

Deliverable D6.2.3: Platform: Final Version - October 2016

Platform
Final Version

Deliverable Nr
Title:

Deliverable D6.2.3
Platform: Final Version

Delivery Date: October 2016

Author(s): Horst Stadler (Salzburg Research)
Thomas Kurz (Salzburg Research)
Patrick Aichroth (Fraunhofer IDMT)

Publication Level: Public

Copyright MICO Consortium 1/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Table of Contents
Table of Contents 2

Documentation Information 4

Executive Summary 5

System Architecture 6
Components 6

Service Orchestration 7
Extractors 9
Messaging 10
Persistence API 10
Linked Data Platform 11
File Storage 12
Recommendation 12
Endpoints 12

Implementation and Integration 14
Endpoints for data ingestion and result retrieval 14

Animal detection endpoint 15
Text analysis endpoint 18

Storage layer 20
Requirements 20
Comparison of available remote storage systems 21

Execution plan configuration 23

Development Infrastructure 24
Distribution 24

Debian package repository 24
Maven repository 29
Virtual Machine 29
Docker 30
Demo servers for use-case partners 30
Source code 30

Continuous Integration 30
Logging 31
Platform dependencies 32

MICO Platform Online Showcase 38

Copyright MICO Consortium 2/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Main Page 39
Workflow Creation 40
Data Ingest 41
Result Display 42

Content provenance and Trust 45

Copyright MICO Consortium 3/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Documentation Information

Item Value

Identifier D6.2.3

Author(s) Horst Stadler (Salzburg Research)
Patrick Aichroth (Fraunhofer IDMT)

Document Title Platform: Final Version
Actual Distribution
Level

Public

Document Context Information

Project (Title/Number) MICO - “Media in Context” (610480)

Work Package / Task Work Package 6: Framework Implementation and Integration

Responsible person
and project partner

Horst Stadler (Salzburg Research)

Copyright
This document contains material, which is the copyright of certain MICO consortium parties, and
may not be reproduced or copied without permission. The commercial use of any information
contained in this document may require a license from the proprietor of that information. Neither
the MICO consortium as a whole, nor a certain party of the MICO consortium warrant that the
information contained in this document is capable of use, nor that use of the information is free
from risk, and accepts no liability for loss or damage suffered by any person using this
information.

Neither the European Commission, nor any person acting on behalf of the Commission, is
responsible for any use which might be made of the information in this document.

The views expressed in this document are those of the authors and do not necessarily reflect
the policies of the European Commission.

Copyright MICO Consortium 4/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Executive Summary

This deliverable contains the final version of the MICO platform and integration of the enabling
technology components from work packages 2-5. It provides an implementation of the initial
architecture proposed in D6.1.1 and extended in D6.2.2 . 1 2

The implementation documentation is available online to make access easier for developers:

● C++/JAVA API documentation:​http://mico-project.bitbucket.org/api/3.1/
● Source code: ​https://bitbucket.org/mico-project/platform

The target audience of this document are mainly technical people interested in working with the
MICO platform. At this stage of the project developers in the consortium. The foundations of
many aspects are omitted to make this concise and useful document for that target group.

In order to demonstrate the MICO platform functionality within a web environment we created a
generic MICO platform demonstrator, which can be found on ​http://demo3.mico-project.eu/​.

It is purely Platform based, which means it only uses the web services that have been described
above. Additionally it combines several frontend software projects that have been developed
and/or adapted within the project, which are Squebi (for SPARQL result presentation), the
workflow-manager (for the creation and the selection of workflows), and the balloon synopsis
(for extraction result presentation). Thus the demo supports:

● Workflow creation
● Workflow selection
● Data ingest (text, image, video, audio)
● Type-specific result presentation
● Generic result presentation
● SPARQL access

1 MICO project deliverable D6.1.1 System Architecture and Development Guidelines, Sebastian Schaffert
and Sergio Fernández, 2014
2 MICO project deliverable D6.2.2 Platform: Refined Version, Horst Stadler and Patrick Aichroth, 2015

Copyright MICO Consortium 5/47

http://mico-project.bitbucket.org/api/3.1/
https://bitbucket.org/mico-project/platform
http://demo3.mico-project.eu/

Deliverable D6.2.3: Platform: Final Version - October 2016

System Architecture

The initial approach of the MICO system architecture was defined in D6.1.1. The first
adaptations to this approach are specified in D6.2.1 and some rework is outlined in D6.2.2 . 3 4

This section will provide a summary of the system architecture that will be the basis for the final
evaluation. The architecture evolved based on the initial architecture and it’s shortcomings that
showed up in the first evaluation phase. The adoptions and new requirements are mainly
caused by the extended broker design and are specified in the combined deliverable D2.3.2 . 5

Components

3 MICO project deliverable D6.2.1 Platform: Initial Version, Sebastian Schaffert and Sergio Fernández, 2014
4 MICO project deliverable D6.2.2 Platform: Refined Version, Horst Stadler and Patrick Aichroth, 2015
5 MICO project combined deliverable D2.3.2/D3.3.2/D4.3.2/D5.3.2 Enabling Technology Modules: Final
Version – Interim Report, Patrick Aichroth, Johanna Björklund, Kai Schlegel, Thomas Kurz and Thomas
Köllmer, 2016

Copyright MICO Consortium 6/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Service Orchestration

One of the main components of the MICO platform is the service orchestration. It provides a
range of functions:

● Data ingestion:​ The starting point to trigger an analysis is to ingest the content that gets
analyzed and to inform the broker, which is the name of the module that handles the
service orchestration, that new content is available and needs to be processed. An user
has several several ways to ingest content and trigger processing:

○ The broker provides an REST API to upload new content.
○ Custom endpoints provide a use case specific way to deal with it.
○ Using the command line tool ​mico-inject​ . This is mainly used for development.

● Triggering extractors:​ The orchestration service is responsible to distribute the

processing tasks to the specific extractors in the correct order. The order is specified by
an execution plan, which is modeled as a workflow. To achieve this, the broker has to
manage the execution plans as well as the running extractors. The intermediate and final
results are stored on the linked data platform and file storage.
The first version of the broker had several limitations specifying execution plans, as each
extractor was only able to consume one type of input (defined as MIME type) and
produce one output type. The extractors were chained together if an output type
matches the input type of another extractor. This is quite inflexible if an extractor outputs
different results or multiple inputs are required. The approach for the final version of the
broker to overcome this and other drawbacks are specified in the combined deliverable
D2.3.2.

● Registration of extractors:​ As the platform is designed as a distributed system, the broker

provides a mechanism where extractors can register and unregister, so the broker can
trigger their execution with the specific input and is able to take care of the next step
according to the execution plan, regardless where the extractors run.
The extractors and their abilities get registered on installation, as this information is
needed to define new workflows.

● Central configuration:​ All components that need to fetch input or store output can do this
using the persistence API or can access the linked data platform and file storage directly
(e.g. extractors, clients like custom endpoints). Therefore they need to know how to
connect to the linked data service and storage service. As we have a distributed
architecture, it is not a good idea to have a central point as intermediate station. Each
client needs to directly access the relevant service. Configuring each client (extractor,
custom endpoint, …) separately is very expensive and error prone. Therefore the broker
as a central component also distributes the needed configuration to the components

Copyright MICO Consortium 7/47

Deliverable D6.2.3: Platform: Final Version - October 2016

during registration.
For now the configuration parameters include:

○ Storage base URI
○ Marmotta base URI

The only information a component needs to access the platform is the name (and port, if
it differs from the default) of the RabbitMQ server. This allows to send configuration
messages and receive configuration replies.

● Status and debugging interface:​ For debugging purposes the broker provides a simple

user interface giving some information about the current configuration, status of the
broker and requests. It also allows to inject new content and inspect existing content.
One of the shortcomings that came up during the evaluation phase is, that the provided
capabilities enabled by the registered extractors and configured execution plans can not
be easily found out by feeder systems.

Copyright MICO Consortium 8/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Extractors

The extractors are the components that do the actual data processing. Each extractor needs a
defined set of input data and outputs a defined set of intermediate and final results. To enable
the use case partners to start up the required extractors for their specific workflow, we set up a
simple user interface:

The first evaluation phase brought up some limitations that were addressed in the final platform
release:

● Especially for analyses it is necessary to get feedback about the progress and current
state. Therefore we enhanced the API so extractors can report their progress.

● The API got extended to enable reporting of problems or errors to feeder systems or the
user.

● To inform feeder systems, like custom endpoints, if extractors are not running and
therefore workflows can’t be processed checks with proper results have been
implemented.

Copyright MICO Consortium 9/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Messaging

The messaging follows an event based approach. Therefore the ​Advanced Message Queuing
Protocol (AMQP) is used. As a platform and language independent middleware that 6

implements AMQP, we rely on ​RabbitMQ as message and event exchanges. In the MICO 7

platform we use one-to-one messaging, where a publisher writes messages into a queue that is
red by a consumer, as well as one-to-many messaging, where a single or a set of consumers
can register to a queue for specific messages, and producers send the message to these
consumers.
The entire message routing is done with ​RabbitMQ​ . As AMQP does not define a message
interchange format we use ​Protocol Buffers for that. It allows a language independent format 8

definition of messages that gets compiled into a highly efficient binary representation.
The following message types are currently used:

● Registration event:​ Allows an extractor to register or unregister by providing its service
identifier and input queue name.

● Analysis event:​ The broker sends this type of message to an extractor to trigger
processing of a content item. The extractor replies using this message to inform the
broker about new (intermediate) results or errors.

● Content event:​ Informs the broker about a new content item, so it gets registered and
prepared for the upcoming analysis.

● Discovery event:​ Allows a broker to request a registration of available extractors.
● Configuration discover event:​ Used by extractors to get the configuration for the linked

data storage and binary storage. This is also used by brokers to check if there is another
broker available and adopt its configuration values.

● Configuration event:​ Reply to the configuration discover event, sent by the broker.

This set of messages will be extended to enable extractors progress information, error reporting,
etc.

Persistence API

The persistence API provides feasible access to content parts, content items and metadata.
Content Items​ are a collection of media resources together with their context in the MICO
platform. A context covers all other resources that are directly related to the main object. For
example, an HTML document might contain images and videos – the content item would in this
case be the HTML document itself, as well as all images and videos it contains. Each resource
within a content item is called ​Content Part​ . Both types also may have additional metadata like

6 ​http://www.amqp.org
7 ​https://www.rabbitmq.com
8 ​https://developers.google.com/protocol-buffers/

Copyright MICO Consortium 10/47

http://www.amqp.org/
https://www.rabbitmq.com/
https://developers.google.com/protocol-buffers/

Deliverable D6.2.3: Platform: Final Version - October 2016

provenance, creation, format, etc. Intermediate or final results of the analysis process are stored
as content items and content parts, too.

The API handles all the communication with the broker via the message bus, saves and loads
files from the file storage and stores and retrieves linked media data. It is available for for JAVA
and C++.

Linked Data Platform

Apache Marmotta is used as metadata storage. It allows to access to the metadata using 9

LDPath web service or SPARQL . Moreover the SPARQL implementation is extended by 10 11

SPARQL-MM to enable multimedia querying functions by introducing spatio-temporal filter and 12

aggregation functions to handle media resources and fragments that follow the W3C standard
for Media Fragment URIs . Marmotta also supports access (with some restrictions) to store 13 14

and fetch RDF data according the Linked Data Platform specification . 15

As backend for Apache Marmotta the KiWi Triplestore is used, that in turn utilizes 16

PostrgreSQL as its relational database storage. 17

However, the platform is not restricted to this. Marmotta itself supports several backends like
Sesame Native (which is now called RDF4J), Big Data and Titan DB . Moreover, by using a 18 19

standard communication protocol (namely SPARQL), the possible replacement of the whole
metadata storage layer by any other RDF backend is straightforward. This allows the usage of a
broad range of backends, like Fuseki , OpenLink Virtuoso , etc. This list can also extended to 20 21

graph databases like e.g. NEO4J or Allegro Graph by using an RDF implementation like 22 23

provided by Apache Tinkerpop . 24

9 ​http://marmotta.apache.org
10 ​https://marmotta.apache.org/ldpath/language.html
11 ​http://www.w3.org/TR/sparql11-overview/
12 ​https://github.com/tkurz/sparql-mm
13 ​http://www.w3.org/TR/media-frags/
14 ​https://marmotta.apache.org/platform/ldp-module.html
15 ​http://www.w3.org/TR/ldp/
16 ​https://marmotta.apache.org/kiwi/triplestore.html
17 ​http://www.postgresql.org/
18 ​http://rdf4j.org/
19 ​http://titan.thinkaurelius.com/
20 ​https://jena.apache.org/documentation/serving_data/
21 ​https://virtuoso.openlinksw.com/
22 ​https://neo4j.com/
23 ​http://franz.com/agraph/allegrograph/
24 ​https://tinkerpop.apache.org/

Copyright MICO Consortium 11/47

http://marmotta.apache.org/
https://marmotta.apache.org/ldpath/language.html
http://www.w3.org/TR/sparql11-overview/
https://github.com/tkurz/sparql-mm
http://www.w3.org/TR/media-frags/
https://marmotta.apache.org/platform/ldp-module.html
http://www.w3.org/TR/ldp/
https://marmotta.apache.org/kiwi/triplestore.html
http://www.postgresql.org/
http://rdf4j.org/
http://titan.thinkaurelius.com/
https://jena.apache.org/documentation/serving_data/
https://virtuoso.openlinksw.com/
https://neo4j.com/
http://franz.com/agraph/allegrograph/
https://tinkerpop.apache.org/

Deliverable D6.2.3: Platform: Final Version - October 2016

File Storage

Depending on the respective application purpose, different types of file storage systems are
suitable. One of main objectives of the MICO platform is to provide a distributed system. It is
quite evident that the file storage has to fit to the needs of a distributed system too. So we
decided to use the Hadoop File System (HDFS) as our distributed storage (see section 25

Storage layer​ to have a more detailed overview of requirements and available solutions).
Nevertheless powerful systems, like HDFS, are very complex and the a proper setup can be
very time-consuming, especially in environments where the user won’t benefit from the
additional functions. Therefore we also support storage systems that are simpler to set up, like
the

File Transfer Protocol (FTP), as it was chosen as the first storage type to go with. Additionally 26

we support simple local filesystems for development purposes.
Platform components, like the broker and the extractors, that have to deal with binary data are
compiled to support all three types of file storage backend. The selection of a specific backend
used by a MICO platform instance is made in one single place, in the configuration file of broker
webapp.

Recommendation

The recommendation functionalities will be driven by an engine providing basic functionalities
and custom recommendation modules addressing user story specific modules. For collaborative
filtering tasks following a machine-learning approach, Prediction.IO is used. 27

For cross media recommendation, i.e., combining annotations from different extractors to get
similar items, a custom api endpoint was created . 28

Endpoints

To provide additional benefit for a typical platform user, it is important to have easy-to-use
interfaces, so a user does not need to worry about the details or internals of the MICO platform
or one of its components (like extractors). From a user perspective a valuable interface has to
provide the following functions:

● Content ingestion:​ The content that has to be analyzed needs to be provided to the
platform. This might also be just a location (e.g. an URI) where the content lives, so the
endpoint can fetch it for analysis. To reference the content the caller might get its
platform specific IDs.

25 ​https://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html​#Overview
26 ​https://tools.ietf.org/html/rfc959
27 ​https://prediction.io
28 ​http://mico-project.bitbucket.org/api/rest/

Copyright MICO Consortium 12/47

https://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html#Overview
https://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html#Overview
https://tools.ietf.org/html/rfc959
https://prediction.io/
http://mico-project.bitbucket.org/api/rest/

Deliverable D6.2.3: Platform: Final Version - October 2016

● (Auto-)Configuration of extractors:​ To perform the analysis the proper extractors have to
be in place. So it has to be ensured that the request can be processed.

● Start analysis:​ In most cases the processing should start as soon the content is
provided. Anyway there might be situations where this event has to be triggered
explicitly. The client in turn needs to get notified, if the processing finishes or is
interested in progress updates. This can be achieved by registering callbacks. Otherwise
a regular polling for results is necessary.

● Providing results:​ One of the main reasons to have a custom endpoint is to provide the
requested analysis results, without any intermediate or unneeded results, in a proper
data format.

These functions may be combined in a single request or split up among multiple request,
depending on the needs.

As an endpoint needs to be customizable to fit on the needs of a specific user story, we
implemented an endpoint for our use case partners that can be used as a template for custom
endpoints. This is important especially regarding the format of the results and the data format an
endpoint provides.

The exemplary custom endpoints a web service for the text analysis and animal (blank)
detection got implemented. The interface is described in section ​Endpoints for data ingestion
and result retrieval​. These will be used as a foundation to develop the templates.

Copyright MICO Consortium 13/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Implementation and Integration

This section contains details of selected implementation tasks.

Endpoints for data ingestion and result retrieval

The platform itself provides all the necessary interfaces to ingest content, start the processing
and fetch results.

For example the broker provides an REST API to upload new content and trigger its analysis:

First step:

Action: Create and upload new content part

Path: /broker/inject/create

Request method: POST

Parameters: type Syntactical type

name Name of the content type

Payload: Data to store as the content part

Responses 200 application/json

 {
“itemUri”: ​URI of the created content item as String
“Created” ​: Current date and time
“syntacticalType” ​: Type from the input parameter
“assetLocation” ​:

{
“namespace” ​: Namespace of the asset
“localName” ​: Unique identifier
}

}

500 Error

Copyright MICO Consortium 14/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Second step:

Action: Trigger the analysis process

Path: /broker/inject/submit

Request method: POST

Parameters: item URI of item

route Workflow ID (if not set all extractors matching the syntactical
type are run; behaviour of platform version < 3)

Responses 200 OK

500 Error

503 Error (Workflow not available)

The results can be queried by using the SPARQL-MM service or, depending on the extractors
used, fetch the (intermediate) results from the file storage.

As described in section ​Endpoints​, there are several reasons for the need of a custom endpoint.
We implemented the following two for the evaluation phase.

Animal detection endpoint

The analysis of a new JPEG image can be started by:

Action: Analyze JPEG image by providing the image

Path: /showcase-webapp/zooniverse/animaldetection/

Request method: POST

Parameters mod
e

Animal detector mode (​dpm ​ or ​yolo ​)

Payload: The image to analyze.

Responses 200 application/json

 {
“id”: ​ID of the created content part as String
“status”: “submitted”
“mode”: ​ Animal detection mode

Copyright MICO Consortium 15/47

Deliverable D6.2.3: Platform: Final Version - October 2016

}

500 Error

or providing the URL of an image:

Action: Analyze JPEG image by providing the URL of the image

Path: /showcase-webapp/zooniverse/animaldetection/

Request method: PUT

Parameters: url HTTP URL to fetch the image from

mode Animal detector mode (​dpm ​ or ​yolo ​)

Responses 200 application/json

 {
“id”: ​ID of the created item as String
“status”: “submitted”
“mode”: ​ Animal detection mode
}

500 Error

The result can be fetched by:

Action: Fetch result of the animal detection

Path: /showcase-webapp/zooniverse/animaldetection/<item ID>

Request method: GET

Responses 200 application/json

 {
“status”: “inProgress” ​ or ​“finished”
“processingBegin”: ​Start of processing as DateTime

The following fields are only available if ​status ​ is ​finished ​:
“objectsFound”: ​ Total number of identified animals as
Integer
“objects”: [​ Array of identified animals.
 {
 “algorithmVersion”: ​ Algorithm identifier as String
 “confidence”: ​ Identification confidence level as Float
 “animal”: ​ Name of the species as String

Copyright MICO Consortium 16/47

Deliverable D6.2.3: Platform: Final Version - October 2016

 “x”: ​x axis of rectangle marking the animal in pixels as
Integer
 “y”: ​y axis of rectangle marking the animal in pixels as
Integer
 “w”: ​width of rectangle marking the animal in pixels as
Integer
 “h”: ​height of rectangle marking the animal in pixels as
Integer
 }, …]
}

404 A content item with the given ID could not be found.

500 Error

Example of an animal detection result:

Copyright MICO Consortium 17/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Text analysis endpoint

The Serengeti comments analysis services can is triggered by

Action: Analyze comment

Path: /showcase-webapp/zooniverse/textanalysis

Request method: POST

Payload: application/json

{
“comment”: ​ The comment to analyze as String.
}

Responses 200 application/json

 {
“id”: ​ID of the created item as String
“status”: “submitted”
}

503 Service is unavailable. This indicates, that the required extractors
are not available.

500 Error

The result can be fetched with

Action: Fetch result of the comment analysis

Path: /showcase-webapp/zooniverse/extanalysis/<content item ID>

Request method: GET

Responses 200 application/json

 {
“id”: ​Item ID as String
“status”: “inProgress” ​ or ​“finished”

The following fields are only available if ​status ​ is ​finished ​:
“sentiment” ​: The sentiment value as Float
“topics”: [​ Array of identified topics
 {

Copyright MICO Consortium 18/47

Deliverable D6.2.3: Platform: Final Version - October 2016

 “label”: ​ Topic label as String
 “confidence”: ​ Identification confidence level as Float
 “uri”: ​ Link to DBPedia knowledge base about topic as
String
 }, …]
“entities”: [​ Array of identified entities
 {
 “label”: ​Entity label as String
 “uri”: ​Link to DBPedia knowledge base about entity as
String
 }, …]
}

404 A content item with the given ID could not be found.

500 Error

Example of a text analysis result:

Copyright MICO Consortium 19/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Storage layer

In the first version of the MICO platform we decided to use the FTP as content storage protocol.
In order to benefit from the advantages of the distributed approach, the platform has to support
a distributed storage system as well. Therefore we defined requirements that are relevant in the
context of the MICO platform and compared available distributed storage systems with respect
to these requirements.

Requirements

 ID Name Description / Motivation Priority

Functional
Requirem
ents

FR-1 Data
Distribution

Data is not required to be moved to a
central storage (geographic distribution of
the storage servers)

Medium

FR-3 Pseudo-Streami
ng

Skipping data fragments or retrieval of
specific fragments.

Medium

FR-6 Native transport
encryption

Protect data transferred over the network. Medium

FR-7 Data integrity Check the integrity of information to
detect data corruption.

Low /
Medium

FR-8 Replication Protect from component failure and
minimize latency.

Low

Non-Funct
ional
Requirem
ents

NFR-1 Maturity The system should be mature and
preferably easy to install.

High

NFR-2 License An open license for the allows to provide
easy to set up platform installation
packages.

High

NFR-3 Supported
platforms

Availability and portability across different
software (and hardware) platforms.

High

NFR-6 Scalability Easy way to adapt to the needs of the
resources currently required.

High

NFR-7 Access API Simple integration into the platform: The
data storage system should fit into the

High

Copyright MICO Consortium 20/47

Deliverable D6.2.3: Platform: Final Version - October 2016

API and existing parts of platform.

Another aspect that might require future work in commercial applications, especially in
commercial scenarios, is access control for storage: In some application scenarios, it will be
necessary to limit access to content provided, e.g. based on certain roles and groups. This
requires provenance tracking, as described above, and two more additions to the system:
Storage of respective limitation in the model, and enforcement of access control constraints
especially in the storage domain. While the former is relatively easy to add to the existing MICO
model, the latter requires support of access control within storage itself, which is more effort. As
HDFS provides support for POSIX conform Access Control Lists, a respective storage layer
could be included in the future.

Comparison of available remote storage systems

Based on the requirements we had a look at available remote storage systems and did an
evaluation of them regarding the prioritized requirements. Based on these results we have
chosen to use HDFS as storage system, while still being able to switch to FTP, if necessary.

 BeeG
FS

Ceph CRAT
E

Eucaly
ptus

Gluste
rFS

HDFS Mogile
FS

GridF
S

Swift RiakC
S

Xtree
mFS

FR-1 no yes no no 29 no 30 partly
 31

partly
 32

partly
 33

yes no 34 yes

FR-3 yes yes no yes yes yes yes yes yes yes yes

FR-4 no yes no yes no yes no yes yes yes yes

FR-6 no no yes yes no yes no yes no yes yes

29 The enterprise version of RiakCS can be used as a back-end, allowing multi-datacenter replication. See
RiakCS for restrictions.
30 GlusterFS supports striping and replication. It also provides a geo-replication feature, to mirror data across
geographically distributed clusters. Therefore, this is useful in case of disaster recovery but not for
distribution.
31 only for replicas
32 It does not have an ability to run its database or trackers in multiple locations.
33 MongoDB allows replica sets to be deployed in multiple data centers. Clients can be statically configured
to read data from a specific replica. Write access is possible only on the primary instance.
34 Only the commercial extension Riak Enterprise offers a geographical distribution of data. However, this
feature does not support access of the closest data.

Copyright MICO Consortium 21/47

Deliverable D6.2.3: Platform: Final Version - October 2016

FR-7 no partly
 35

no no no yes no no yes yes yes

FR-8 yes yes yes no yes yes yes yes yes yes yes

NFR-1 yes yes yes yes yes yes no 36 yes yes yes yes

NFR-2 propri
etary
(free
of
charge
),
Client:
GPL

LGPL
2.1

Apach
e
Licens
e 2.0

GPL
v3

GPL
v3

Apach
e
Licens
e 2.0

GPL /
Artistic
Licens
e

AGPL
v3.0 37

Apach
e
Licens
e 2.0

Apach
e
Licens
e 2.0

New
BSD

NFR-3 RHEL/
Fedor
a,
SLES/
Open
Suse,
Debia
n/Ubu
ntu

RHEL/
Fedor
a/Cent
OS,
Debia
n/Ubu
ntu

Java RHEL/
CentO
S,
Ubunt
u

RHEL/
Fedor
a/Cent
OS/Pi
dora,
SLES/
Open
Suse,
Debia
n/Ubu
ntu

Java
(Linux,
Windo
ws)

Perl,
Java,
Ruby,
PHP,
Pytho
n

Fedor
a/Cent
OS,
Debia
n/Ubu
ntu,
FreeB
SD,
OS X,
Solaris
,
Windo
ws,

Pytho
n
(Ubunt
u,
Fedor
a/Cent
OS)

Debia
n/Ubu
ntu,
RHEL/
Fedor
a,
FreeB
SD,
OS X,
Solaris
,
Smart
OS

RHEL/
Fedor
a/Cent
OS,
SLES/
Open
Suse,
Debia
n/Ubu
ntu

NFR-6 yes yes yes yes yes yes yes yes yes yes yes

NFR-7 POSIX librado
s (C,
C++,
Pytho
n,
Ruby),
S3,
Swift,
FUSE

JAVA,
Pytho
n,
Ruby,
PHP,
Scala,
node.j
s,
Erlang
,
mono/.
NET,
Go

HTTP libglus
terfs,
FUSE,
NFS,
SMB,
Swift,
libgfap
i

Java
and C
client,
HTTP

Perl,
HTTP

C,
C++,
C#,
Java,
Node.j
s,
Perl,
PHP,
Pytho
n,
Ruby,
Scala

python
-swiftcl
ient

HTTP libxtre
emfs
(Java,
C++),
FUSE

The installation, configuration and maintenance is very time-intense, as any distributed storage
system is very complex and therefore it is necessary to deal more intense with it to get and keep

35 see: ​http://lists.ceph.com/pipermail/ceph-users-ceph.com/2014-January/007540.html
36 The last update was some time ago. (Even it might be used in practice, it seems to be poorly supported.)
37 JAVA and C++ drivers (clients) are released under Apache license 2.0

Copyright MICO Consortium 22/47

http://lists.ceph.com/pipermail/ceph-users-ceph.com/2014-January/007540.html

Deliverable D6.2.3: Platform: Final Version - October 2016

it running properly. Moreover the advantages of HDFS is negligible for small systems. Hence it
might not fit for every use case. That is the reason to keep FTP as an option. In addition we
provide a local storage module to use the local file system as storage system.

Execution plan configuration

In a typical cross-media analysis scenario, it takes several different extractors that do the
processing. In the final platform version the broker added support for workflows that enable a
user to model the sequence of extractors data should be analysed. The workflow is stored at
the platform and a workflow ID is provided with each data that should be analysed. To be
backwards compatible a workflow gets created on demand using the syntactical type of the
input data and extractors if no workflow ID is given.
One drawback is that extractors required by an workflow won’t get started automatically if they
are not running. For the built-in workflows a web interface is available to start the required
extractors. For new workflows the required extractors need to be started manually or a startup
configuration, like the ones for the built-in workflows, needs to be created.

Copyright MICO Consortium 23/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Development Infrastructure

This section gives an overview of the development infrastructure that is in place and publicly
available.

Distribution

The MICO platform is available as virtual machine image and as Debian packages. Both
sources provide the main components of the platform (service orchestration, persistence API
including Apache Marmotta with contextual extensions, binary storage and messaging) as well
as the ​available extractors​. Some of them have to be installed separately, as they are not
publicly available.
The only difference between the two is, that the virtual image uses HDFS as storage and the
default Debian package setup uses FTP.

Debian package repository

All developed modules are available as Debian packages and designed for Jessie with AMD64
architecture. The public repository is available at ​http://apt.mico-project.eu/​. Instructions how to
install the platform from scratch is available on the MICO project webpage
http://www.mico-project.eu/pages/documentation/​.
Some of the extractors are not publicly available. The necessary credentials for these extractors
can be requested from the ​project coordinator​.

The MICO platform and the extractors rely on many libraries . While all JAVA dependencies are 38

resolved using Maven, not all dependencies of the C++ persistence API and some extractors
are available as Debian packages. Therefore we created Debian packages for these and made
them available via the MICO package repository:

● AMQP-CPP : Needed for ​communicating with the RabbitMQ master. 39

● libhdfs3 : This is a native HDFS client implementation and does not make use of the 40

Java Native Interface, keeping it lightweight with a small memory footprint.
● Kaldi : Kaldi is ​a toolkit for speech recognition written in C++ and used by the 41

speech-to-text extractors.
A list of Debian packages available from the MICO package repository (some of them are not
public available):

38 ​https://bitbucket.org/mico-project/platform/#markdown-header-prerequisites
39 ​https://github.com/CopernicaMarketingSoftware/AMQP-CPP
40 ​https://github.com/PivotalRD/libhdfs3
41 ​http://kaldi-asr.org

Copyright MICO Consortium 24/47

http://www.mico-project.eu/mico-release/#extractors-section
http://apt.mico-project.eu/
http://www.mico-project.eu/pages/documentation/
http://www.mico-project.eu/contact/
https://bitbucket.org/mico-project/platform/#markdown-header-prerequisites
https://github.com/CopernicaMarketingSoftware/AMQP-CPP
https://github.com/PivotalRD/libhdfs3
http://kaldi-asr.org/

Deliverable D6.2.3: Platform: Final Version - October 2016

Package name Description

libmico-api1 This package contains the compiled shared libraries of the MICO
C++ API platform version 1. They are needed by all binary
implementations of MICO C++ services.

libmico-api2 This package contains the compiled shared libraries of the MICO
C++ API platform version 2. They are needed by all binary
implementations of MICO C++ services.

libmico-api3 This package contains the compiled shared libraries of the MICO
C++ API platform version 3. They are needed by all binary
implementations of MICO C++ services.

libmico-api-dev This package contains the MICO C++ API header files and
documentation. These are needed for implementing custom MICO
services in C++.

libmico-api-java This package contains the compiled libraries of the MICO Java API.
They are needed by all Java-based implementations of MICO
services. Note that the libraries can also be installed via Maven
(recommended).

mico-apt-key This package contains the public GPG key used to sign packages in
the MICO repository.

mico-apt-repository This package contains the sources.list and public GPG key used to
sign packages in the MICO repository (replaces mico-apt-key).

mico-base This package contains some base configurations used by the MICO
platform. Configuration options will be asked interactively when
installing this package.

mico-broker This package contains the distribution of the MICO Broker Web
Application.

mico-default-camel-routes Built-in workflows.

mico-registration-service The web service that enables the registration of extractors on
installation is provided with this package.

mico-conf This package contains the distribution of the MICO Platform
Configuration Web Application.

mico-marmotta This package contains the distribution of Apache Marmotta used by
the MICO Platform.

mico-persistence This package is a configuration-only package setting up ProFTPD as
persistence server for the MICO platform.

mico-platform This is a metapackage installing a complete setup of the MICO
platform, including the server and C++ client components and online
documentation. It installs a lightweight http server with a simple entry

Copyright MICO Consortium 25/47

Deliverable D6.2.3: Platform: Final Version - October 2016

page for single point access to the services.

mico-rabbitmq This is a configuration package setting up RabbitMQ for the MICO
platform. It configures the necessary RabbitMQ extensions and user
permissions.

mico-extractor-configurations MICO configuration scripts for extractor pipelines.

mico-extractor-registration Tools to register an extractor at the MICO platform.

mico-service-ocr This package contains a binary version of the sample OCR service
implemented in C++ to use with the MICO platform.

mico-extractor-audiodemux MICO service for audio demuxing and downsampling.

mico-extractor-audiodemux-r
egistration

Registration data for ​mico-extractor-audiodemux

mico-extractor-ccv-facedetect
ion

MICO service for detection of faces in videos.

mico-extractor-ccv-facedetect
ion-registration

Registration data for ​mico-extractor-ccv-facedetection

mico-extractor-diarization This package contains the Speaker Diarization extractor daemon,
responsible of providing support for TE-214 in MICO.

mico-extractor-diarization-regi
stration

Registration data for ​mico-extractor-diarization

mico-extractor-speech-to-text MICO service for automatic transcription, based on Kaldi.

mico-extractor-speech-to-text
-registration

Registration data for ​mico-extractor-speech-to-text

mico-extractor-kaldi2rdf This package contains the extractor daemon, responsible of
providing support for speech to text in MICO. It prepares the result of
the mico-extractor-speech-to-text extractor and provides it as RDF.

mico-extractor-kaldi2rdf-regist
ration

Registration data for ​mico-extractor-kaldi2rdf

mico-extractor-kaldi2txt This package contains the extractor daemon, responsible of
providing support for speech to text in MICO. It prepares the result of
the mico-extractor-speech-to-text extractor and provides it as plain
text.

mico-extractor-kaldi2txt-regist
ration

Registration data for ​mico-extractor-kaldi2txt

Copyright MICO Consortium 26/47

Deliverable D6.2.3: Platform: Final Version - October 2016

mico-extractor-named-entity-r
ecognizer

This package contains the Named-Entity Recognizer Daemon,
responsible of providing support for TE-220 in MICO. Its
implementation is currently based on a third-party service.

mico-extractor-named-entity-r
ecognizer-registration

Registration data for ​mico-extractor-named-entity-recognizer

mico-extractor-object-detectio
n-rdf

This package contains the object-detection to RDF extractor
daemon, responsible of providing support for faces and animal
detection in MICO.

mico-extractor-object-detectio
n-rdf-registration

Registration data for ​mico-extractor-object-detection-rdf

mico-extractor-temporalvideo
segmentation

MICO service for detection of shot boundaries and keyframes in
videos.

mico-extractor-temporalvideo
segmentation-registration

Registration data for ​mico-extractor-temporalvideosegmentation

mico-extractor-animaldetectio
n-dpm

DPM animal detection.

mico-extractor-animaldetectio
n-dpm-registration

Registration data for ​mico-extractor-animaldetection-dpm

mico-extractor-animaldetectio
n-dpm

Yolo animal detection.

mico-extractor-animaldetectio
n-yolo-registration

Registration data for ​mico-extractor-animaldetection-yolo

mico-extractor-opennlp-ner OpenNLP NER extractor

mico-extractor-opennlp-ner-re
gistration

Registration data for ​mico-extractor-opennlp-ner

mico-extractor-opennlp-ner-m
odels-model-de

German model for ​mico-extractor-opennlp-ner

mico-extractor-opennlp-ner-m
odels-model-en

English model for ​mico-extractor-opennlp-ner

mico-extractor-opennlp-ner-m
odels-model-es

Spanish model for ​mico-extractor-opennlp-ner

Copyright MICO Consortium 27/47

Deliverable D6.2.3: Platform: Final Version - October 2016

mico-extractor-opennlp-ner-m
odels-model-it

Italian model for ​mico-extractor-opennlp-ner

mico-extractor-opennlp-text-cl
assifier

OpenNLP text classifier extractor.

mico-extractor-opennlp-text-cl
assifier-registration

Registration data for ​mico-extractor-opennlp-text-classifier

mico-extractor-competence-cl
assification-model-en

English competence classification model for
mico-extractor-opennlp-text-classifier

mico-extractor-text-lang-detec
t

Language detection extractor.

mico-extractor-text-lang-detec
t-registration

Registration data for ​mico-extractor-text-lang-detect

mico-extractors-3rdparty Additional MICO 3rd party libraries needed by extractors.

libamqpcpp2 This package contains the AMQP-CPP C++ library. It is used for
communicating with a RabbitMQ message broker.

libamqpcpp-dev AMQP-CPP development package.

libhdfs3-1 This library provides native C/C++ access to HDFS. Libhdfs3,
designed as an alternative implementation of libhdfs, is implemented
based on native Hadoop RPC protocol and HDFS data transfer
protocol. It gets rid of the drawbacks of JNI, and it has a lightweight,
small memory footprint code base.

libhdfs3-dev libhdfs3 development package.

mico-kaldi-lib Kaldi is a toolkit for speech recognition written in C++. It is intended
for use by speech recognition researchers. MICO build of OSS Kaldi
speech to text library.

mico-kaldi-lib-dev MICO headers of OSS Kaldi speech to text library.

mico-kaldi-data Contains packaged versions of the Kaldi data files needed by MICO.

Copyright MICO Consortium 28/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Maven repository

The released versions of the JAVA platform API are available from our Maven repository at
http://mvn.mico-project.eu/​.

Virtual Machine

The virtual machine image provides a ready-to-use installation of the platform and can be
downloaded as Open Virtualization Format (OVF) from
http://apt.mico-project.eu/download/MICO%20Platform%20current.ova​. This format is supported by
most current virtualization software. We recommend the use of VirtualBox . 42

42 ​https://www.virtualbox.org

Copyright MICO Consortium 29/47

http://mvn.mico-project.eu/
http://apt.mico-project.eu/download/MICO%20Platform%20current.ova
https://www.virtualbox.org/

Deliverable D6.2.3: Platform: Final Version - October 2016

Docker

The core components of the MICO platform are available as Docker image too (see 43

https://bitbucket.org/mico-project/platform/src//docker/?at=master​ for the Dockerfiles). It turned
out that the way the components are bundled as Debian packages are not suitable for building
proper Docker images. Therefore it would be necessary to setup and maintain a parallel
distribution and deployment infrastructure beside the existing packages. As it is already we
decided to This would lead to a considerable additional amount of time, so we decided to not
pursue this further.

Demo servers for use-case partners

In order to offer the best possible support to our use case partners during the evaluation phase,
we set up a server for each use case partner running the MICO platform. By having the MICO
platform running on a server accessible by every partner, we were able to clarify questions, as
well as understand and fix problems in a quick and easy way on short-notice.

Source code

The source code of the MICO project platform (and other components) is publicly available at:
https://bitbucket.org/mico-project/platform

Installation instructions and first steps are described here:
http://www.mico-project.eu/pages/documentation/

Continuous Integration

Bamboo is used as continuous integration platform for the MICO components. We have 44

created build plans for our main components (MICO platform including JAVA API, C++ API and
extractors). Due to the architecture of the system we decided to not set up automatic full
integration tests, but instead enable automatic tests on the component level.
The dashboard is available at ​http://ci.mico-project.eu​.

43 ​https://www.docker.com
44 ​https://www.atlassian.com/software/bamboo

Copyright MICO Consortium 30/47

https://bitbucket.org/mico-project/platform/src//docker/?at=master
https://bitbucket.org/mico-project/platform
http://www.mico-project.eu/pages/documentation/
http://ci.mico-project.eu/
https://www.docker.com/
https://www.atlassian.com/software/bamboo

Deliverable D6.2.3: Platform: Final Version - October 2016

Logging

One downside, that turned out during the evaluation phase and has not been addressed yet is
the lack of a centralized logging system. The MICO platform consist of many different
components that might run, due to its distributed architecture, on different systems. As all
components produce logging data in different locations and files with diverse log formats, it can
get very cumbersome and time-consuming to get through the logging data to locate and bring
together the required information.

We took a look at the very powerful centralized logging stack based on Logstash , 45

Elasticsearch and Kibana . This allows to search through all of the logs and identify issues in 46 47

a single place. It is also useful to identify issues that span multiple servers by correlating their
logs during a specific time frame. To accomplish this, Logstash will be used to collect, parse,
normalize and transport the logging data. This gets stored into Elasticsearch a RESTful NoSQL
store and search engine that allows data analyzation in real-time. The user interface to explore,
filter and visualize the logging data will be driven by Kibana.
The downside is that it is bloated and time consuming to set up and maintain. Therefore it does
not make sense to deliver it with the MICO platform by default. We also had a look at the very
lightwight log.io , which is quite easy to setup but it does not help to investigate on problems 48

afterwards, as it only shows current logs and.

45 ​https://www.elastic.co/products/logstash
46 ​https://www.elastic.co/products/elasticsearch
47 ​https://www.elastic.co/products/kibana
48 ​http://logio.org

Copyright MICO Consortium 31/47

https://www.elastic.co/products/logstash
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
http://logio.org/

Deliverable D6.2.3: Platform: Final Version - October 2016

Platform dependencies

The following table lists the first level java dependencies of the MICO platform with their license.

Nr Group artifact typ
e

version scope LICENSE

1 cglib cglib jar 3.1 compile Apache 2

2 ch.qos.logback logback-classic jar 1.1.2 compile MIT license
(and EPL v1.0)

3 ch.qos.logback logback-classic jar 1.1.3 compile MIT license
(and EPL v1.0)

4 ch.qos.logback logback-core jar 1.1.2 compile MIT license
(and EPL v1.0)

5 ch.qos.logback logback-core jar 1.1.3 compile MIT license
(and EPL v1.0)

6 com.beust jcommander jar 1.48 compile Apache 2

7 com.github.anno4j anno4j-core jar 2.2.0.MICO compile Apache 2

8 com.github.anno4j anno4j-ontologies-m
mm

jar 2.0.1 compile Apache 2

9 com.github.tkurz sparql-mm jar 1.0 compile Apache 2

10 com.github.zafarkhaj
a

java-semver jar 0.9.0 compile MIT License

11 com.google.guava guava jar 18.0 compile Apache 2

12 com.google.protobuf protobuf-java jar 2.6.0 compile Copyright 2014,
Google Inc

13 com.h2database h2 jar 1.3.174 compile EPL 1.0

14 com.jayway.restassur
ed

rest-assured jar 2.5.0 test Apache 2

15 com.rabbitmq amqp-client jar 3.3.4 compile Apache 2

16 com.sun.jersey jersey-client jar 1.9 compile GPL2 (/w
Classpath
Exception)

Copyright MICO Consortium 32/47

Deliverable D6.2.3: Platform: Final Version - October 2016

17 com.thetransactionco
mpany

cors-filter jar 1.9 compile Apache 2

18 commons-collections commons-collections jar 3.2.1 runtime Apache 2

19 commons-configurati
on

commons-configurat
ion

jar 1.10 runtime Apache 2

20 commons-io commons-io jar 2.4 compile Apache 2

21 commons-logging commons-logging jar 1.1.3 compile Apache 2

22 commons-net commons-net jar 3.2 compile Apache 2

23 commons-validator commons-validator jar 1.4.1 compile Apache 2

24 eu.mico.platform.cam
el

mico-rabbitmq-comp jar 3.1.0 compile Apache 2

25 eu.mico-project.platfo
rm

event jar 3.1.0 compile Apache 2

26 eu.mico-project.platfo
rm

fam-anno4j jar 2.0.2 compile Apache 2

27 eu.mico-project.platfo
rm

marmotta-mico jar 3.1.0 compile Apache 2

28 eu.mico-project.platfo
rm

mmm-anno4j jar 3.1.0 compile Apache 2

29 eu.mico-project.platfo
rm

persistence jar 3.1.0 compile Apache 2

30 eu.mico-project.platfo
rm

storage-core jar 3.1.0 compile Apache 2

31 io.prediction client jar 0.9.5 compile Apache 2

32 javax.el javax.el-api jar 2.2.4 test GPLv2 with
classpath
exception

33 javax.json javax.json-api jar 1.0 compile CDDL 1.1 or
GPL v2

34 javax.servlet javax.servlet-api jar 3.0.1 provided CDDL 1.1 or
GPL v3

35 javax.servlet jstl jar 1.2 compile

Copyright MICO Consortium 33/47

Deliverable D6.2.3: Platform: Final Version - October 2016

36 jgraph jgraph jar 5.13.0.0 compile LGPL) version
2.1 and
JGraph License
version 1.1

37 kaldi kaldi jar 2.2.0 compile Apache 2

38 langdetect langdetect jar 1.2.0 compile Apache 2

39 lium lium jar 1.3.0 compile GPL v3

40 org.apache.camel apt jar 2.17.2 compile Apache 2

41 org.apache.camel camel-core jar 2.17.2 compile Apache 2

42 org.apache.camel camel-servlet jar 2.17.2 compile Apache 2

43 org.apache.camel camel-test jar 2.17.2 test Apache 2

44 org.apache.commons commons-email jar 1.4 compile Apache 2

45 org.apache.commons commons-lang3 jar 3.1 compile Apache 2

46 org.apache.commons commons-vfs2 jar 2.0 compile Apache 2

47 org.apache.httpcomp
onents

httpclient jar 4.5 compile Apache 2

48 org.apache.marmotta kiwi-caching-hazelca
st

jar 3.4.0-SNAPS
HOT

compile Apache 2

49 org.apache.marmotta ldpath-core jar 3.4.0-SNAPS
HOT

compile Apache 2

50 org.apache.marmotta marmotta-backend-k
iwi

jar 3.4.0-SNAPS
HOT

compile Apache 2

51 org.apache.marmotta marmotta-core test
s

3.4.0-SNAPS
HOT

test Apache 2

52 org.apache.marmotta marmotta-core jar 3.4.0-SNAPS
HOT

compile Apache 2

53 org.apache.marmotta marmotta-ldcache-c
ommon

jar 3.4.0-SNAPS
HOT

compile Apache 2

54 org.apache.marmotta marmotta-ldcache-fil
e

jar 3.4.0-SNAPS
HOT

compile Apache 2

55 org.apache.marmotta marmotta-ldpath jar 3.4.0-SNAPS compile Apache 2

Copyright MICO Consortium 34/47

Deliverable D6.2.3: Platform: Final Version - October 2016

HOT

56 org.apache.marmotta marmotta-sparql jar 3.4.0-SNAPS
HOT

test Apache 2

57 org.apache.marmotta marmotta-sparql jar 3.4.0-SNAPS
HOT

compile Apache 2

58 org.apache.marmotta marmotta-versioning
-common

jar 3.4.0-SNAPS
HOT

compile Apache 2

59 org.apache.maven maven-core jar 3.0.4 compile Apache 2

60 org.apache.maven maven-plugin-api jar 3.0.4 compile Apache 2

61 org.apache.maven.pl
ugin-tools

maven-plugin-annot
ations

jar 3.4 compile Apache 2

62 org.apache.opennlp NER jar 1.2.0 compile Apache 2

63 org.apache.opennlp Competence jar 1.2.0 compile Apache 2

64 org.apache.opennlp Sentiment jar 1.2.0 compile Apache 2

65 org.apache.tika tika-core jar 1.4 compile Apache 2

66 org.codehaus.jackso
n

jackson-core-asl jar 1.9.13 compile Apache 2

67 org.codehaus.jackso
n

jackson-mapper-asl jar 1.9.13 compile Apache 2

68 org.glassfish javax.json jar 1.0 compile GPLv2 with
classpath
exception

69 org.hamcrest hamcrest-core jar 1.3 test BSD License

70 org.hamcrest hamcrest-core jar 1.3 test BSD License

71 org.hamcrest hamcrest-core jar 1.3 compile BSD License

72 org.hamcrest hamcrest-library jar 1.3 test BSD License

73 org.jboss.resteasy resteasy-client jar 3.0.8.Final compile Apache 2

74 org.jboss.resteasy resteasy-jackson-pr
ovider

jar 3.0.8.Final compile Apache 2

75 org.jboss.resteasy resteasy-jaxrs jar 3.0.8.Final compile Apache 2

Copyright MICO Consortium 35/47

Deliverable D6.2.3: Platform: Final Version - October 2016

76 org.jboss.resteasy resteasy-multipart-pr
ovider

jar 3.0.8.Final compile Apache 2

77 org.jboss.resteasy resteasy-servlet-initi
alizer

jar 3.0.8.Final compile Apache 2

78 org.jboss.weld.se weld-se-core jar 2.1.2.Final test Apache 2

79 org.jboss.weld.servlet weld-servlet-core jar 2.1.2.Final runtime Apache 2

80 org.jgrapht jgrapht-core jar 0.9.0 compile EPL 1.0 LGPL
2.1

81 org.jgrapht jgrapht-ext jar 0.9.0 compile

82 org.jsondoc jsondoc-core jar 1.2.16 compile MIT

83 org.jsondoc jsondoc-ui jar 1.2.16 compile MIT

84 org.mockito mockito-all jar 1.10.19 test MIT

85 org.openrdf.sesame sesame-model jar 2.7.16 compile Aduna BSD
license

86 org.openrdf.sesame sesame-query jar 2.7.16 compile Aduna BSD
license

87 org.openrdf.sesame sesame-repository-a
pi

jar 2.7.16 compile Aduna BSD
license

88 org.openrdf.sesame sesame-repository-c
ontextaware

jar 2.7.16 compile Aduna BSD
license

89 org.openrdf.sesame sesame-repository-s
ail

jar 2.7.16 test Aduna BSD
license

90 org.openrdf.sesame sesame-repository-s
parql

jar 2.7.16 compile Aduna BSD
license

91 org.openrdf.sesame sesame-rio-api jar 2.7.16 compile Aduna BSD
license

92 org.openrdf.sesame sesame-rio-rdfxml jar 2.7.16 test Aduna BSD
license

93 org.openrdf.sesame sesame-rio-turtle jar 2.7.16 test Aduna BSD
license

94 org.openrdf.sesame sesame-sail-memor
y

jar 2.7.16 test Aduna BSD
license

Copyright MICO Consortium 36/47

Deliverable D6.2.3: Platform: Final Version - October 2016

95 org.slf4j log4j-over-slf4j jar 1.7.7 compile MIT License

96 org.slf4j slf4j-api jar 1.7.7 compile MIT License

97 org.slf4j slf4j-ext jar 1.7.7 compile MIT License

98 org.slf4j slf4j-log4j12 jar 1.7.7 compile MIT License

99 org.springframework spring-aop jar 4.1.1.RELEA
SE

compile Apache 2

10
0

org.springframework spring-context jar 4.1.1.RELEA
SE

compile Apache 2

10
1

org.springframework spring-web jar 4.1.1.RELEA
SE

compile Apache 2

10
2

org.springframework spring-webmvc jar 4.1.1.RELEA
SE

compile Apache 2

10
3

org.webjars angular-file-upload jar 1.6.5 compile MIT

10
4

org.webjars angularjs jar 1.2.15 compile MIT

10
5

org.webjars angular-ui-bootstrap jar 0.12.1 compile MIT

10
6

org.webjars bootstrap jar 3.1.1 compile MIT

Copyright MICO Consortium 37/47

Deliverable D6.2.3: Platform: Final Version - October 2016

MICO Platform Online Showcase

In order to demonstrate the MICO platform functionality within a web environment we created a
generic MICO platform demonstrator, which can be found on ​http://demo3.mico-project.eu/​.

It is purely Platform based, which means it only uses the web services that have been described
above. Additionally it combines several frontend software projects that have been developed
and/or adapted within the project, which are Squebi (for SPARQL result presentation), the
workflow-manager (for the creation and the selection of workflows), and the balloon synopsis
(for extraction result presentation). Thus the demo supports:

● Workflow creation
● Workflow selection
● Data ingest (text, image, video, audio)
● Type-specific result presentation
● Generic result presentation
● SPARQL access

The demo backbone is based in the yeoman angular generator which determines the basic 49

project structure. The demo uses angularjs, an open source javascript application framework
that allows to build well structured web applications by following the MVVM
(Model–view–viewmodel) design pattern. Additionally we use SASS for structured CSS 50

generation. In order to support a fast development and a standardized deployment, we use
grunt (a Javscript task runner) with several plugins. The whole project is public abvailable at 51

https://bitbucket.org/mico-project/mico-public-demo​, where the reader can find more information
about building and installation.

In this demo you can create/select and test analysis pipelines You can select sample media
assets or upload custom media files including image, video, audio and text. When analysis is
done, you can watch the results on type specific result pages or get deeper into the generated
metadata via using generic annotation views and/or issue SPARQL queries. The demo is purely
frontend based and uses the standard MICO platform services. It is designed to demonstrate
MICO technology in web-friendly way. Hint: The demo is a (as the name says) a demonstrator
and thus not exhaustively tested with the big set of all existing browsers. It works best with
Chrome browser.

49 https://github.com/yeoman/generator-angular
50 http://sass-lang.com/
51 http://gruntjs.com/

Copyright MICO Consortium 38/47

http://demo3.mico-project.eu/
https://bitbucket.org/mico-project/mico-public-demo

Deliverable D6.2.3: Platform: Final Version - October 2016

Main Page

The central page of the demo includes links to main demo parts on the top. A list of various
prepared demo assets (including images, video, text and audio samples) give users an easy
entrypoint without the hurdle of a private asset upload. A click on the demo thumbnails redirects
to the regarding result presentation immediately. In the center of the page the users can select
from various predefined workflows. Additionally they can create a new one (which leads them to
the workflow management section).

Workflow Selection

The selection of a workflow defines, which data can be ingested by the user. In the

public demo, several workflows including image, video, text and audio processing are

predefined. The current status of workflow is indicated by a color schema, whereby

green denotes ​okay​ , orange denotes ​temporarily unavailable​ , and red means ​broken​ .

The workflow status is depended on status of the applied extractor components.

Copyright MICO Consortium 39/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Workflow Creation

The demo allows the maintenance of existing and the creation of new workflows. Thereby the
demo integrates the Workflow Management App, which is build on top of a Spring Application
that provides Restful a set of task specific web services. The UI gives users an overview of all
extractors and its interplay by a dependency graph visualization.

The workflow creation is enabled by a straightforward extractor selection process (by selecting
and unselecting extractor components). Analogous to the extractor overview, the created

Copyright MICO Consortium 40/47

Deliverable D6.2.3: Platform: Final Version - October 2016

workflows are visualized as a graph, which allows a) a what you see is what you get
(WYSIWYG) experience during the creation process and b) a immediate overview on input and
output values and assets.

Data Ingest

The ingestion UI is aligned with the selected workflow. Thus, there currently exist 5 different
ingest UIs:

● The Image Ingest allows to push images to the system by providing an URL, by drag and
drop desktop images, by common file system selection and by using an onboard
webcam to take a picture.

● The Text Ingest allows drag and drop, file select and input by using a textarea.
● The Video/Audio Ingest provides drag and drop and file select. To overcome the issue

that audio and video processing may take a while (depending on asset size) the UI also
enables process notification by email.

● As MICO workflows support multi asset as well as multi content type processing a Mixed
Ingest UI allows the upload of multiple files within one step

In order to get an impression of the ingest UI we added a screenshot of the of the Image Ingest
Interface.

Copyright MICO Consortium 41/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Result Display

MICO produces a bunch of metadata and assets during workflow execution. To enable users,
which are not yet familiar with RDF and MICO specific ontologies to get an overview on the
results that have been created, the demo supports the display of several result types in a well
known manner.

Such displays are for example:

● Image Media Fragments are displayed as rectangular shapes
● Video Fragments are displayed via keyframes
● Recognized Entities in text are displayed by as colorization and popups
● Video subtitles are displayed under the regarding video and are aligned to the current

video timestamp
● Recognized Entities are displayed together with metadata within type specific

information boxes

Copyright MICO Consortium 42/47

Deliverable D6.2.3: Platform: Final Version - October 2016

The list of type specific displays is not fixed and may be adapted and extended with new

extractor types.

SPARQL Endpoint
SPARQL is a powerful query language with a syntax that is aligned to common query languages
like SQL. Nevertheless, SPARQL query building can be a complex task because the language
is not yet widely used and deals a lot with URLs, which can be confusing to new users. In order
to lower the barrier for SPARQL query writing we developed Squebi , a clean SPARQL UI 52

which supports:

● customization of SPARQL result visualization
● support for SPARQL 1.1 (update and select)
● bookmarkable uris that define queries and the visualization type
● support for SPARQL query editing

○ Auto-creation of URIs prefixes
○ Autocompletion for well known ontologies

The demo integrated Squebi and provides the user additionally with many generic as well as
workflow specific examples.

52 https://github.com/tkurz/squebi

Copyright MICO Consortium 43/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Copyright MICO Consortium 44/47

Deliverable D6.2.3: Platform: Final Version - October 2016

Content provenance and Trust

One important aspect of the system is to support provenance tracking, i.e. to be able to identify
where information stems from or was created across the whole acquisition and annotation
chain. On one hand, this is supported by the annotation and broker models, which keep track of
annotators and on their involvement within workflows and jobs, as described for work package 2
and 3. On the other hand, this should also include the ability to authenticate metadata and
annotations that are created outside of the MICO system, and are imported e.g. via crawling
from websites / portals. After consideration of several alternatives, the choice was to enable this
by modifying existing FHG background components to sign and authenticate microformats . 53

The resulting components allow arbitrary signature and verification of HTML documents via
XPATH. The can also be used to sign and verify copyright and provenance information
embedded within the HTML, and provide the following ​MicroformatSignature​ class API:

MicroformatSignature class

Constructor: ​Builds a new object for creating and verifying microformat signatures for
HTML/XML documents.

public MicroformatSignature(

 InputStream keystoreInputStream Input stream for Java keystore that
contains private key used for signing

 String keystorePassword Password for keystore

 String keyAlias Alias of the private key

 String keyPassword Password for private key

)

buildFor ​:​ Creates a new microformat signature node for the given HTML/XML node.

public Node buildFor(

 Node node HTML/XML node to sign (can also be
a Document object)

)

@return Node Signature node created

53 ​http://microformats.org

Copyright MICO Consortium 45/47

http://microformats.org/

Deliverable D6.2.3: Platform: Final Version - October 2016

checkFor ​:​ Verifies the embedded microformat signature for a given HTML/XML node.

public CheckResult checkFor(

 Node node HTML/XML node to check (can also
be a Document object)

)

@return CheckResult Enum:
● signatureValid
● signatureInvalid
● signatureNotFound

checkAllDocumentSignatures ​: Verifies all microformat signatures found in the given
document.

public Map<String, CheckResult>
checkAllDocumentSignatures(

 Document doc Document to examine

)

@return Map<String, CheckResult> Map containing for each signed node:
● XPath expression and
● CheckResult value

Enum:
○ signatureValid
○ signatureInvalid
○ signatureNotFound

These components have been developed and integrated into the platform in year 3, and can be
used to authenticate content and metadata including authorship and related copyright
information (as extracted from content, the web, or derived from the retrieval context).

The following code shows an example for a HTML page containing a signed license part (bold).
The ​Microformat Extractor​ component extracts the license information and validates the
signature in order to verify the authenticity of the information.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head profile='​http://microformats.org/profile/rel-license​'>
<meta http-equiv="content-type" content="text/html; charset=windows-1250">
<title>Signature Example</title></head>
<body><div class="hnews hentry item"><div class="entry-content"><p>

Copyright MICO Consortium 46/47

http://microformats.org/profile/rel-license

Deliverable D6.2.3: Platform: Final Version - October 2016

Ilmenau, Germany
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor
invidunt ut labore et dolore magna aliquyam
</p><p>Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam</p></div></div>

<!-- Rel-License is one of several microformats. By adding rel="license" to a hyperlink,
a page indicates that the destination of that hyperlink is a license for the current page.
E.g. with the following hyperlink the author indicates that the page is licensed
under a Creative Commons 2.0 Attribution Required license.-->

<div class="hlic"> License information: <a href="http://creativecommons.org/licenses/by/2.0/"
rel="license">cc by 2.0</div><div class="hsig"><abbr class="signaturemethod"
title="RSA"></abbr><abbr class="digestmethod" title="SHA256"></abbr><abbr
class="manifest" title="example"></abbr><abbr class="digestvalue"
title="LnG72Gz9SoxLQCOGOO+gWAs3KuA="></abbr><abbr class="signaturevalue"
title="bFP72p9Be [...] HfAKw=="></abbr><abbr class="keyinfo" title="X.509"></abbr><abbr
class="keyvalue" title="MIICtz [...] xQrb"></abbr></div></body></html>

Copyright MICO Consortium 47/47

