echo cancellation.

6.1 Position Estimation
In this experiment two microphone arrays mounted on different walls will be used to estimate
the position of a possibly moving speaker. The room has a size of 3.4m x 6.8m x 3.5m and the
two pairs of microphones should be placed as shown in figure 6-1.

Figure 6-1: Setup for position estimation

Exercises
1. Build up the necessary hardware connections (see fig. 6-2) and use the configuration

file ‘position.conf’ for the Spark software to estimate the position of a speaker. Can you
estimate each position?

2. Try to track a slowly moving and speaking person in the room. What can be observed?

3. Use a sound absorbing board and a highly reflective board to simulate a single
reflection sound path without a direct path from the speaker to one microphone array.
How does the beamformer react to this?

Aug 31, 2005 Public 31/40

IST-004182 Amigo

4. Place to speakers in the room. What happens if both speakers are talking?

Figure 6-2: Hardware connections for the localization experiment

Figure 6-2 shows the hardware connections for the experiment. The green color shows that
the connection is used.

6.2 Echo cancellation
In this experiment some aspects of echo cancellation are examined. First place a loudspeaker
and a microphone in the room and connect them to the hardware.

Figure 6-3: Software setup for the AIC experiment

Figure 6-3 shows the modules used in the experiment and the connections between them. The
configuration file can be found in the appendix.

Aug 31, 2005 Public 32/40

IST-004182 Amigo

Figure 6-4: Hardware connections for the AIC experiment

Figure 6-4 shows the connections between the hardware components. Please verify all
connections before the experiments are conducted.

Exercises
1. Place a microphone and a loudspeaker in the acoustic enclosure. The distance

between the microphone and the loudspeaker should be about one step size. Plot the
filter impulse response after convergence with Matlab. Calculate the exact distance
between the loudspeaker and the microphone from the resulting impulse response.
What else can you see in the impulse response?

2. Create a distinct reflection path and try to find it in the impulse response of the AIC.

3. Calculate the attenuation of the interfering signal achieved by the AIC using Matlab.
Use a filterlength of 256 and 1024 samples. What do you observe?

4. Vary the stepsize of the adaptive filter and analyse the effect on the attenuation.

5. Choose a filterlength of 1024 samples and vary the distance between the microphone
and the loudspeaker in the range of 0.5m to 3.5m. Compensate the minimum delay of
the direct path by a delay module.

6. Now a speaker should talk while the AIC system is running. Wait for 10 seconds after
the music started and then start to talk. Plot the signals and discuss them.

7. The speaker starts talking right from the beginning on (also during the acquisition
phase), with short pauses. Plot the signals. What can you observe and how can you
improve the system?

Aug 31, 2005 Public 33/40

IST-004182 Amigo

7 Lessons learned for SME Training
In this section we summarize some experiences we made during the experiments, which will
be incorporated into the SME Training courses. We will focus on the most important issues.

Familiarity with the basics of digital signal processing, as well as some knowledge of the Linux
operating system were needed to follow the experiments. Participants without this expertise
will not be able to conduct the experiments. They will, however, still gain a basic
understanding of the potentials and limitations of current speech signal processing. The later
SME training will therefore not include the technical details of the experiments. The training
module on speech processing and speech interfaces will be presented in such a way that it is
accessible to the following target groups:

• Project managers and other decision makers with a technical background

• Application developers and engineers from research and development departments

Coming back to the student project, the participants acquired the following expertise:

• Basic familiarity with software and hardware

• Potentials and limitations of state-of-the-art speech processing

• Computational and memory demands of speech signal processing algorithms

The different background of the participating students had only little influence on the
successful execution of the experiments. Economics Engineering students were less familiar
with the algorithmic and mathematical aspects of the student project than Electrical
Engineering and Computer Science students. This deficiency was compensated by somewhat
extra effort and time spent by the supervisors on explaining the tasks.

This “dry run” with students revealed, however, some interesting specific issues which should
be addressed in the later SME training.

First of all, the computational demands of speech signal processing algorithms are easily
underestimated. Many students were impressed when they realized that 4 microphones
connected to a beamformer and some adaptive filters ask for a state-of-the-art personal
computer to work in real-time.

The second point was that real-time processing under the general purpose open source
operating system Linux is possible, but it requires special care and experience. For example
the implementation of a real-time module into the kernel and the design of the hardware-
software interface need special knowledge about the operating system.

It turned out that the opportunities and limitations of acoustic scene analysis have to be
marked out clearly during the upcoming SME Trainings, since there might be some
misconceptions about these.

• Indeed, speech contains more than the linguistic content. An acoustic scene analysis
can support the context aggregation and prediction of Amigo and through this improves
the whole system.

• State-of-the-art acoustic echo compensation can achieve an impressive amount of
echo suppression. There exist adaptation algorithms which track fast changes of the
echo path.

• On the other hand, some tasks, which are easy for humans, can be difficult for
machines. It is for example not so obvious, that robust voice activity detection is a
challenging task in speech signal processing.

• Automatic speech recognition with distant microphones is difficult as the performance
of the recognizer depends on the signal quality. Reverberations and other distortions

Aug 31, 2005 Public 34/40

IST-004182 Amigo

lead to a deterioration of the recognizer results. Humans have fewer problems to
understand speech in reverberated situations than machines.

An important issue to point out to SMEs is that the quality of audio processing can be a means
to differentiate. As the Amigo interfaces are open source, it will be easy to invent new products
for the system. New audio processing algorithms, which can be developed under proprietary
licences, can result in a competitive edge over competitors and by this create new business
opportunities.

The last point we want to mention here is the problem of error recovery. A system can produce
inaccurate estimates or errors. Some of these frequently encountered problems might be
solvable by other sensors or with the help of speech independent modalities. Error handling
and the solution of contradictions will be a task on a higher semantic level, as it means to
collect, analyze and interpret the information from different sensors and modalities.

Aug 31, 2005 Public 35/40

IST-004182 Amigo

8 Conclusions
This deliverable documents a student project on speech signal processing conducted at the
Department of Communications Engineering of the University of Paderborn. It describes
typical hardware equipment and software infrastructure suitable for real-time processing based
on the open source operating system Linux. Experiments on speaker position tracking and
acoustic echo cancellation have been set up and carried out. The students were very
enthusiastic about this hands-on experience which served as a complement to a lecture on
digital speech signal processing (for more information see http://www-nt.uni-paderborn.de).

It turned out, that in particular the higher computational demand of speech processing
algorithms and the complications resulting from the need for real-time processing are easily
underestimated. Special emphasis should be placed on these issues in later training of SMEs
or other industrial parties.

Due to time limitations, this student project focused on generic audio signal processing tasks
and did not include automatic speech recognition or speech enhancement. The SME training
module to be prepared within the Amigo training workpackage will, however, include material
about automatic speech recognition and speech enhancement.

In summary we can state that the student project was successful, since the participants indeed
acquired the skills mentioned in the introduction of this report, i.e. a solid understanding of
speech signal processing, its potentials and today’s limitations. Successful participants of later
SME training should therefore be able to identify potential applications of speech signal
processing in their application domains and assess the achievable performance and required
computational demands.

Aug 31, 2005 Public 36/40

http://www-nt.uni-paderborn.de/

IST-004182 Amigo

9 Appendix
In the appendix the necessary commands of the software is listed. Furthermore the
configuration files for the simulation software Spark can be found. All config-files are written in
3 rows in order to reduce the size of the document.

9.1 Commands

Start the Jack Daemon process

> jackd - -realtime -d alsa -d hw:0 -p 128 -r 48000

Run Spark

Speaker position estimation:

> asreng position.conf

Echo cancellation:

> asreng echo.conf

Matlab scripts

Plot AIC filter impulse response:

> PlotFilter.m

Calculate attenuation:

> CalcAttenuation.m

Aug 31, 2005 Public 37/40

IST-004182 Amigo

9.2 Configuration file Position.conf
[TASK]

TaskType: one_file

Input: RMic(hw:0)

Output: OutputFile(capture.raw)

 [MODULES]

 [M]

 Name: RMic

 Type: JackMic

 Channels: 4

 FrameSize: 128

 SampleRate: 16000

 MicPCM1: alsa_pcm:capture_1

 MicPCM2: alsa_pcm:capture_2

 MicPCM3: alsa_pcm:capture_3

 MicPCM4: alsa_pcm:capture_4

 Highpass: true

 Gain: 655000

 [/M]

 [M]

 Name: FSB1

 Type: FSB

 FrameSize: 128

 Channels: 2

 FilterLength: 128

 SampleRate: 16000

 StepSize: 0.2

 UseVad: false

 [/M]

 [M]

 Name: FSB2

 Type: FSB

 FrameSize: 128

 Channels: 2

 FilterLength: 128

 SampleRate: 16000

 StepSize: 0.2

 UseVad: false

 [/M]

 [M]

 Name: Router1

 Type: Router

 FrameSize: 128

 ChannelsIn: 1

 ChannelsOut: 2

 PortsIn: { 4 }

 PortsOut: { 2 2 }

 MapsIn: { 0 1 2 3 }

 MapsOut: { 3 2 0 1 }

 [/M]

 [M]

 Name: FSBDelay1

 Type: FSBDelay

 Channels: 2

 SampleRate: 16000

 FilterLength: 256

 MicDistance: 0.1

 Average: false

 Limit_Search: false

 Interpolate: true

 Upfac: 32

 Interp_dev: 3

 [/M]

 [M]

 Name: FSBDelay2

 Type: FSBDelay

 Channels: 2

 SampleRate: 16000

 FilterLength: 256

 MicDistance: 0.1

 Average: false

 Limit_Search: false

 Interpolate: true

 Upfac: 32

 Interp_dev: 3

 [/M]

 [M]

 Name: OutputFile

 Type: WriteFile

 FrameSize: 128

 RawData: true

 DataType: sample_float

 [/M]

 [M]

 Name: PositionEstimator

 Type: PositionEstimator

 MicArrays: 2

 MicPositionX: { 3.4 0 }

 MicPositionY: { 0 1.5 }

 MicLookDirectionX: { 0 1 }

 MicLookDirectionY: { 1 0 }

 RoomSizeX: 6.8

 RoomSizeY: 3.4

 StepSizeX: 0.1

 StepSizeY: 0.1

 [/M]

 [M]

 Name: Router2

 Type: Router

 FrameSize: 1

 ChannelsIn: 2

 ChannelsOut: 1

 PortsIn: { 1 1 }

 PortsOut: { 2 }

 MapsIn: { 0 1 }

 MapsOut: { 0 1 }

 [/M]

 [/MODULES]

 [CONNECTIONS]

 RMic 0 Router1 0

 Router1 0 FSB1 0

 Router1 1 FSB2 0

 FSB1 1 FSBDelay1 0

 FSB2 1 FSBDelay2 0

 FSBDelay1 0 Router2 0

 FSBDelay2 0 Router2 1

 Router2 0 PositionEstimator 0

 FSB1 0 OutputFile 0

 [/CONNECTIONS]

 [/TASK]

Aug 31, 2005 Public 38/40

IST-004182 Amigo

9.3 Configuration file Echo.conf
[TASK]

TaskType: one_file

Input: RMic(hw:0)

Read(/local_home/schmalen/Hamm
erfall/RAW/Musi.raw)

Output: Play()
OutputFile(/local_home/schmalen/H
ammerfall/RAW/capture.raw)

 [MODULES]

 [M]

 Name: Play

 Type: JackPlay

 Channels: 4

 FrameSize: 1024

 SampleRate: 16000

 PlayPCM1: alsa_pcm:playback_1

 PlayPCM2: alsa_pcm:playback_2

 PlayPCM3: alsa_pcm:playback_3

 PlayPCM4: alsa_pcm:playback_4

 [/M]

 [M]

 Name: RMic

 Type: JackMic

 Channels: 2

 FrameSize: 1024

 SampleRate: 16000

 MicPCM1: alsa_pcm:capture_1

 MicPCM2: alsa_pcm:capture_2

 Highpass: true

 Gain: 450000

 [/M]

 [M]

 Name: Read

 Type: ReadFile

 FrameSize: 1024

 FrameShift: 1024

 FileType: RAW

 Swap: false

 DataType: sample_float

 [/M]

 [M]

 Name: OutputFile

 Type: WriteFile

 FrameSize: 2048

 RawData: true

 DataType: sample_float

 [/M]

 [M]

 Name: Router

 Type: Router

 FrameSize: 1024

 ChannelsIn: 1

 ChannelsOut: 3

 PortsIn: { 2 }

 PortsOut: { 1 1 1 }

 MapsIn: { 0 1 }

 MapsOut: { 0 0 1 }

 [/M]

 [M]

 Name: framing

 Type: Framing

 FrameSize: 1024

 FrameShift: 1024

 Offset: 0

 DataType: sample_float

 [/M]

 [M]

 Name: AIC

 Type: AIC

 SampleRate: 16000

 Channels: 1

 FilterLength: 1024

 FrameSize: 1024

 StepSize: 0.1

 [/M]

 [M]

 Name: Router2

 Type: Router

 FrameSize: 1024

 ChannelsIn: 3

 ChannelsOut: 1

 PortsIn: { 1 1 1 }

 PortsOut: { 4 }

 MapsIn: { 0 1 2 }

 MapsOut: { 2 0 1 2 }

 [/M]

 [M]

 Name: Router3

 Type: Router

 FrameSize: 1024

 ChannelsIn: 2

 ChannelsOut: 1

 PortsIn: { 1 1 }

 PortsOut: { 2 }

 MapsIn: { 0 1 }

 MapsOut: { 0 1 }

 [/M]

 [/MODULES]

 [CONNECTIONS]

 RMic 0 Router 0

 Router 1 AIC 1

 Router 2 framing 0

 framing 0 AIC 0

 Router 0 Router2 0

 AIC 0 Router2 1

 Router2 0 Play 0

 Read 0 Router2 2

 Router 1 Router3 1

 AIC 0 Router3 0

 Router3 0 OutputFile 0

 [/CONNECTIONS]

[/TASK]

Aug 31, 2005 Public 39/40

IST-004182 Amigo

10 References
 [AMI05] http://www.amigo-project.org Homepage Amigo Project

 [RME05] http://rme-audio.de RME Homepage

 [YAH05] http://www.yamahaproaudio.com Yamahe Homepage

 [JAC05] http://jackit.sourceforge.net Jack Audio Connection Kit Homepage

 [SUS05] http://www.suse.de SuSe Linux Homepage

 [RLT05] http://sourceforge.net/projects/realtime-lsm Realtime Module for Kernel

 [AKG05] http://www.akg.com AKG Homepage

 [NT05] http://nt.uni-paderborn.de Internetseite Fachgebiet Nachrichtentechnik

 [Hay99] S.Haykin. Adaptive Filter Theory; Prentice-Hall Inc., 1991

 [Hof00] G.Moschytz; M. Hofbauer. Adaptive Filter; Springer Verlag,2000

 [Shy92] J. Shynk. Frequency Domain and Multirate Adaptive Filtering; IEEE SP 1992

Aug 31, 2005 Public 40/40

http://www.amigo-project.org/
http://rme-audio.de/
http://yamahaproaudio.com/
http://jackit.sourceforge.net/
http://www.suse.de/
http://sourceforge.net/projects/realtime-lsm
http://www.akg.com/
http://nt.uni-paderborn.de/

	Introduction
	Hardware
	ADAT
	RME Hammerfall
	TASCAM MA-8
	RME ADI-8 PRO
	Microphones
	AKG C 400 BL
	AKG D 3700
	Technical data
	Usage of microphones

	JBL Control 1C
	Yamaha P2040
	Acoustic feedbacks

	Operating system
	Real-time module processing
	Installation of Jack
	Mixer setup

	Hardware–Software Interface
	Jack Audio Connection Kit
	Start parameters Jack Daemon
	C++ Implementation of a Jack Client

	Spark Modules
	View on the system

	Algorithmic Software and Modules
	Resampling Methods
	Downsampling Methods
	Upsampling methods
	Lowpass Filter Design

	Filter-and-Sum-Beamformer
	Direction-of-Arrival Estimation
	Microphone distance
	Maximum delay
	Beamfomer properties
	System for position estimation
	Simulations

	Adaptive-Interference-Canceller

	Experiments
	Position Estimation
	Echo cancellation

	Lessons learned for SME Training
	Conclusions
	Appendix
	Commands
	Configuration file Position.conf
	Configuration file Echo.conf

	References

