
Specifications and Models for Cross-Media Extraction,
Metadata Publishing, Querying and Recommendations:

Final Version

WP2: Christian Weigel, Patrick Aichroth, Marcel Sieland, Luca Cuccovillo, Johanna Björklund
WP3: Emanuel Berndl, Kai Schlegel, Andreas Eisenkolb

WP4: Thomas Kurz
WP5: Thomas Köllmer, Patrick Aichroth, Alex Bowyer

christian.weigel@idmt.fraunhofer.de, patrick.aichroth@idmt.fraunhofer.de,
marcel.sieland@idmt.fraunhofer.de, luca.cuccovillo@idmt.fraunhofer.de, johanna@cs.umu.se,

berndl@dimis.fim.uni-passau.de, schlegel@dimis.fim.uni-passau.de,
eisenkolb@dimis.fim.uni-passau.de, thomas.kurz@salzburgresearch.at,

thomas.koellmer@idmt.fraunhofer.de, alex.bowyer@zooniverse.org

Abstract
This deliverable summarizes the finale specifications in cross-media analysis, metadata publishing,
querying and recommendations. It is a joint outcome of work packages WP2, WP3, WP4 and WP5,
and describes the final plans MICO technologies as well as their combined operation.

Keyword List
Specification, Cross-Media Analysis, Metadata Publishing, Querying, Recommendations

Contents
1 Executive Summary 2

2 Specifications and Models for Cross-Media Extraction & Orchestration Components 3
2.1 Extractor Overview . 3
2.2 Extractor Updates and New Extractor Specifications 4

2.2.1 Object and Animal Detection – OAD (TE-202) – UPDATE 4
2.2.2 Temporal Video Segmentation – TVS (TE-206) – UPDATE 5
2.2.3 Audiovisual Quality – AVQ (TE-205) – UPDATE 5
2.2.4 Face detection – FDR (TE-204) – UPDATE 5
2.2.5 Speech-Music Discrimination – SMD (TE-207) – UPDATE 6
2.2.6 Speech-to-Text (TE-214) – UPDATE . 6
2.2.7 Redlink Text Analysis Extractor (TE-213, TE-220) – NEW 6
2.2.8 Diarization (TE-214) – NEW . 9
2.2.9 Audio Demux – DMX (TE-214) – NEW . 10
2.2.10 Nudity Detection – NDE (TE-226) – Year 3 11
2.2.11 Generic Feature Extraction – GFE (TE-201) – Year 3 12
2.2.12 Video Segment Matching – VSM (TE-211) – Year 3 13
2.2.13 Stanford NLP Extractor (TE-213, TE-220) - Year 3 14
2.2.14 OpenNLP Named Entity Recognition Extractor (TE-220) - Year 3 16
2.2.15 OpenNLP Sentiment Analysis (TE-213) – Year 3 18

2.3 Extractor Pipelines . 19
2.4 Extractor Pipelines Planned for Year 3 . 20
2.5 Multilingual support . 21

2.5.1 Speech-to-Text Multilingual support . 21
2.5.2 Named Entity Recognition Multilingual support 22
2.5.3 Sentiment Analysis Multilingual support . 22

2.6 Broker Overview . 22
2.7 Broker v2 wishlist . 23
2.8 Broker updates after the platform release . 25

2.8.1 Pipeline configuration . 25
2.8.2 MICO broker v2 . 27

2.9 Broker v3 design . 27
2.9.1 General broker principles and assumptions 28
2.9.2 Relevant User Stories . 29
2.9.3 Relevant Components . 30
2.9.4 High-level data model . 31
2.9.5 Use Cases . 36
2.9.6 Registration Service . 46
2.9.7 Workflow planning and creation . 52
2.9.8 Workflow execution . 52

3 Specifications and Models for Cross-media Publishing 54
3.1 Introduction . 54
3.2 Recapitulation . 54
3.3 Major Changes . 55

iii

3.4 Specification . 57
3.5 Read and write the MICO Metadata Model . 58

3.5.1 Anno4j Querying . 59
3.5.2 Anno4j Custom Extensions . 60

4 Specifications and Models for Cross-media Querying 61
4.1 Retrospect . 62
4.2 Extended Specification . 63

4.2.1 Extension of Media Fragment URIs . 63
4.2.2 GeoSPARQL . 70
4.2.3 Extension of Spatio-Temporal Functions . 80
4.2.4 Cover Functions . 85

4.3 Outlook . 87

5 Specifications and Models for Cross-media Recommendations 88
5.1 Introduction . 88
5.2 Key user stories . 89

5.2.1 Greenpeace Magazine . 89
5.2.2 Shoof . 90
5.2.3 Snapshot Serengeti . 91

5.3 Available datasets . 93
5.3.1 Greenpeace Magazine and Shoof . 93
5.3.2 Snapshot Serengeti . 94

5.4 General architecture and common specifications . 96
5.5 Showcase specific specifications . 97

5.5.1 InsideOut10: Greenpeace Magazine & Shoof 98
5.5.2 Zooniverse: Snapshot Serengeti . 100

5.6 Recommendation API reference . 102
5.7 Deviations from D5.2.1: First specifications . 106

5.7.1 TE-501. User Activity and Context Monitor 106
5.7.2 TE-502. User Similarity Calculator . 106
5.7.3 TE-503. Item Similarity Calculator . 107
5.7.4 TE-504. Cross-Modal Content Recommender 107

5.8 Work planned for year 3 . 108
Appendix 5.A Appendix: Subject recommendation for Snapshot Serengeti 109

5.A.1 Test that species preferences match user behaviour (TP-506-01) 109
5.A.2 Test that the subjects recommended match the preferred species (TP-506-02)] . 111

Appendix 5.B MICO WP5 Platform Integration . 112
5.B.1 Install on platform . 112
5.B.2 Running prediction.io inside a docker container 112
5.B.3 Testing . 112

iv

List of Figures
1 Animal detection pipeline (animal-detection) . 19
2 Face detection pipeline (face-detection). 19
3 IO Showcase pipelines . 20
4 Broker v1 Pipeline Configuration . 26
5 Data model of the MICO broker: Overview . 32
6 Data model of the MICO broker: Content description and extractor configuration domains 33
7 Data model of the MICO broker: I/O data description 34
8 Data model of the MICO broker: Platform management 36
9 Overview of the MICO Use Cases . 37
10 Broker registration XSD: Basic types . 47
11 Broker registration XSD: Extractor Specification overview 48
12 Broker registration XSD: Input data definition . 49
13 Broker registration XSD: Output data definition . 50
14 Broker registration XSD: User-configurable parameter definition 51
15 Data model of the MICO broker: Platform management 53
16 Basic annotation in the MICO data model . 54
17 Face Recognition example . 55
18 MICO Metedata Model Version 2.0 . 56
19 Exemplary Extractor Provenance . 58
20 Example: Rectangle . 64
21 Example: Circle . 65
22 Example: Ellipse . 66
23 Example: Polygon . 66
24 Example: Rotate ellipse . 68
25 Example: Translate . 70
26 Sending user event data and asynchronous triggering of Prediction.io 99
27 Recommendation using both collaborative filtering and media analysis results 99
28 Submitting user behaviour data to the recommendation API 103
29 Simple item recommendation . 104
30 Greenpeace editor support . 105
31 Shoof Cross Media Recommendation . 105
32 Pseudocode: Determine subject content . 109
33 Pseudocode: Collect subject interest data . 110
34 Pseudocode: Determine species interest . 110
35 Pseudocode: Generate user profiles . 111
36 Pseudocode: Generate subject recommendation set 111
37 Pseudocode: Recommend subject sets per user . 111

List of Tables
1 Overview of all MICO extractors. 4
2 Text Analysis Extractor based on the Redlink Analysis Service (TE-213 and TE-220) . 7
3 TE-214 implementation: Speaker Diarization with LIUM 9
4 TE-214 AudioDemux: Example implementation based on ffmpeg 10
5 TE-226 implementation: Nudity classification . 11

v

6 TE-201 implementation: Generic Feature extraction using Fraunhofer XPX 12
7 TE-2111 implementation: Fraunhofer VSM . 13
8 The Stanford NLP extractor (TE-213 - sentiment, TE-220 - neamed entity recognition) 15
9 The OpenNLP Named Entity Recognition Extractor implementation (TE-220) 16
10 The OpenNLP Sentiment Extractor implementation (TE-213) 18
11 Broker: functional requirements . 24
12 Broker: Non-Functional Requirements . 24

1

1 Executive Summary

This document provides the final specification draft for WP2-5 in MICO. Based on the initial specifi-
cation from Dx.2.1, and considering the first software testing and evaluation results from our showcase
parters InsideOut10 and Zooniverse, it covers all updates and newly introduced extractors and pipelines,
and specifies the next version of the MICO broker, which will be implemented in year 3. Moreover, it
describes version 2 of the annotation model, and finally provides an update to the querying and recom-
mendation capabilities for the MICO platform.

Section 2 introduces the textual, visual and audio extractor enhancements and updates, and describes
current pipelines and pipelines planned for year 3. Moreover, it outlines the technical requirements
for extractor orchestration, relevant broker updates until now, and provides the broker v3 design to be
implemented in year 3.

Section 3 describes the updated ontology for multimedia metadata (MICO MetadataModel1). This
includes a summary of the model basics, lessons learned from the first two projects years, and how
they lead to version 2 of the metadata model, which includes OWL specifications and descriptive docu-
mentation for improved usability of the model. In addition, a dedicated ontology has been designed to
incorporate MICO showcase-specific needs. Finally, a description of Anno4j2 is provided, which is a
software designed to simplify RDF and SPARQL usage via MICO annotations.

Section 4 delivers an extended specification of SPARQL-MM, a multimedia query language that
has been introduced in D4.2.1. It includes additional fragment accessor functions, an extension of the
Media Fragment URI standard, a description of GeoSPARQL features and a introduction to SPARQL
Inferencing Notations. Furthermore, it includes an outlook to features to be implemented in year 3.

Section 5 describes the recommendation framework for MICO, which aims at using selected results
of cross-media analysis with user data, to provide cross-media recommendation. After providing the
updated recommendation user stories and requirements, it describes the framework architecture, with
a focus on the different needs of the relevant showcases Shoof, Greenpeace Magazine and Snapshot
Serengeti. Moreover, the section includes the specification of interfaces and component interactions and
a comparison with the previous D5.2.1, and a description of available data sources.

1http://mico-project.bitbucket.org/vocabs/mmm/2.0/documentation/
2https://github.com/anno4j/anno4j

2

http://mico-project.bitbucket.org/vocabs/mmm/2.0/documentation/
https://github.com/anno4j/anno4j

2 Specifications and Models for Cross-Media Extraction & Orches-
tration Components

The following provides all relevant updates to the specifications and models of WP2 extractors and
broker:

• An overview over WP2 extractors is provided in section 2.1. Extractor specifications that have
been created or updated since D2.2.1 and D2.3.1 are provided in section 2.2, and current and year
3 pipelines are described in sections 2.3 and 2.4.

• An overview over orchestration and the MICO broker is provided in section 2.6. This includes
the long-term ‘wishlist’ for extractor orchestration in section 2.7, relevant broker updates since
broker v1 in 2.8, and a description of the final broker v3 design to be implemented in year 3 in
Section 2.9.

2.1 Extractor Overview

D2.2.1 (provided in Oct 2014) specified Technology Enablers (TE), which represent abstract descrip-
tions of functionalities required by showcase partners. It also provided a specification of respective input
and output data, often using TE-specific formats, which was then used to provide the first specification
of the semantic data model provided with D3.2.1.

These specifications were followed by an intense implementation and system integration phase that
lasted from Oct 2014 until April 2015. D2.3.1, which was provided in April 2015, therefore conse-
quently described the concrete software implementations of the TE, which in this context are called
Extractors. For some implementations, Open Source Software (OSS) was used, while others were
adapted based on proprietary background from partners. Apart from significant efforts necessary for the
implementation or adaptation, and integration of extractors, some extractors required R&D efforts for
of parameter tuning, model training for machine learning algorithms and algorithm modifications.

The following table provides a compact overview over all extractors that have been developed for
MICO and which are planned for the final phase of the project in Year 3. Apart from name, version,
programming language and relevant TE, the table shows whether the extractor is Debian-packable (Deb.)
– please note that some of the extractors represent work in progress and hence, while being present in
the repository, they are not yet deployed to the MICO package server. The table also describes whether
extractors are producing MICO metadata model RDF annotations, or a native format that need to be
transformed to RDF afterwards.

The extractors serve different purposes: While most extractors provide annotations, others are nec-
essary for intermediate, preparatory processing steps, and yet others are annotation helpers which con-
vert native annotations from C++ extractors to RDF.

Details about extractor updates and new extractors provided since the previous deliverable are pro-
vided in Section 2.2.

3

Table 1 Overview of all MICO extractors.
Name Ver. Lang. Deb. RDF TEs Purpose
Object & Animal Detection 1.0.2 C++ yes yes1 TE-202 annotation
Audio Demux 1.0.1 C++ yes no TE-214 processing step
Face Detection 1.0.3 C++ yes yes1 TE-204 annotation
Diarization 1.0.1 Java yes no TE-214 processing step
Kaldi2rdf 1.0.1 Java yes yes TE-214 annotation helper
Kaldi2txt 1.0.0 Java yes no TE-214 processing step
Redlink Text Analysis 1.0.0 Java yes yes TE-213/220 annotation
ObjectDetection2RDF 1.0.3 Java yes yes TE-202 annotation helper
Speech-to-Text 1.0.0 C++ yes yes1 TE-214 annotation
Temporal Video Segmentation 1.1.3 C++ yes yes TE-206 annotation
Media Quality 1.0.1 C++ no no TE-205 annotation
Audio Editing Detection 1.0.0 C++ no no TE-224 annotation
Media Info 1.0.0 C++ no yes1 TE-227 annotation
MediaTags2rdf 0.0.1 Java no yes TE-227 annotation helper
Speech-Music-Discrimination 1.0.0 C++ no no TE-207 annotation
Nudity Detection planned C++ no no TE-226 annotation
Generic Feature Extraction planned C++ no no TE-211/207 processing step
Video Segment Matching planned C++ no no TE-211 annotation
Stanford NLP planned Java no no TE-213/220 annotation
OpenNLP NER planned Java no no TE-220 annotation
OpenNLP Sentiment planned Java no no TE-213 annotation

1 via annotation helper

2.2 Extractor Updates and New Extractor Specifications

This section contains updated and new extractor descriptions. In the cases where there has been no
change since D2.2.1 and D2.3.1, the extractors are not included in the list. All information can then be
gathered from either D2.2.1 or D2.3.1.

2.2.1 Object and Animal Detection – OAD (TE-202) – UPDATE

For the initial version of the blank image (emptiness) and animal detection extractor we integrated a HoG
(Histogram of oriented Gradients) detector [DT05]. In order to train the detector for the Zooniverse data
set, we annotated a large subset (region annotations) for all 43 animal classes of the Snapshot Serengeti
data set. Though this extractor was released as first version of the MICO animal extractor we did not
expect the best results due to the difficulty image content and the limitedness of the HoG approach for
detection deformable objects such as animals. Therefore we rather considered the approach as baseline
for the final implementation.

In Year 3, we will improve the blank image and animal detection extractor as well as the animal
classification using two approaches:

1. We will use a pre-processing step that exploits the fact that about 80% of the Snapshot Serengeti
subjects are 3-image sequences shot within a short time frame. We may use this information for
pre-filtering interesting regions. Based on simple image differencing or advanced background
modelling, this may help to (i) to identify blank images without any animal classification (ii) to
improve detection performances of the animal detector.

4

2. We will apply a detection approach based on Deformable Part Models [Fel+10] which showed
significantly better results in short pre-tests. Independent of Step 1 this will help to increase the
rather bad results of the HoG-based detection approach.

2.2.2 Temporal Video Segmentation – TVS (TE-206) – UPDATE

Since the previous deliverable, this extractor has undergone some improvements in terms of RDF anno-
tation and decoding. We extended the extractor such that it produces RDF annotations directly without
an extra extractor (annotation-helper) in the pipeline. This has two advantages. The extractor is the
first one, demonstrating that the RDF annotation via the C++ extractor API is viable although not as
comfortable as in the Java world. In addition it saves some processing time and configuration overhead.
In the video decoding parts we mainly improved the meta data extraction and the correct frame handling
using the ffmpeg libraries.

The extractor it the most mature one in the MICO system. There is no need for extension in Year 3.

2.2.3 Audiovisual Quality – AVQ (TE-205) – UPDATE

In the previous deliverable (April 2015) we outlined the following plans:

1. We will combine the single technical measures into one traffic light kind of measure we call media
quality. The media quality represents a accumulated, more understandable quality measure. It
is the weighted combination of selected quality features and events. In order to find the right
selection and weighting we will conduct further experiments within MICO.

2. We need to reduce the amount of data when storing video annotations to the RDF model.

These strategies are still valid. For the specification on how to do this, we now opted for an configurable
event based annotation to reduce the amount of annotation data. This means that a quality annotation
is only produced, when an configurable media quality threshold is exceeded. The extractor will still be
able to produce fixed time step annotations. The next evaluation phase will show if these annotations
can be used meaningfully and with acceptable query performance.

2.2.4 Face detection – FDR (TE-204) – UPDATE

The face detection extractor was deployed in June 2015 and subsequent releases. It uses the open
source software libccv which implements the SURF-Cascade Detection [LZ13]. The evaluation report
will describe how the training model will perform on the showcase evaluation. In order to decrease
the amount of annotation data as well as the processing time in the video analysis case, we chose two
pipeline-based approaches:

1. Face detection is run on frames at fixed time steps.

2. Face detection is run on frames extracted as shot boundaries or key frames from the Temporal
Video Segmentation Extractor.

The pipeline section (Section 2.3) gives more information about this. However, the first approach will
be more usable once the new broker version supports job-specific parametrization of the extractor from
a user perspective. For Year 3, there are no major updates planned for this extractor. If required an
additional face model could be trained if there is a usable annotated data set available for this purpose.

5

2.2.5 Speech-Music Discrimination – SMD (TE-207) – UPDATE

First experiments with the Speech-to-Text extractor (see Section 2.2.6) revealed, that when an audio
track contains music, the text produces by the extractor becomes meaningless or even false. Especially,
when named entity recognition is applied to such wrong results, wrong entities might be detected. We
therefore considered to to include the Speech-Music Discrimination extractor in such a pipeline which
detects and annotates time ranges in an audio signal, where silence, speech, speech and music and music
is detected.

The first version of this extractor was left in development stage since it was not able to achieve an
appropriate temporal resolution of the results (was 3s). In year three we will extend the extractor in
order to decrease that resolution to 0.5s and also to produce RDF annotations.

2.2.6 Speech-to-Text (TE-214) – UPDATE

The initial version of the ASR (automatic speech recognition) extractor based on KALDI had several
drawbacks (memory consumption, processing time) making it not usable in a meaningful manner. Since
the June 2015 release we therefore started to optimize both, the extractor and the the extractor pipeline
to make the extractor usable for evaluation. The major change was that we split the data in small pieces
of processing ranges using the new Diarization extractor (2.2.8) and extended the extractor to split the
analysis and finally join the results. In addition two annotation helpers had been updated (kaldi2rdf for
annotation for each recognized word) and newly integrated (kaldi2text plain text output for subsequent
NER processing). We also added an extractor splitting the audio stream from a video and samples down
the audio signal as pre-processing step for the Speech-to-Text extractor (section 2.2.9).

Yet there is still room for improvement. The training model are rather huge and the start-up of a
pipeline with this extractor takes a significant amount of time since the model needs to be loaded into
memory. Also processing time is an issue. The extractor currently processes a an audio track at approx.
3x video playing time.

Year 3 will see improvements in the support of languages other than Englishe (see Section 2.5, and
if time allows, improvements to the extractor’s computational performance.

2.2.7 Redlink Text Analysis Extractor (TE-213, TE-220) – NEW

Extractor that uses the Redlink Analysis Service part of the Redlink Semantic Platform 3 to extract
Named Entities; link to Entities defined in custom vocabularies or Wikipedia; extract keywords; classify
texts along classification schemes and or extract keywords.
The Extractor itself is open source. The usage of the Redlink service requires an account for Redlink 4.

2.2.7.1 Specific comments

Performance: This extractor does only put minor load on Mico as the processing is done by the
Redlink Analysis Service. The extractor itself sends the input content (text/plain) to the service and
processes the received analysis results. Every request to the extractor will generate a request to the
Redlink service. Those requests will count to the limit set for the account.

Output: The extractor outputs RDF according to the MICO metadata model (Open Annotation)

3 http://redlink.co/semantic-platform/
4 https://my.redlink.io/

6

http://redlink.co/semantic-platform/
https://my.redlink.io/
http://redlink.co/semantic-platform/
https://my.redlink.io/

Table 2 Text Analysis Extractor based on the Redlink Analysis Service (TE-213 and TE-220)

Name mico-extractor-named-entity-recognizer

Original license Apache Software License 2.0

MICO integration license Apache Software License 2.0

External dependencies Redlink Analysis Service(https://my.redlink.io/)

Input data Text - while the Redlink platform supports plain as well as several
rich text formats the extractor is currently limited to the media type
‘text/plain’

Output data The extractor outputs RDF only. No binary content part is added to the
processed content item

RDF persistence The extractor writes Open Annotation (OA) annotations as defined by
the MICO metadata model. Used Annotation Bodies for Named Enti-
ties, Linked Entities, Topic Classification, Sentiment Annotations and
Keyword Extraction are taken from the Fusepool Annotation Model
(https://github.com/fusepoolP3/overall-architecture/
blob/master/wp3/fp-anno-model/fp-anno-model.md)

External Parameters None

Internal Parameters The Extractor need the ‘Redlink Analysis Name’ (-a) the ‘Redlink
Key’ (-k) to be configured as parameters for the daemon. In addi-
tion the extractor allows to specify a ‘Queue Name’ (-q) parameter.
This has to be used if multiple instance of this extractor configured for
different ‘Redlink Analysis’ configurations can be addressed by the
MICO broker.

Additional requirements This extractor requires an account for the Redlink Analysis Service

7

https://my.redlink.io/
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md

and uses Annotations Bodies as defined by the Fusepool Annotation Model 5 to annotate features
extracted form the analyzed textual content.

The Extractor supports the following types of annotations:

• Content Language (fam:LanguageAnnotation 6): annotates the language of the processed text.

• Named Entities (fam:EntityAnnotation 7): annotates named entities (person, organization,
location and others) found in the text. The annotation also provides a selector with the exact
position of the entity.

• Linked Entity(fam:LinkedEntity 8): annotates the mention of an Entity as define by a controlled
vocabulary in the processed text. This is similar to a Named Entity, but also provide the reference
(URI) for the detected entity.

• Topic Classification(fam:TopicClassification and fam:TopicAnnotation 9): annotation
that classifies the processed text along topics defined by some classification scheme. Each
fam:TopicClassification consists of one or more fam:TopicAnnotations. The confidence
of a topic annotation defines how well the processed text fits to the topic. If topics are defined by
a controlled vocabulary the annotations will also provide a reference (URI) to the topic.

• Sentiment Annotation (fam:SentimentAnnotation 10): annotation that defines the sentiment
of the processed text in the range of [-1..+1] where -1 sands for negative and +1 for a positive
sentiment.

• Keyword Annotation(fam:KeywordAnnotation 11): keywords are words and phrases with a spe-
cial improtance for the processed text. Keyword annotations provide a metric [0..1] that defines
the importance as well as the count how often the keyword is mentioned in the processed text.

Note that the set of annotations extracted form the processed text will depend on the configuration of
the configuration of the Redlink analyser application.

5 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.
md

6 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.
md#language-annotation

7 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.
md#entity-mention-annotation

8 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.
md#linked-entity-annotation

9 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.
md#topic-classification

10 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.
md#sentiment-annotation

11 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.
md#keyword-annotation

8

https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#language-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#entity-mention-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#linked-entity-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#topic-classification
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#sentiment-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#keyword-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#language-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#language-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#entity-mention-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#entity-mention-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#linked-entity-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#linked-entity-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#topic-classification
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#topic-classification
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#sentiment-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#sentiment-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#keyword-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#keyword-annotation

2.2.8 Diarization (TE-214) – NEW

Diarization consists in partitioning an audio stream into segments corresponding to different speakers.
This is a useful preprocessing step for speech-to-text, as it divides potentially long audio files into
manageable pieces. The diarization extractor is also able to identify different speakers, though this
functionality is currently not exploited in MICO.

Table 3 TE-214 implementation: Speaker Diarization with LIUM

Name mico-extractor-diarization

Original license GNU General Public License, version 3

MICO integration license Apache license, version 2.0

External dependencies LIUM Speaker Diarization tool (http://www-lium.univ-lemans.
fr/diarization/doku.php/welcome)

Input data Audio wav file

Output data Time-stamped segments containing speech, annotated with diarization
information (XML).

RDF persistence Not supported, as this is a pre-computiation of the Kaldi extractor

Additional requirements None.

2.2.8.1 Specific comments

Performance: The LIUM extractor is running well, is fast and produces useful pre-processing
results. The only downside from a software point of view is, that it is running another Java app out of
Java by starting it as a separate process. However, as a draft solution it is satisfactory.

Output: Worth mentioning is that the segmentation information provided by the diarization tool
could be one large segment if there are continuous speech by a single speaker. For long audio files it is
necessary to have this in mind for other extractors using this information.

9

http://www-lium.univ-lemans.fr/diarization/doku.php/welcome
http://www-lium.univ-lemans.fr/diarization/doku.php/welcome

2.2.9 Audio Demux – DMX (TE-214) – NEW

This extractors serves as a pre-processing step to the Speech-to-Text extractor. It extracts the audio data
stream from a video and changes its sampling rate to a rate best suited for automatic speech recognition.

Table 4 TE-214 AudioDemux: Example implementation based on ffmpeg

Name mico-extractor-audiodemux

Original license GPL or LGPL respectively

MICO integration license Apache License 2.0

External dependencies ffmpeg library (avformat, avcodec, avutil, avfilter, avresample)

Input data video file

Output data audio file with configurable sampling rate

RDF persistence not required

External Parameters input mime type, target sampling rate

Internal Parameters none

Additional requirements none

2.2.9.1 Specific comments

Performance: Pretty good processing performance due to optimized decoding and fast re-sampling via
ffmpeg.

10

2.2.10 Nudity Detection – NDE (TE-226) – Year 3

The nudity extraction extractor detects inappropriate or adult-only content in images and videos. It
required to pre-filter user generated content in the Inside Out showcases. Since the priority of this
extractor is medium, we consider integrating an existing classification approaches and software for this
task. We did a first review of the available approaches but did not decide yet which to go for. If it
turns out that existing services or library solutions are not usable or are too bad in their results we will
consider to drop that extractor within the MICO project duration.

Table 5 TE-226 implementation: Nudity classification

Name Nudity Detection

Original license not yet clear

MICO integration license Apache License 2.0

External dependencies most likely OpenCV

Input data images videos

Output data amount of skin occurrence /nudity

RDF persistence native annotation

External Parameters not yet clear

Internal Parameters not yet clear

Additional requirements none

2.2.10.1 Specific comments

Since efforts are limited we are definitely opt for an out-of-the-shelf component solution for this
extractor. Training of new models is not planned.

11

2.2.11 Generic Feature Extraction – GFE (TE-201) – Year 3

This extractor will support the extractors Speech-Music-Discrimination (Section 2.2.5) and Video
Matching (Section 2.2.12) by providing the functionality of Fraunhofer feature extraction framework
XPX as a MICO extractor.

Table 6 TE-201 implementation: Generic Feature extraction using Fraunhofer XPX

Name Generic Feature-Extraction

Original license Proprietary (FhG)

MICO integration license Apache Software License 2.0/Proprietrary (FhG)

External dependencies xpx-api (FhG)

Input data image, video, audio

Output data binary feature container (afp)

RDF persistence none / (if used for SMD, native annotation implementation)

External Parameters feature depended

Internal Parameters feature depended

Additional requirements feature extraction configuration file (xml)

2.2.11.1 Specific comments

Performance: The Fraunhofer XPX framework is designed for high speed, multi-processor, fea-
ture extraction and classification.

Output: Since this extractor uses a very generic approach literally any output is possible. In the
specific context of the MICO project the extractor will produce the features in a native binary format.

12

2.2.12 Video Segment Matching – VSM (TE-211) – Year 3

The video matching extractor finds video sequences originating from the same source that have been
re-used in other videos. This can be used for de-duplication within a video collection, content tracking
and provenance or copyright infringement detection.

Table 7 TE-2111 implementation: Fraunhofer VSM

Name Video Segment Matching

Original license Proprietary (FhG)

MICO integration license Apache Software License 2.0/Proprietrary (FhG)

External dependencies Fraunhofer Video Segment Matcher (vsmapi)

Input data query content part URI, reference content part URIs

Output data native json format with segment matches

RDF persistence to be decided base on what needs to be modelled and at what level -
native implementation

External Parameters matching mode / i. e. matching accuracy vs. matching speed)

Internal Parameters -

Additional requirements requires proprietary features descriptor extracted by the Generic Fea-
ture Extractor GFE (section 2.2.11)

2.2.12.1 Specific comments

Performance: Depending on the amount of data, the matching will take several time. Due to
the MICO architecture, video feature will not be stored in an in-memory data base but rather loaded
from the MICO content storage whenever a matching process is taking place.

13

2.2.13 Stanford NLP Extractor (TE-213, TE-220) - Year 3

Stanford NLP 12 is a software framework for NLP processing provided by the Stanford NLP Group
under GPLv3 13 license.

This extractor uses Stanford NLP to support Named Entity Recognition (TE-220) and Sentiment
Analysis (TE-213). For multilingual aspects, see Section 2.5.

2.2.13.1 Specific comments

Performance: Stanford NLP holds NLP models in memory. It does support multi-threading.
Running this extractor will require sufficient memory to hold all used models. Scaling will mostly
depend on the number and speed of the available CPU cores.

Output: As all MICO NLP extractors the Stanford NLP extractor will use the MICO metadata
model v2 and create annotation bodies for Named Entities and Sentiment Annotations as defined by the
Fusepool Annotation Model 14.
In detail the Stanford NLP extractor generates the following annotations:

• Language Detection: This is a pre-requirement for most NLP processing tools. The result will be
encoded using a fam:LanguageAnnotation 15.

• Named Entity Recognition (NER): Named Entity Recognition allows to detect mentions of trained
entity types (typically Persons, Organization and Locations) in texts. The Stanford NLP frame-
works includes models for English, German and Chinese. Additional models are available via the
Europeaner-Newspaper project 16 that publishes models for Dutch, German and French. Named
Entity results will be represented by fam:EntityAnnotation 17.

• Sentiment Annotation: Stanford NLP provides Sentiment annotation support for English [Soc+].
The speciality of this solution is that it works on the parse tree and not on document level.
Because of that it is possible to identify phrases of the content that carry most of the Sentiment.
This feature allows to create a fam:SentimentAnnotation 18 with an assigned oa:Selector
for the exact phrase in the text. In addition the extractor will also aggregate a sentiment value for
the document as a whole.

12 http://nlp.stanford.edu/software/index.shtml
13 http://www.gnu.org/licenses/gpl-3.0.html
14 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.

md
15 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.

md#language-annotation
16 http://lab.kbresearch.nl/static/html/eunews.html
17 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.

md#entity-mention-annotation
18 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.

md#sentiment-annotation

14

http://nlp.stanford.edu/software/index.shtml
http://www.gnu.org/licenses/gpl-3.0.html
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#language-annotation
http://lab.kbresearch.nl/static/html/eunews.html
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#entity-mention-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#sentiment-annotation
http://nlp.stanford.edu/software/index.shtml
http://www.gnu.org/licenses/gpl-3.0.html
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#language-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#language-annotation
http://lab.kbresearch.nl/static/html/eunews.html
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#entity-mention-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#entity-mention-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#sentiment-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#sentiment-annotation

Table 8 The Stanford NLP extractor (TE-213 - sentiment, TE-220 - neamed entity recognition)

Name Stanford NLP Extractor

Original license GPL v3.0

MICO integration license Dual License: Apache Software License 2.0 and GPLv3 - with the in-
tention to allow people the freedom of the ASL 2.0 to copy, branch,
modify the extractors code. Running the extractor will require to con-
firm to the GPLv3 as the extractor links the Stanford NLP library.

External dependencies Stanford NLP CoreNLP (http://nlp.stanford.edu/software/
corenlp.shtml) and Sentiment(http://nlp.stanford.edu/
sentiment/)

Input data This extractor will support plain text input. Plain text originating from
speech-to-text extractors will require a different configuration for op-
timal results.

Output data RDF

RDF persistence Web annotation (http://www.w3.org/annotation/) based
annotations as defined by the MICO metadata model v2.0.
Annotation Bodies for Named Entities and Sentiment An-
notations as defined by the Fusepool Annotation Model
(https://github.com/fusepoolP3/overall-architecture/
blob/master/wp3/fp-anno-model/fp-anno-model.md)

External Parameters none

Internal Parameters The Extractor will require a configuration for NLP models based on
the language and possibly the type (news articles, papers/articles,
blogs, forum posts, ...) of the text. Especially text originating from
speech-to-text extractors might need a different set of models to pro-
duce good results. It will allow multiple instances configured with a
different set of models to be used in parallel.

15

http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/sentiment/
http://nlp.stanford.edu/sentiment/
http://www.w3.org/annotation/
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md

2.2.14 OpenNLP Named Entity Recognition Extractor (TE-220) - Year 3

Extractor for Named Entity Recognition based on Apache OpenNLP 19 and the IXA Pipes 20 [RAR14]
extensions. For multilingual aspects, please see Section 2.5.

Table 9 The OpenNLP Named Entity Recognition Extractor implementation (TE-220)

Name (tbd) MICO OpenNLP Named Entity Recognition Extractor

Original license Apache Software License 2.0

MICO integration license Apache Software License 2.0

External dependencies This Extractor will be based upon the OpenNLP frameworks and the
IXA Pipes extensions as well as language models (http://ixa2.si.
ehu.es/ixa-pipes/)

Input data Plain text originating from written text or from speech to text transcod-
ing

Output data RDF

RDF persistence Web annotation based annotations as defined by the MICO metadata
model v2.0 with Named Entity annotations as defined by the Fusepool
Annotation Model

External Parameters none

Internal Parameters The Extractor will require NLP processing models to be configured. It
will allow multiple instances configured with a different set of models
to be used in parallel.

2.2.14.1 Specific comments

Performance: OpenNLP holds NLP models in memory. Using this Extractor will require suffi-
cient memory for loading all configured models in memory. For the IXA Nerc models this is about 5
GByte. OpenNLP can process concurrent requests on different CPU cores. Therefore scaling depends
on the number and speed of available CPU cores.

Output: As all MICO NLP extractors the OpenNLP NER extractor will use the MICO meta-
data model v2 and create annotation bodies for Named Entities as defined by the Fusepool Annotation

19 http://opennlp.apache.org/
20 http://ixa2.si.ehu.es/ixa-pipes/

16

http://opennlp.apache.org/
http://ixa2.si.ehu.es/ixa-pipes/
http://ixa2.si.ehu.es/ixa-pipes/
http://ixa2.si.ehu.es/ixa-pipes/
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
http://opennlp.apache.org/
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
http://ixa2.si.ehu.es/ixa-pipes/
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md

Model 21.
Named Entity Recognition (NER) allows to detect mentions of trained entity types (typically Per-
sons, Organization and Locations) in texts. While OpenNLP comes with support for NER the
quality of the default models is not sufficient for use in most application. The models distributed
by IXA Pipes NERC 22 provide much better quality. IXA Pipe NERC provides NER models for
Basque, English, Spanish, Dutch, German and Italian. Named Entity Results will be represented by
fam:EntityAnnotation 23 annotations.

21 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.
md

22 https://github.com/ixa-ehu/ixa-pipe-nerc
23 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.

md#entity-mention-annotation

17

https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/ixa-ehu/ixa-pipe-nerc
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#entity-mention-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/ixa-ehu/ixa-pipe-nerc
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#entity-mention-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#entity-mention-annotation

2.2.15 OpenNLP Sentiment Analysis (TE-213) – Year 3

The extractor for Sentiment Analysis is based on Apache OpenNLP 24 and uses the Document Cate-
gorizer 25 functionality based on maximum entropy algorithm26. For multilingual aspects, please see
Section 2.5.

Table 10 The OpenNLP Sentiment Extractor implementation (TE-213)

Name MICO OpenNLP Sentiment Extractor

Original license Apache Software License 2.0

MICO integration license Apache Software License 2.0

External dependencies This Extractor will be based upon the OpenNLP Document Catego-
rizer functionality.

Input data Plain text originating from written text or from speech to text transcod-
ing

Output data RDF

RDF persistence Web annotation based annotations as defined by the MICO metadata
model v2.0 with Named Entity annotations as defined by the Fusepool
Annotation Model

External Parameters none

Internal Parameters The Extractor will require Sentiment Classification models to be con-
figured. It will allow multiple instances configured with a different set
of models to be used in parallel.

2.2.15.1 Specific comments

Performance: OpenNLP holds NLP models in memory. Using this Extractor will require suffi-
cient memory for loading all configured models in memory. Document Classification models are
expected to need memory in the range of 100 MByte of RAM each. OpenNLP supports multi-threading
what means that multiple concurrent requests can be processed on different CPU cores. Scaling depends
therefore on the number and speed of available CPU cores.

Output: As all MICO NLP extractors, the OpenNLP NER extractor will use the MICO meta-
data model v2 and create annotation bodies for Named Entities as defined by the Fusepool Annotation

24 http://opennlp.apache.org/
25 https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.doccat
26https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#opennlp.ml.maxent

18

http://opennlp.apache.org/
https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.doccat
https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.doccat
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
http://opennlp.apache.org/
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.doccat
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#opennlp.ml.maxent
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md

Model 27.
The Document Classifier will only provide a sentiment classification on document level. This means
that the Extractor will provide a single fam:SentimentAnnotation 28 for the document. Technically
it would be possible to split the content in multiple parts and perform separate classifications for those.
Depending on requirements of the use cases this option might get explored.

2.3 Extractor Pipelines

For the first MICO platform release (June 2015) a number of extractor pipelines have been created.
Details about how these pipeline are technically implemented gives Section 2.8.1. This section show
the combination of the developed MICO extractors in different pipelines and shortly explains their
purpose. It shows, which unstructured data a pipeline produces and which structured data in the MICO
data model it annotates.

Animal detection pipeline (Figure 1): This pipeline is used in the Zooniverse showcase for blank
image and animal detection. Due to the need of fixed parameters in the broker Version 1 implementations
two pipelines exist which provide different detection models (blank, animal classification).

Figure 1 Animal detection pipeline (animal-detection)

Face detection pipeline (Figure 2): This pipeline is designed in two variants (image, video). It
annotates detected face regions per image/frame. In the video case, we set a fixed time step (currently
3s), in order to reduce amount of annotations (compare Section 2.2.4). The pipeline resembles a sub set
of the more complex Inside-Out pipeline and is used for evaluation of the face detection performance.

Figure 2 Face detection pipeline (face-detection).

IO Showcase pipeline (Figure 3): This huge cross-media pipeline actually combines three pipelines
(yellow/orange rectangles) into one. The pipelines are also available as separate pipelines in the system
in order to reduces processing time if some annotation are not required. The pipelines contain most of
the extractors, developed in the project until now. The input data is a video. The first pipeline annotates

27 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.
md

28 https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.
md#sentiment-annotation

19

https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#sentiment-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#sentiment-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#sentiment-annotation

shots (i.e. edits in a video) in the visual stream and produces shot boundary frames (first frame of a
shot) and key frames (important frames within a shot). The second pipeline is a modified face detection
pipeline which operates on these shot boundary or key frames. The third pipeline uses the audio stream
of the video converts that into text which is then processed by a named entity recognition extractor. This
pipeline allows for queries such as “Give me all shots (temporal video segmentation) in a video where a
person (face detection) says something (text-to-speech) about topic XYZ (named entity recognition)”.

Figure 3 IO Showcase pipeline (io-demoshowcase-all, temporalvideosegmentation, kaldi-speech-to-
text, face-detection)

2.4 Extractor Pipelines Planned for Year 3

For Year 3 we mainly plan to improve and extend the existing pipelines in order to (1) create more cross
media annotations, (2) make the results more robust and thus the annotations more useful, and (3) make
the extractors faster and less resource consuming. We will also add a limited number of new extractors
such as the Video Segment Matching extractor or the new NLP extractors. As experienced after the
first release, also completely new pipeline ideas will created once new extractors are ready and we play
around with them. Due to the increasing robustness of the system, the pipeline creation process will

20

become much more user friendly and facilitate this process. Along with the improvements of the broker
(see Section 2.9) this will make the MICO system ready-to-use for our early system users InsideOut,
Zooniverse or Zaizi.

2.5 Multilingual support

During the final year of MICO, an important goal is to increase the number of supported languages. Both
speech-to-text pipeline (TE-214), named entity recognition (TE-220) and sentiment analysis (TE-213)
where primarily developed for the English language. This was due to the fact that anguage resources
for English are easy to come by, and because all project members are fluent in English and English was
also an importnat language across all the different use cases. Now that the pipeline is in place, a natural
next step is to include support for more languages. This chapter will provide more information about
ongoing and planed work related to multi lingual support.

2.5.1 Speech-to-Text Multilingual support

Towards this end, we have begun to convert existing language models and train new ones for the Kaldi
system that is at the heart of the speech-to-text pipeline. The first languages to be considered are those
prioritised by the MICO use-case partners, namely Italian and Arabic.

Initial versions of named-entity recognition (TE-220) and sentiment analysis (TE-213) are also in
place, again primarily built for English. In the final implementation of these, we shall base our work on
software libraries with extensive language cover such as Stanford NLP and OpenNLP.

A dialog has also been opened with Synthema, one of the leading partners of the EU project “Sharing
audio-visual language resources for automatic subtitling” (SAVAS) [Poz13]. This project served to

• collect spoken and textual resources in six European languages (Basque, Spanish, Portuguese,
Italian, French and German) from the broadcasters and subtitling companies acting as data
providers within the consortium;

• transcribe and annotate the collected corpora into a form suitable to train acoustic and language
models of Large Vocabulary Continuous Speech Recognition (LVCSR) systems using a combi-
nation of automatic and collaborative approaches;

• build a local META-SHARE29 repository containing the collected and annotated SAVAS language
resources to allow their reuse; and

• adapt and train dictation and transcription LVCSR systems with the SAVAS language resources.

We are presently doing an inventory of the SAVAS META-SHARE repository to identify resources
that can help improve MICO’s multilingual support in the speech-to-text pipeline. META-SHARE
is a sustainable network of repositories of language data, tools and related web services documented
with high-quality metadata, aggregated in central inventories allowing for uniform search and access to
resources. Seeing that Italian is also a prioritized language in MICO, there are likely to be synergies
between the two projects.

29Co-funded by the 7th Framework Programme of the European Commission through the grant agreement no. 249119.

21

2.5.2 Named Entity Recognition Multilingual support

With the addition of two extractors for Named Entity Reposition based Stanford NLP 2.2.13 and
OpenNLP 2.2.14 users of the MICO platform will gain access to high quality language models of the
following languages: English (OpenNLP and Stanford NLP), German (OpenNLP and Stanford NLP),
Spanish (OpenNLP), French (Stanford NLP), Italien (OpenNLP), Dutch (OpenNLP and Stanford NLP),
Basque (OpenNLP) and Chinese (Stanford NLP).

The UMU group are also training a model for Swedish, and will investigate the feasibility of adding
Arabic. The Swedish model is based on data från the public resource Språkbanken, but it is still an open
question what data set to use for Arabic.

2.5.3 Sentiment Analysis Multilingual support

In the final version of the MICO plattform there will be two Extractors supporting (different types) of
Sentiment Analysis. First the Stanford NLP extractor 2.2.13 supports a phrase level sentiment detection.
This can e.g. be used extract those phrases in document that carry the most sentiment. The OpenNLP
sentiment classification 2.2.15 is based on document classification that is trained to classify for their
sentiment. This implementation can only provide sentiment values for document as a whole (or sub-
section if one calculates multiple classification for different section of a document).

Stanford NLP provides a model for the English language. While the tool also provides a training
tool the requirements for training sets are rather high. In addition the sentiment classifier also requires
a parse tree for the text. Stanford NLP Shift-Reduce Constituency Parser 30 has support for English,
German, French, Arabic and Chinese. So for training of Sentiment analysis for other of those languages
one would also need to train a parser model first.

Sentiment classification for OpenNLP is easier to train as a training set only requires to assign
documents with their sentiment category. However OpenNLP does not provide any document classifier
model that can be used for sentiment classification.

During the last year of the project, the UMU plans to provide two classification models; one for
rating the confidence of a given text, and one for assessing the competence w.r.t. to a particular task of
its author. Both analysers are motivated by the Serengeti use case, where we want to discover competent
but non-confident users and encourage them not to leave the effort.

2.6 Broker Overview

The initial framework for orchestration of extractors via pipelines, aka MICO broker v1, was provided
and described with D6.2.1 (Oct. 2014). While it was clear that there was room for improvement re-
garding the broker, and a first qualitative overview of respective requirements was provided in D2.3.1,
it was also clear that no major updates of the broker could be introduced during the preparation of the
first platform release (Oct.2014 - April 2015) - they would have further complicated the already very
challenging activities for extractor and model adaptation, implementation and integration. Moreover, it
seemed reasonable to consolidate the broker requirements after the platform release, in order to validate
the rather ’theoretical’ requirements and to complement them with the practical experiences of platform
release preparations.

Hence, the broker activities consisted of several threads and respective results:

1. The elicitation of requirements before and during the platform release preparations, which lead to
a broker ’wishlist’ described in section 2.7

30 http://nlp.stanford.edu/software/srparser.shtml

22

http://nlp.stanford.edu/software/srparser.shtml
http://nlp.stanford.edu/software/srparser.shtml

2. The introduction of ’unavoidable’ updates related to pipeline configuration as described in sec-
tion 2.8.1, and updates to the event API right after the platform release in order to support error
handling and progress communication, as described in section 2.8.2.

3. The design of the final broker v3, which will be implemented in year 3, and is described in section
2.9.

2.7 Broker v2 wishlist

The discussions following broker v1, and the practical experiences and lessons learned during and after
platform release and evaluation phase, lead to an extended ’wishlist’ for future MICO broker versions,
considering input and prioritization of requirements from all WPs. Hence, all requirements mentioned
in the following go beyond broker v1 capabilities. They are separated into functional (11) and non-
functional (12) requirements.

ID NAME Description / Motivation Prio

FR-1 EIP The broker should directly or indirectly support Enterprise Integra-
tion Patterns (EIP) to orchestrate the processing, including, router,
aggregator (FR-3), splitter (FR-2)

H

FR-2 Support for
multiple output
items

The broker should be able to deal with extractors that provide out-
put of various types. The types are specified by the common data
model resulting from T2.2. Each extractor should produce a fixed
number of outputs of fixed types.

H

FR-3 Support for
multiple input
items

The broker should be able to deal with extractors that require input
of various types, and hence waiting for several processes (’aggre-
gator’ from FR-1). Each extractor should however consume a fixed
number of inputs of fixed types.

H

FR-4 No output Some transitions do not produce new content parts, but are required
by broker v1 to provide at least an empty one to trigger execution
of other services; would be necessary to add some other sort of
notification so the broker can send to the next service in sequence

M

FR-5 Dependencies An extractor should declare dependencies that must be satisfied
before being called: Needs existing data / output from other ex-
tractors, expressing semantic and syntactical interdependencies.

H

FR-6 Status tracking The broker should maintain a list of active jobs, and track at which
extractor each job is being processed (related with FR-13).

L

FR-7 Execution
planning

V1 does not foresee execution planning as such: The format gener-
ated by an extractor is provided to and processed by all extractors
that are able to handle it. Therefore, it currently executes all pos-
sible paths, regardless of whether needed / feasible or not. What
is needed is a consideration of type constraints, expression of de-
pendencies, optimal path, computation only of what is required,
storage of preliminary results for expensive extractors, workflow
balancing

M

FR-7a Manual
execution
planning

The user specifies the entire execution plan through a graph-based
GUI, i.e., that which is already available for Camel

L

23

ID NAME Description / Motivation Prio

FR-7b (Semi-)Auto-
matic execution
planning

The user provides extractor descriptions, input types and goal
types, and the broker supports respective workflow creation ac-
cording to that.

M

FR-8 Dynamic
execution

Dynamic execution of the processing workflow based on depen-
dency information (e.g. depending on the language identified, dif-
ferent path needs to be followed), see also EIP router pattern. This
may, however, influence FR-2 and FR-3 regarding fixed number of
inputs/outputs.

M

FR-9 Types support The extractor needs to support the common data model developed
in T2.2

H

FR-10 Loop avoidance The execution plan should avoid unterminated loops. M
FR-11 Intertwined

annotation
It would be nice to have support for human interaction within
workflows.

L

FR-12 Pull content Apart from the current support of ’pushing’ content to the platform,
’pull’ support would be useful whenever an extractor needs to get
input from the knowledge base: previous extractor results, manual
annotations, etc., see EIP file transfer.

L

FR-13 Logging Logging / monitoring of workflow execution (related to FR-6). H
FR-14 Content-based

queries
It would be nice to support the execution of content-based queries,
which requires consideration of instantiation constraints because
respective MICO components require matching through one cen-
tral DB

L

FR-15 Extractor
versioning

Versioning of components should be supported H

Table 11: Broker: functional requirements

ID NAME Description / Motivation Prio

NFR-1 Failure
tolerance

What happens when an extractor fails? In v1, a failing service
pushes messages back into the queue, trying to execute over and
over again (infinite loop) - a distinction between permanent errors
and recoverable errors is needed.

H

NFR-2 Compatibility Keep as many broker v1 components as possible (messaging
queue, etc.), as modifications can cause significant effort for other
components developers.

H

NFR-3 Extensibility Extensibility, here, is related to EIP supported (related to FR-1). M
NFR-4 Testability V1 provided only very limited support for testing pipelines and

extractors, due the existing interdependencies.
M

NFR-5 Stability Avoid the use of unstable components, especially regarding third-
party developments.

M

Table 12: Broker: Non-Functional Requirements

While it will not be feasible to implement all requirements mentioned in the following (hence the

24

term ’wishlist’), a considerable amount of them have been either implemented, or have been considered
into the broker design, and will be implemented in y3.

2.8 Broker updates after the platform release

The following describes the ’unavoidable’ updates related to pipeline configuration that were necessary
for the platform release, and updates of the event API that were absolutely necessary after the platform
release, and will be used until broker v3 is fully implemented.

2.8.1 Pipeline configuration

We described the first version of the broker (broker v1) in an early stage of the project in D6.2.1 (Oct.
2014). The approach used simple mime type-based connections (i.e. string comparison) of extractor as
pipelines. That meant, that as soon as a running extractor daemon registers itself with the broker, all
possible connections were established, including unintended connections or even connections producing
loops. Therefore we needed to extend the system in order to support the following features:

1. Standardized way of parameter specification passed to the extractor during start-up

2. Means of pipeline configuration defining the extractors involved and their parameters

3. End-User controlled start-up and shut-down of extractors establishing a pipeline for a specific
purposes

These features needed to be compatible with the rather limited connection and data transmission
capabilities in broker v1. We opted for an approach using a mixture of bash scripts and servlet configu-
rations which is shown in Fig. 4. Every extractor deployed for the MICO system is obliged to support
standard start-up and shut-down command line parameters. It also needs to be packaged along with a
short description bash script specifying the name, description and system (native, Java) it is running for.
For easy changes and updates, the pipelines are configured in a separate Debian package. They specify
the extractors to be loaded and the parameters to be passed in addition to the run/stop arguments. There-
fore the pipeline designer for the broker v1 needs a good knowledge about the extractors and their CLI
parameters. The mico-configuration package also provides a servlet configuration which links pipeline
names to pipeline configuration scripts and the actual extractor execution logic script. The servlet and
front-end are provided as a third Debian package. The service reads the current configuration and trig-
gers the execution logic for a selected pipeline which then start or stops the corresponding extractors.

25

Figure 4 Broker v1 Pipeline Configuration

26

2.8.2 MICO broker v2

During evaluation of the platform release and the first real usage of the system, it turned out that the
communication channel between extractors to the broker had to be urgently extended: In broker v1,
information about new content parts is the only data that the extractor could send to the broker. After
getting a notification about new content, the broker then had to assume that the extractor finished pro-
cessing successfully. However, if an extractor produced more than one new content part, all extractor
errors apart from the first one would go unnoticed. Moreover, in this approach, extractors had to send
a messages about new content parts, even when they did not provide any. Most importantly, the broker
did not support the reporting and hence proper handling of errors during processing.

Considering the urgency of such improvements, we decided to introduce an intermediate broker v2
with extended capabilities before implementation v3 in year 3. V2 improves the event API, which deals
with broker-extractor communication: The broker uses it to send information to extractors when new
content is added to the platform, to trigger the required extraction processes. Extractors use the API to
store extracted metadata in the triple store, and to inform the broker about new extracted binary content
after pushing it to the data store.

A new message type was added to the event API to distinguish between following events during
extraction processes:

• new content part: As in v1, this is used by the broker to trigger next extractors for new parts.

• extraction finished: Upon reception of this message, the broker can be sure that the extraction was
successfully finished and the extractor is ready to process more content.

• extraction aborted: This indicates that an extractor was not able to process content - this message
can contain more detailed information about the reason why the process was canceled which
can be used to detect and avoid problems, e.g. related to the content itself, problems with the
environment such as insufficient disk space or memory, etc.

• extraction progressed: This is an optional event, which is useful to indicate the progress in long-
running processes.

V2 was implemented for the Java event API, and is currently implemented for the C++ event API as
well - it will be used by extractors until broker v3 is fully implemented.

2.9 Broker v3 design

The following provides several sections on broker v3 design. The implementation phase has started
already, and will be completed in year 3:

• principles and assumptions, in section 2.9.1

• relevant user stories, in section 2.9.2

• relevant components, in section 2.9.3

• the high-level broker data model, in section 2.9.4

• relevant use cases, in section 2.9.5

• the specification of the registration service, a key component for the v3 approach, in section 2.9.6

27

• information about workflow planning, in section 2.9.7

• information about workflow execution, in section 2.9.8

2.9.1 General broker principles and assumptions

The broker design is based on several high-level principles, insights and assumptions, which are de-
scribed in the following:

To begin with, there are several principles and insights related to extractor registration and model:

• a key assumption is that some parts of the extractor information can and should be provided
upon packaging by the developer (extractor properties, input and output), while other parts of
the extractor information may be provided after packaging, by other developers or by showcase
administrators (semantic mapping of extractors, and information / feedback about pipeline per-
formance); hence, registration information is provided at different times

• extractor information should be separated into syntactical information, which is more or less fixed
and can typically be provided upon extractor packaging by the developer, and semantic informa-
tion describing what annotations are about, which is at least partially subjective, depending on
the usage scenario, and will at least partially be revised continuously. Such information will often
not be provided by the developer of an extractor, but by other developers providing or consum-
ing relevant information, or by other actors, e.g. showcase admins. It will often be provided
after extractor packaging, and does not require component adaptation - hence, it should not be
communicated through and when packaging extractors.

• for that purpose, a new service for extractor registration and discovery is introduced, which will
provide functionalities to store and retrieve extractor information, supporting both a REST API
for providing extractor registration information, and a front-end for respective user interaction,
which is more suitable to complement information that is not or cannot be known to an extractor
developer at packaging time. It will use Marmotta for the extractor model storage, and workflow
planning and execution can reuse this information for their purposes.

• information about the extractor output format (which may be RDF or a native format that requires
conversion) should be communicated, and used by the broker to validate / control conversion; in
order to locate specific data, LDPath could be used.

• the broker model should reuse existing information e.g. regarding syntactical types using existing
ontologies as far as possible, however it should cache it in order to improve performance for
related queries; wherever applicable, extractors and extractor versions, types etc. should be unique
identified via URN

Related to workflow planning and execution, we came to the following conclusions:

• That Apache Camel would be a good choice for workflow execution via Camel routes, supporting
many EIP, and that it should be complemented by components (to be developed by us) which
simplify the task of retrieving information from the knowledge base to put it into Camel messages,
in order to control the processing process based on rules, e.g. in order to invoke different paths
within a route depending on languages detected. This feature allows for ’on-demand routing’
within processing graphs and helps to avoid the need to specific many pipelines for the same task
in such cases.

28

• Even if it was decided that the broker does not deal with managing scalability directly (but instead
rely on the extractor nodes dealing with such aspects themselves, e.g. via parallelization and load
balancing), information about whether an extractor is a singleton, and its resource dependencies,
should be captured.

• Manual pipeline creation is a difficult process, due to the many constraints and interdependencies:
It does not only depend on a ’syntactic match’ between extractors, it also depends on semantic
aspects (e.g. a face recognition cannot make sense of any image region, but only of image regions
that represent faces, i.e. have a certain semantic meaning). Moreover, it heavily depends on
the type of content, and the goal / use cases an annotation is used for. Considering this, it is
extremely desirable to simplify the task of pipeline creation. While automatic workflow creation
is not realistic considering these constraints, it is possible to provide a semi-automatic process
that supports workflow creation, considering the various constraints.

• the broker needs to be able to define and track processing of content sets, as not all pipelines are
to be invoked upon all content items.

• In order to support semi-automatic workflow creation, several data sources should be applied:
Apart from syntactical types, and semantical types, the broker should also support storage and
use ’feedback’ from showcase admins on which extractors and pipelines worked well for which
content set and use cases. All of these data sources will then provide useful information for work-
flow creation, but also about e.g. which extractor would only require support for an additional
mime type in order to work in a pipeline etc.

2.9.2 Relevant User Stories

For the design of the MICO broker v3, we selected relevant user stories from [Lin+15], extending them
considering the platform release and the evaluation phase:

• US-01: as a showcase admin, I want the MICO system to support the specific queries defined
for my needs, so that our projects can be extended and improved

• US-02: as a showcase admin, I want the MICO system to support as many interesting queries
as possibly for the given content, so that business and end-users can explore and enrich
the content

• US-03: as a workflow creator/maintainer, I want the MICO system, to support me by route
creation

• US-04: as a workflow creator/maintainer, I want the MICO system, to show me the current
processing state

• US-05: as a extractor developer, I want to connect my local extractor to the MICO system, to
extend the platform functionality.

• US-06: as a extractor developer, I want the MICO system, to call my extractor and store the
result of extraction process

• US-07: as a extractor developer, I want to stop my locally running extractor

• US-08: as a MICO user, I want the MICO system, to analyze my a/v content(-set) and store/pro-
vide the results

29

• US-09: as a MICO user, I want the MICO system, to re-analyze my content(-set) with a new
workflow (other extractors or extractor settings)

• US-10: as a MICO user, I want to cancel ongoing jobs if results are not satisfying to adapt
extractor configurations

• US-11: as a MICO user, I want validate and rate the extractor results for my content set

• US-12: as a MICO user, I want the MICO system to analyze my content with specific extractors
based on metadata provided by the platform

2.9.3 Relevant Components

The MICO broker design involves the following components in order to address the aforementioned
user stories:

Extractor
The primary goal of an extractor is to produce/convert annotations of the input content in RDF
format, to provide intermediate processing steps for other extractors, or to convert native output
to RDF, as described in Section 2.1.

Extractor registration service
The main goal of the registrations service is support storage and retrieval / discovery of extractor
information, focusing especially on the input and output - required data / formats, and provided
data / annotations. In addition this service is also responsible for providing the extractors with
correct connection parameters (e.g. the storage URI). More information about the registration
service is provided in section 2.9.6.

Workflow planner
The workflow planner, which is described in more detail in section 2.9.7, is the responsible for the
creation of a workflow, i.e. the composition of a complex processing chain of registered extractors
that aims at a specific user need or use case.

Data store
The data store is responsible for persisting the input data provided by the users of the MICO
system and to persist and retrieve annotations and the binary data produced by the extractors. A
more detailed description is provided in section 2.9.4

Item injector The item injector is responsible for injecting items, e.g. binary data such as a video, an
audio file or an image, as well as respective item sets into the system. As reported in section 2.9.8,
the injector is both triggering the execution of the required workflow, and storing the information
about the input data.

Workflow executor The workflow executor is responsible for conducting workflow processing, as re-
quested by the user. It is responsible for triggering the appropriate extractors, providing them with
the data they need, following the rules imposed by the workflow planner. More information about
this is provided in section 2.9.8

Auxiliary component The auxiliary component is necessary to support dynamic routing within a work-
flow - i.e., it supports routing based on annotations / results within the workflow by getting data
to the Data store and providing it within a route in order to make decisions about the further
processing. Its specifications are provided in section 2.9.8

30

2.9.4 High-level data model

The data model of the MICO broker was designed in order to capture the key information needed to
address the general principles outlined in section 2.9.1, and considering the key requirements from
section 2.7 and use cases in section 2.9.5. The broker data model is using URIs as elementary stored
data: As a result, the broker system can fully exploit the RDF annotations presented in section 3, and can
support extractor registration, manual and semi-automatic workflow creation, and capturing of feedback
related to previous annotation jobs (i.e. processing workflows applied to a defined content set). The
model can be split into four interconnected domains:

1. Content description: This domain captures information about content that is aggregated and
produced by the system

2. Extractor configuration: This domain captures information about possible configurations of the
extractors which are registered

3. I/O data description: This domain captures information about the data required or produced by
extractors, which provides the basis for pipeline creation

4. Platform management: This domain captures information about previous jobs e.g. from show-
case administrators, thereby providing important feedback that can be reused for new or adapted
workflows

An overview of the data model is provided in figure 5, with each layer being represented by a
different color. The following paragraphs will describe the domains in more detail.

31

Figure 5 Data model of the MICO broker: Overview

content description

ContentItemSet_has_ContentItem

ContentItemSet

idContentItemSet INT

description VARCHAR(45)

Indexes

ContentItem

idContentItem INT

Indexes

ContentPart

idContentPart INT

ContentItem_idContentItem INT

Indexes

input / output data description

SemanticType

idSemanticType INT

name VARCHAR(45)

description VARCHAR(45)

SemanticTypeUri VARCHAR(255)

Indexes

MimeType

idMimeType VARCHAR(255)

Indexes

SyntacticType_has_MimeType

IOData

idIOData INT

ExtractorMode_idExtractorMode INT

isInput BOOL

index INT

cmdLineSwitch VARCHAR(45)

Indexes

IOData_has_MimeType

IOData_idIOData INT

MimeType_idMimeType VARCHAR(255)

FormatConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SyntacticType

IOData_idIOData INT

SyntacticType_idSyntacticType INT

AnnotationConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SemanticType

SyntacticType

idSyntacticType INT

SyntacticTypeUri VARCHAR(45)

description VARCHAR(255)

Indexes

extractor configuration

ExtractorComponent

idExtractor INT

name VARCHAR(45)

version VARCHAR(45)

id VARCHAR(45)

Indexes

ExtractorMode

idExtractorMode INT

ExtractorComponent_idExtractor INT

configSchemaUri VARCHAR(45)

outputSchemaUri VARCHAR(45)

id VARCHAR(45)

description VARCHAR(256)

Indexes

platform management

ExtractorInstance

idExtractorInstance INT

ExtractorMode_idExtractorMode INT

ConfigInstanceUri VARCHAR(45)

Indexes

EvalInfo

ContentItemSet_idContentItemSet INT

ExtractorInstance_idExtractorInstance INT

rating INT

comments VARCHAR(45)

Indexes

UseCase

idUseCase INT

description VARCHAR(45)

Indexes

Job

idJob INT

Pipeline_idPipeline INT

ContentItemSet_idContentItemSet INT

status INT

timestamp DATETIME

Indexes

Pipeline

idPipeline INT

description VARCHAR(45)

routeUri VARCHAR(255)

Indexes

UseCase_has_Job

UseCase_idUseCase INT

Job_idJob INT

rating INT

comments VARCHAR(45)

Indexes

Pipeline_has_ExtractorInstance

ContentItemSet_has_ContentItem

ContentItemSet

idContentItemSet INT

description VARCHAR(45)

Indexes

ContentItem

idContentItem INT

Indexes

ContentPart

idContentPart INT

ContentItem_idContentItem INT

Indexes

SemanticType

idSemanticType INT

name VARCHAR(45)

description VARCHAR(45)

SemanticTypeUri VARCHAR(255)

Indexes

MimeType

idMimeType VARCHAR(255)

Indexes

SyntacticType_has_MimeType

IOData

idIOData INT

ExtractorMode_idExtractorMode INT

isInput BOOL

index INT

cmdLineSwitch VARCHAR(45)

Indexes

IOData_has_MimeType

IOData_idIOData INT

MimeType_idMimeType VARCHAR(255)

FormatConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SyntacticType

IOData_idIOData INT

SyntacticType_idSyntacticType INT

AnnotationConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SemanticType

SyntacticType

idSyntacticType INT

SyntacticTypeUri VARCHAR(45)

description VARCHAR(255)

Indexes

ExtractorComponent

idExtractor INT

name VARCHAR(45)

version VARCHAR(45)

id VARCHAR(45)

Indexes

ExtractorMode

idExtractorMode INT

ExtractorComponent_idExtractor INT

configSchemaUri VARCHAR(45)

outputSchemaUri VARCHAR(45)

id VARCHAR(45)

description VARCHAR(256)

Indexes

ExtractorInstance

idExtractorInstance INT

ExtractorMode_idExtractorMode INT

ConfigInstanceUri VARCHAR(45)

Indexes

EvalInfo

ContentItemSet_idContentItemSet INT

ExtractorInstance_idExtractorInstance INT

rating INT

comments VARCHAR(45)

Indexes

UseCase

idUseCase INT

description VARCHAR(45)

Indexes

Job

idJob INT

Pipeline_idPipeline INT

ContentItemSet_idContentItemSet INT

status INT

timestamp DATETIME

Indexes

Pipeline

idPipeline INT

description VARCHAR(45)

routeUri VARCHAR(255)

Indexes

UseCase_has_Job

UseCase_idUseCase INT

Job_idJob INT

rating INT

comments VARCHAR(45)

Indexes

Pipeline_has_ExtractorInstance

2.9.4.1 Content description domain
The content description domain, depicted in figure 6, consists of three main tables:

ContentItem
captures information about the location (URI) of Content Items that have been stored within the
system. As described in section 3, Content Items combine media resources and their respective
analysis results.

ContentPart
captures information about the location (URI) of Content Parts – i.e., media resources associated
to a Content Item, as well as the output annotation produced by the extractors.

ContentItemSet
allows grouping of several Content Items into one set. A pre-existing Content Set can be used,
for instance, to run different pipelines on the same set, or to repeat the analysis with an updated
extractor pipeline configuration.

32

Figure 6 Data model of the MICO broker: Content description and extractor configuration domains

content description

ContentItemSet_has_ContentItem

ContentItemSet

idContentItemSet INT

description VARCHAR(45)

Indexes

ContentItem

idContentItem INT

Indexes

ContentPart

idContentPart INT

ContentItem_idContentItem INT

Indexes

input / output data description

SemanticType

idSemanticType INT

name VARCHAR(45)

description VARCHAR(45)

SemanticTypeUri VARCHAR(255)

Indexes

MimeType

idMimeType VARCHAR(255)

Indexes

SyntacticType_has_MimeType

IOData

idIOData INT

ExtractorMode_idExtractorMode INT

isInput BOOL

index INT

cmdLineSwitch VARCHAR(45)

Indexes

IOData_has_MimeType

IOData_idIOData INT

MimeType_idMimeType VARCHAR(255)

FormatConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SyntacticType

IOData_idIOData INT

SyntacticType_idSyntacticType INT

AnnotationConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SemanticType

SyntacticType

idSyntacticType INT

SyntacticTypeUri VARCHAR(45)

description VARCHAR(255)

Indexes

extractor configuration

ExtractorComponent

idExtractor INT

name VARCHAR(45)

version VARCHAR(45)

id VARCHAR(45)

Indexes

ExtractorMode

idExtractorMode INT

ExtractorComponent_idExtractor INT

configSchemaUri VARCHAR(45)

outputSchemaUri VARCHAR(45)

id VARCHAR(45)

description VARCHAR(256)

Indexes

platform management

ExtractorInstance

idExtractorInstance INT

ExtractorMode_idExtractorMode INT

ConfigInstanceUri VARCHAR(45)

Indexes

EvalInfo

ContentItemSet_idContentItemSet INT

ExtractorInstance_idExtractorInstance INT

rating INT

comments VARCHAR(45)

Indexes

UseCase

idUseCase INT

description VARCHAR(45)

Indexes

Job

idJob INT

Pipeline_idPipeline INT

ContentItemSet_idContentItemSet INT

status INT

timestamp DATETIME

Indexes

Pipeline

idPipeline INT

description VARCHAR(45)

routeUri VARCHAR(255)

Indexes

UseCase_has_Job

UseCase_idUseCase INT

Job_idJob INT

rating INT

comments VARCHAR(45)

Indexes

Pipeline_has_ExtractorInstance

ContentItemSet_has_ContentItem

ContentItemSet

idContentItemSet INT

description VARCHAR(45)

Indexes

ContentItem

idContentItem INT

Indexes

ContentPart

idContentPart INT

ContentItem_idContentItem INT

Indexes

SemanticType

idSemanticType INT

name VARCHAR(45)

description VARCHAR(45)

SemanticTypeUri VARCHAR(255)

Indexes

MimeType

idMimeType VARCHAR(255)

Indexes

SyntacticType_has_MimeType

IOData

idIOData INT

ExtractorMode_idExtractorMode INT

isInput BOOL

index INT

cmdLineSwitch VARCHAR(45)

Indexes

IOData_has_MimeType

IOData_idIOData INT

MimeType_idMimeType VARCHAR(255)

FormatConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SyntacticType

IOData_idIOData INT

SyntacticType_idSyntacticType INT

AnnotationConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SemanticType

SyntacticType

idSyntacticType INT

SyntacticTypeUri VARCHAR(45)

description VARCHAR(255)

Indexes

ExtractorComponent

idExtractor INT

name VARCHAR(45)

version VARCHAR(45)

id VARCHAR(45)

Indexes

ExtractorMode

idExtractorMode INT

ExtractorComponent_idExtractor INT

configSchemaUri VARCHAR(45)

outputSchemaUri VARCHAR(45)

id VARCHAR(45)

description VARCHAR(256)

Indexes

ExtractorInstance

idExtractorInstance INT

ExtractorMode_idExtractorMode INT

ConfigInstanceUri VARCHAR(45)

Indexes

EvalInfo

ContentItemSet_idContentItemSet INT

ExtractorInstance_idExtractorInstance INT

rating INT

comments VARCHAR(45)

Indexes

UseCase

idUseCase INT

description VARCHAR(45)

Indexes

Job

idJob INT

Pipeline_idPipeline INT

ContentItemSet_idContentItemSet INT

status INT

timestamp DATETIME

Indexes

Pipeline

idPipeline INT

description VARCHAR(45)

routeUri VARCHAR(255)

Indexes

UseCase_has_Job

UseCase_idUseCase INT

Job_idJob INT

rating INT

comments VARCHAR(45)

Indexes

Pipeline_has_ExtractorInstance

2.9.4.2 Extractor configuration domain
The extractor configuration domain, as depicted in figure 6, consists of two tables:

ExtractorComponent
captures information about an Extractor Component registered within the MICO system.

ExtractorMode
captures information about a concrete functionality (there can be 1..n functionalities per extrac-
tor), provided by an Extractor Component. In particular, it includes the URI of a configuration
schema provided by the developer31 and, for extractors creating annotations in a format different
than RDF, the URI of the output schema.

31 cft. extractor registration schema in section 2.9.6

33

Figure 7 Data model of the MICO broker: I/O data description
content description

ContentItemSet_has_ContentItem

ContentItemSet

idContentItemSet INT

description VARCHAR(45)

Indexes

ContentItem

idContentItem INT

Indexes

ContentPart

idContentPart INT

ContentItem_idContentItem INT

Indexes

input / output data description

SemanticType

idSemanticType INT

name VARCHAR(45)

description VARCHAR(45)

SemanticTypeUri VARCHAR(255)

Indexes

MimeType

idMimeType VARCHAR(255)

Indexes

SyntacticType_has_MimeType

IOData

idIOData INT

ExtractorMode_idExtractorMode INT

isInput BOOL

index INT

cmdLineSwitch VARCHAR(45)

Indexes

IOData_has_MimeType

IOData_idIOData INT

MimeType_idMimeType VARCHAR(255)

FormatConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SyntacticType

IOData_idIOData INT

SyntacticType_idSyntacticType INT

AnnotationConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SemanticType

SyntacticType

idSyntacticType INT

SyntacticTypeUri VARCHAR(45)

description VARCHAR(255)

Indexes

extractor configuration

ExtractorComponent

idExtractor INT

name VARCHAR(45)

version VARCHAR(45)

id VARCHAR(45)

Indexes

ExtractorMode

idExtractorMode INT

ExtractorComponent_idExtractor INT

configSchemaUri VARCHAR(45)

outputSchemaUri VARCHAR(45)

id VARCHAR(45)

description VARCHAR(256)

Indexes

platform management

ExtractorInstance

idExtractorInstance INT

ExtractorMode_idExtractorMode INT

ConfigInstanceUri VARCHAR(45)

Indexes

EvalInfo

ContentItemSet_idContentItemSet INT

ExtractorInstance_idExtractorInstance INT

rating INT

comments VARCHAR(45)

Indexes

UseCase

idUseCase INT

description VARCHAR(45)

Indexes

Job

idJob INT

Pipeline_idPipeline INT

ContentItemSet_idContentItemSet INT

status INT

timestamp DATETIME

Indexes

Pipeline

idPipeline INT

description VARCHAR(45)

routeUri VARCHAR(255)

Indexes

UseCase_has_Job

UseCase_idUseCase INT

Job_idJob INT

rating INT

comments VARCHAR(45)

Indexes

Pipeline_has_ExtractorInstance

ContentItemSet_has_ContentItem

ContentItemSet

idContentItemSet INT

description VARCHAR(45)

Indexes

ContentItem

idContentItem INT

Indexes

ContentPart

idContentPart INT

ContentItem_idContentItem INT

Indexes

SemanticType

idSemanticType INT

name VARCHAR(45)

description VARCHAR(45)

SemanticTypeUri VARCHAR(255)

Indexes

MimeType

idMimeType VARCHAR(255)

Indexes

SyntacticType_has_MimeType

IOData

idIOData INT

ExtractorMode_idExtractorMode INT

isInput BOOL

index INT

cmdLineSwitch VARCHAR(45)

Indexes

IOData_has_MimeType

IOData_idIOData INT

MimeType_idMimeType VARCHAR(255)

FormatConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SyntacticType

IOData_idIOData INT

SyntacticType_idSyntacticType INT

AnnotationConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SemanticType

SyntacticType

idSyntacticType INT

SyntacticTypeUri VARCHAR(45)

description VARCHAR(255)

Indexes

ExtractorComponent

idExtractor INT

name VARCHAR(45)

version VARCHAR(45)

id VARCHAR(45)

Indexes

ExtractorMode

idExtractorMode INT

ExtractorComponent_idExtractor INT

configSchemaUri VARCHAR(45)

outputSchemaUri VARCHAR(45)

id VARCHAR(45)

description VARCHAR(256)

Indexes

ExtractorInstance

idExtractorInstance INT

ExtractorMode_idExtractorMode INT

ConfigInstanceUri VARCHAR(45)

Indexes

EvalInfo

ContentItemSet_idContentItemSet INT

ExtractorInstance_idExtractorInstance INT

rating INT

comments VARCHAR(45)

Indexes

UseCase

idUseCase INT

description VARCHAR(45)

Indexes

Job

idJob INT

Pipeline_idPipeline INT

ContentItemSet_idContentItemSet INT

status INT

timestamp DATETIME

Indexes

Pipeline

idPipeline INT

description VARCHAR(45)

routeUri VARCHAR(255)

Indexes

UseCase_has_Job

UseCase_idUseCase INT

Job_idJob INT

rating INT

comments VARCHAR(45)

Indexes

Pipeline_has_ExtractorInstance

2.9.4.3 Input/Output data description domain
The input/output description domain is depicted in figure 7. This domain stores the core information
necessary to validate, create and execute extractor pipelines and workflows, according to user selection-
s/requirements.

IOData
represents the core data entity for the respective input or output to a given ExtractorMode. The
optional field cmdLineSwitch can be used to control in which format a binary output, e.g. an
image, is provided. For extractors requiring multiple inputs or providing multiple outputs, the
relative index is stored as an attribute.

MimeType

34

captures the MIME type 32 of the I/O data. RDF data produced by extractors will be labeled as
type “rdf/mico”.

IOData has MimeType
is the table connecting I/O data to MimeType. The optional entry FormatConversionSchemaURI
can be used to signal that an extractor is a ’helper’ with the purpose of converting binary data
from one format to another one (e.g. PNG images to JPEG), whenever such functionality is not
directly supported by the extractor itself.

SyntacticType
is the syntactic type of the I/O data. For MICO extractors that produce RDF annotations, the
stored URI should correspond to an RDF type, preferably to one of the types defined by the
MICO Metadata model described in section 3. For binary data, this URI corresponds to a Dublin
Core format 33

IOData has SyntacticType
connects I/O data to SemanticType, and signals via the optional entry AnnotationConversion-
SchemaUri if an extractor produce native XML annotations, which need to be converted to an
RDF type.

SemanticType
captures high-level information about the semantic type associated with the I/OD data. It can be
used e.g. by showcase administrators to quickly discover new or existing extractors that may be
useful to them, even if the syntactical type is not (yet) compatible - this information can then be
exploited to request an adaptation or conversion.

2.9.4.4 Platform management domain

ExtractorInstance
is the elementary unit storing the URI of a specific instance of an Extractor Mode, i.e. a configured
extraction functionality available to the platform. The information stored in the URI includes e.g.
the parameter and i/o data selection, according to the schema in section 2.9.6 and the information
stored during the registration by the extractor itself.

EvalInfo
is information about the analysis performance of an Extractor Instance on a specific Content
Item Set. This can be added by the developer to signal an appropriate input set to a showcase
administrator, or by a showcase administrator to signal data sets for which his detector is working
better or worse than expected.

Pipeline
captures the URI of the corresponding workflow configuration, i.e. the composition of Extractor
Instances and respective parameter configuration.

UseCase
is a high-level description of the goal that a user, e.g. showcase administrator, wants to achieve.

32 http://www.iana.org/assignments/media-types/media-types.xhtml
33 http://dublincore.org/documents/dces/

35

http://www.iana.org/assignments/media-types/media-types.xhtml
http://dublincore.org/documents/dces/
http://dublincore.org/documents/dces/
http://www.iana.org/assignments/media-types/media-types.xhtml
http://dublincore.org/documents/dces/

Job
is a unique and easy-to-use entity that links a specific Pipeline to a specific Content Item Set. This
can e.g. be used to verify the analysis status.

UseCase has Job
is a table connecting a Use Case to a specific Job, which can be used to provide feedback, e.g. to
rate how well a specific Pipeline has performed on a specific Content Item Set.

Figure 8 Data model of the MICO broker: Platform management

content description

ContentItemSet_has_ContentItem

ContentItemSet

idContentItemSet INT

description VARCHAR(45)

Indexes

ContentItem

idContentItem INT

Indexes

ContentPart

idContentPart INT

ContentItem_idContentItem INT

Indexes

input / output data description

SemanticType

idSemanticType INT

name VARCHAR(45)

description VARCHAR(45)

SemanticTypeUri VARCHAR(255)

Indexes

MimeType

idMimeType VARCHAR(255)

Indexes

SyntacticType_has_MimeType

IOData

idIOData INT

ExtractorMode_idExtractorMode INT

isInput BOOL

index INT

cmdLineSwitch VARCHAR(45)

Indexes

IOData_has_MimeType

IOData_idIOData INT

MimeType_idMimeType VARCHAR(255)

FormatConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SyntacticType

IOData_idIOData INT

SyntacticType_idSyntacticType INT

AnnotationConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SemanticType

SyntacticType

idSyntacticType INT

SyntacticTypeUri VARCHAR(45)

description VARCHAR(255)

Indexes

extractor configuration

ExtractorComponent

idExtractor INT

name VARCHAR(45)

version VARCHAR(45)

id VARCHAR(45)

Indexes

ExtractorMode

idExtractorMode INT

ExtractorComponent_idExtractor INT

configSchemaUri VARCHAR(45)

outputSchemaUri VARCHAR(45)

id VARCHAR(45)

description VARCHAR(256)

Indexes

platform management

ExtractorInstance

idExtractorInstance INT

ExtractorMode_idExtractorMode INT

ConfigInstanceUri VARCHAR(45)

Indexes

EvalInfo

ContentItemSet_idContentItemSet INT

ExtractorInstance_idExtractorInstance INT

rating INT

comments VARCHAR(45)

Indexes

UseCase

idUseCase INT

description VARCHAR(45)

Indexes

Job

idJob INT

Pipeline_idPipeline INT

ContentItemSet_idContentItemSet INT

status INT

timestamp DATETIME

Indexes

Pipeline

idPipeline INT

description VARCHAR(45)

routeUri VARCHAR(255)

Indexes

UseCase_has_Job

UseCase_idUseCase INT

Job_idJob INT

rating INT

comments VARCHAR(45)

Indexes

Pipeline_has_ExtractorInstance

ContentItemSet_has_ContentItem

ContentItemSet

idContentItemSet INT

description VARCHAR(45)

Indexes

ContentItem

idContentItem INT

Indexes

ContentPart

idContentPart INT

ContentItem_idContentItem INT

Indexes

SemanticType

idSemanticType INT

name VARCHAR(45)

description VARCHAR(45)

SemanticTypeUri VARCHAR(255)

Indexes

MimeType

idMimeType VARCHAR(255)

Indexes

SyntacticType_has_MimeType

IOData

idIOData INT

ExtractorMode_idExtractorMode INT

isInput BOOL

index INT

cmdLineSwitch VARCHAR(45)

Indexes

IOData_has_MimeType

IOData_idIOData INT

MimeType_idMimeType VARCHAR(255)

FormatConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SyntacticType

IOData_idIOData INT

SyntacticType_idSyntacticType INT

AnnotationConversionSchemaUri VARCHAR(45)

Indexes

IOData_has_SemanticType

SyntacticType

idSyntacticType INT

SyntacticTypeUri VARCHAR(45)

description VARCHAR(255)

Indexes

ExtractorComponent

idExtractor INT

name VARCHAR(45)

version VARCHAR(45)

id VARCHAR(45)

Indexes

ExtractorMode

idExtractorMode INT

ExtractorComponent_idExtractor INT

configSchemaUri VARCHAR(45)

outputSchemaUri VARCHAR(45)

id VARCHAR(45)

description VARCHAR(256)

Indexes

ExtractorInstance

idExtractorInstance INT

ExtractorMode_idExtractorMode INT

ConfigInstanceUri VARCHAR(45)

Indexes

EvalInfo

ContentItemSet_idContentItemSet INT

ExtractorInstance_idExtractorInstance INT

rating INT

comments VARCHAR(45)

Indexes

UseCase

idUseCase INT

description VARCHAR(45)

Indexes

Job

idJob INT

Pipeline_idPipeline INT

ContentItemSet_idContentItemSet INT

status INT

timestamp DATETIME

Indexes

Pipeline

idPipeline INT

description VARCHAR(45)

routeUri VARCHAR(255)

Indexes

UseCase_has_Job

UseCase_idUseCase INT

Job_idJob INT

rating INT

comments VARCHAR(45)

Indexes

Pipeline_has_ExtractorInstance

2.9.5 Use Cases

The following sections address the outcome of a refined analysis of the system requirements of the
MICO broker v3:

• section 2.9.3 reports the set of components involved, with a brief overview over their main pur-
poses and functionalities.

• section 2.9.5 presents the identified Use Cases in a tabular format.

figure 9 presents an overview of both use cases and system components.
The identified Use Cases (UC) are focusing on functional requirements, i.e. requirements that the

MICO system needs to fulfill in order to adhere both to the general assumptions described in Sec-
tion 2.9.1 and to the User Stories (US) reported in Section 2.9.2. Their description follows the following
template:

36

Figure 9 Overview of the MICO Use Cases

ID: UC-XX (xx: unique increment number)

Name: representative use case name (reflects involved component and user actions)
Related US: parent user stories IDs
Actors: relevant actors of the use case
Description: brief description of the use case
Pre-conditions: activities that must take place or conditions that must be given, before the use case

can be initiated
Post-conditions: state of the system after use case completion
Normal Flow: detailed description of the interaction between actors (user, system, components),

that will take place during execution of the use case under normal, expected con-
ditions

Alternative Flows: alternative interaction that can take place within this use case

37

The rest of the section reports the details of every UC displayed in figure 9.

ID: UC- 01

Name: EX-01a register extractor
Related US: US-05
Actors: user, extractor, extractor registration service, triple store (Marmotta)
Description: extractor registers his capabilities (consume, provide, settings, ...) at registration

service
Pre-conditions: registration service is running and accessible
Post-conditions: registration service knows all possible configuration of extractor
Normal Flow: 1) extractor connects with registration service

2) extractor sends its configuration schema (consume, provides, settings ...) to
service
3) service checks configuration data and stores it in triple store
4) service confirms registration process
5) extractor and service close connection

ID: UC- 02

Name: EX-01b connect extractor
Related US: US-05
Actors: user, extractor, extractor registration service
Description: an extractor connects to the platform during initialization
Pre-conditions: platform is running and accessible, necessary extractors are registered
Post-conditions: the extractor is running and waits for extraction call from platform, platform

knows how to call extractor
Normal Flow: 1) user starts extractor with specific configuration

2) extractor connects to platform and send current configuration
3) platform checks if configuration is available in registration store
4) platform confirms connection
5) extractor is ready and waits for call

ID: UC- 03

Name: EX-01c update extractor interdependency
Related US: US-05
Actors: platform user, extractor registration service
Description: a platform user gathered information, that two extractors can be combined (one

extractor can handle the output of the other one) and he wants to add that informa-
tion to the platform and make it accessible for future route creations

Pre-conditions: registration service is running and accessible, the extractors are registered
Post-conditions: the updated dependency information are stored and can be used for future route

creation
Normal Flow: 1) user connects to registration service

2) user sends updated dependency information
3) registration service updates information about extractors
4) registration service confirms update
5) user disconnects from registration service

38

ID: UC- 04

Name: EX-02 verify general extractor functionality
Related US: US-05
Actors: user, extractor, platform (broker)
Description: after connecting a new extractor, it should be possible to test the general function-

ality by sending a sample extraction call and check/verify the generated output
Pre-conditions: platform is running and accessible, necessary extractors are registered
Post-conditions: the extractor has processed the sample call and the user has checked/verified the

generated output
Normal Flow: 1) user selects sample call (if extractor supports several modes) and content

2) platform/broker triggers extractor (UC-EX-03 trigger extraction)
3) user verifies manually or automatically that the generated output looks like
expected

ID: UC- 05

Name: EX-03 trigger extraction
Related US: US-02, US-06, US-08
Actors: extractor, platform (broker, storage)
Description: during workflow process the broker has to call several extractors, this use case

describes the call of one extractor
Pre-conditions: platform is running and accessible, extractor is connected to platform, broker pro-

cesses a workflow
Post-conditions: the extractor has analyzed the content and uploaded the results
Normal Flow: 1) platform/broker triggers extraction process

2) extractor loads content part from storage
3) extractor analyzes content
4) extractor uploads results (content part and/or metadata) to storage
5) extractor informs broker that processing is finished

ID: UC- 06

Name: EX-04 disconnect running extractor
Related US: US-07
Actors: user, extractor, platform (broker)
Description: User stops local running extractor, which itself disconnects from platform
Pre-conditions: platform is running and accessible, necessary extractor is connected
Post-conditions: platform is running, extractor is stopped
Normal Flow: 1) User signals stop to running extractor (e.q. press ’q’ on cmd line)

2) extractor recognizes stop signal
3) extractor disconnects from platform
4) platform acknowledges disconnect
5) extractor process stops

39

ID: UC- 07

Name: EX-05 discover extractors
Related US: US-03
Actors: showcase admin, workflow planner, extractor registration service
Description: sometimes it is necessary to get information about available extractors, e.g. for

workflow creation to find and connect them to a pipeline
Pre-conditions: platform registration service is running and available
Post-conditions: registration service provided information about suitable extractors
Normal Flow: 1) During workflow creation the planer requests information about extractors from

registration service
2) registration service analyzes request
3) registration service generates response
4) registration service sends response to requester

ID: UC- 08

Name: WP-01 create new workflow / camel route
Related US: US-01, US-02, US-03
Actors: workflow planer, extractor registration service
Description: a workflow planer creates a new workflow based on the available extractors
Pre-conditions: platform is running and accessible, necessary extractors are registered
Post-conditions: the workflow planer has a new route definition, which is ready for publishing to

workflow executor
Normal Flow: 1) workflow planer requests information about available extractors (UC-EX-05)

2) user arranges extractors and creates a complete workflow
3) (opt.) user triggers route with sample content (UC-WP-02) to verify route func-
tionality

ID: UC- 09

Name: WP-02 verify workflow
Related US: US-01, US-03
Actors: workflow planer, broker
Description: a workflow planer should verify a newly generated workflow by processing sample

content
Pre-conditions: platform is running and accessible, necessary extractors are registered
Post-conditions: the platform ran a test workflow on the sample content
Normal Flow: 1) workflow planer selects workflow and sample content

2) broker triggers workflow execution

40

ID: UC- 10

Name: WP-03 adapt an existing workflow
Related US: US-03
Actors: user, workflow planer
Description: sometimes an existing workflow needs to be adapted cause of newly available

extractors etc.
Pre-conditions: a workflow was created, platform is running and accessible
Post-conditions: an adapted workflow is stored
Normal Flow: 1) user selects workflow to adapt from existing workflows

2) user adapts existing workflow within workflow planer
3) user publishes adapted/changed workflow (UC-WP-04)

ID: UC- 11

Name: WP-04 publish workflow
Related US: US-03
Actors: user, workflow planer, workflow executor
Description: after creation of a new workflow with the planer it needs to be published to work-

flow executor, to be available for execution
Pre-conditions: a workflow was created/changed, platform is running and accessible
Post-conditions: an workflow is stored in workflow executor
Normal Flow: 1) user selects workflow to publish and the target workflow executor

2) workflow planer sends workflow to workflow executor
3) workflow executor confirms receiving

ID: UC- 12

Name: WE-01a trigger job for content item
Related US: US-08, US-09
Actors: mico user, workflow executor
Description: a mico user wants to analyze content with a defined workflow and therefore starts

a new job
Pre-conditions: platform and storage service is running and accessible, necessary extractors are

connected
Post-conditions: a workflow was triggered for a content item
Normal Flow: 1) user selects content item to analyze

2) user selects appropriate workflow for his needs
3) workflow executor provides job reference to the user
4) workflow executor starts workflow (triggers first extractor ...)
5) workflow executor signals process complete

41

ID: UC- 13

Name: WE-01b trigger job for content set
Related US: US-08, US-09
Actors: mico user, workflow executor
Description: a mico user wants to analyze content set with a defined workflow and therefore

starts a new job
Pre-conditions: platform and storage service is running and accessible, necessary extractors are

connected
Post-conditions: a workflow was triggered for a content set
Normal Flow: 1) user selects content set to analyze

2) user selects appropriate work flow for his needs
3) workflow executor provides job reference to the user
4) workflow executor starts work flow (triggers first extractor ...)
5) workflow executor triggers flow for all items in the set

ID: UC- 14

Name: WE-02a show job state for content item
Related US: US-04, US-09
Actors: mico user, workflow executor
Description: mico user wants to know if processing is still ongoing or has finished (with success

or error)
Pre-conditions: platform and storage service is running and accessible
Post-conditions: the user got information about a job
Normal Flow: 1) user selects content item to analyze

2) user selects appropriate workflow for his needs
3) workflow executor starts workflow (triggers first extractor ...)
4) workflow executor signals process complete

ID: UC- 15

Name: WE-02b show job state for content set
Related US: US-04, US-09
Actors: mico user, workflow executor
Description: mico user wants to know if processing is still ongoing or has finished (with success

or error)
Pre-conditions: platform and storage service is running and accessible
Post-conditions: the user got information about a job
Normal Flow: 1) user selects content item to analyze

2) user selects appropriate workflow for his needs
3) workflow executor starts workflow (triggers first extractor ...)
4) workflow executor signals process complete

42

ID: UC- 16

Name: WE-03 enrich route / message
Related US: US-12
Actors: workflow executor, auxiliary component
Description: sometimes the auxiliary component needs to load extractor results which are nec-

essary for decisions during dynamic routing
Pre-conditions: a workflow with dynamic parts and the auxiliary component is in progress
Post-conditions: the auxiliary component has added the information to the route message, so that a

dynamic router can use it to make decisions
Normal Flow: 1) auxiliary component loads data from triple store

2) auxiliary component transforms data into a format that the dynamic router can
consume
3) auxiliary component puts information in route message

ID: UC- 17

Name: WE-04 cancel running workflow
Related US: US-10
Actors: showcase admin, workflow executor
Description: sometimes it is necessary to abort a job, e.g. when showcase admin notices a

wrong extractor configuration
Pre-conditions: a workflow is in progress
Post-conditions: a workflow is canceled, and no new extractors are triggered
Normal Flow: 1) showcase admin connects to workflow executor

2) workflow executor lists active workflows
3) showcase admin selects workflow to stop
4) workflow executor stops selected workflow

ID: UC- 18

Name: WE-05 show state for content set processing
Related US: US-09
Actors: mico user, workflow executor
Description: a mico user wants to know the how many files of a set are analyzed/processed by

a workflow
Pre-conditions: platform and storage service is running and accessible, necessary extractors are

connected
Post-conditions: broker displays progress information to the user
Normal Flow: 1) user connects to monitoring utility of workflow executor

2) user opens progress monitor
3) user selects content set and pipeline
4) system shows progress state

43

ID: UC- 19

Name: WE-06 validate extractor results
Related US: US-11
Actors: mico user, registration service
Description: after finishing a job the called user should be able to rate the results of an extractor

for the processed content set
Pre-conditions: at least one content item of a set was processed by an extractor of a workflow

produced some results
Post-conditions: extractor metadata is updated by user feedback and can be used for upcoming

workflow planning
Normal Flow: 1) user connects to registration service

2) user selects job and/or extractor to evaluate
3) user provides feedback
4) registration service updates extractor metadata

ID: UC- 20

Name: CS-01a provide new content (via cli)
Related US: US-08
Actors: mico-user, item-injector, data-storage
Description: a mico user wants to upload / store new content in mico platform
Pre-conditions: platform and storage service is running and accessible
Post-conditions: a new content item with at least one content part is created
Normal Flow: 1) mico user provides storage access information to injector

2) user provides new data to injector
3) injector connects to storage
4) injector requests location (id) for new item from storage
5) data-storage provides item id
6) item injector transfers data to storage

ID: UC- 21

Name: CS-01b provide new content (via broker)
Related US: US-08
Actors: item injector, data store, mico user
Description: add new content to the platform
Pre-conditions: platform storage is up and running
Post-conditions: the new content is stored in platform storage
Normal Flow: 1) mico user connects to broker

2) mico user opens upload view
3) mico user selects file(s) to upload
4) item injector stores file(s) in data store

44

ID: UC- 22

Name: CS-02 store content item
Related US: US-08
Actors: item injector, data store
Description: add new content to the platform
Pre-conditions: platform storage is up and running, CS-01 was invoked
Post-conditions: the new content is stored in platform storage
Normal Flow: 1) inject tool creates new content item in storage

2) inject-tool upload binary data to platform storage
3) inject tool updates meta data in triple store

ID: UC- 23

Name: CS-03 add new content part
Related US: US-08
Actors: extractor, data store, triple store
Description: an extractor add a new content part to an item during extraction process
Pre-conditions: an extractor is processing a content
Post-conditions: a new content part and its meta data is stored
Normal Flow: 1) during analyze process the extractor produces or extracts new binary data

2) the extractor uploads binary data to platform storage
3) extractor send meta data to triple store

ID: UC- 24

Name: CS-04 load data
Related US: US-08
Actors: extractor, data store
Description: an extractor loads data (binary content) from storage to analyze it
Pre-conditions: the content exists in data store
Post-conditions: the extractor has copied the binary content to a local storage
Normal Flow: 1) extractor gets triggered

2) extractor opens connection to storage
3) extractor request data from storage
4) extractor stores data on local storage

ID: UC- 25

Name: CS-05 query knowledge base
Related US: US-08
Actors: triple store, auxiliary component
Description: auxiliary camel component loads meta data from triple store by LD-Path
Pre-conditions: meta data exists in triple store
Post-conditions: auxiliary component retrieved data to process it
Normal Flow: 1) auxiliary component gets triggered with LD-Path

2) auxiliary component sends LD-Path request to triple store
3) triple store responses data selected by LD-Path
4) auxiliary component can further process received data

45

ID: UC- 26

Name: CS-06 show analyze result
Related US: US-09
Actors: broker, triple store, mico user
Description: a mico user inspects analyze results
Pre-conditions: content was uploaded to the platform
Post-conditions: platform delivered meta data to user
Normal Flow: 1) user connects to platform

2) user selects content item to inspect
3) broker requests meta data from triple store
4) broker shows data to the user

2.9.6 Registration Service

As outlined in 2.9.1, one key assumption for the broker is that some extractor information is provided at
packaging time by the developer (extractor properties, input and output), while other extractor informa-
tion will typically be provided after packaging time, by other developers, showcase administrators etc.
(semantic mapping of extractors, and information / feedback about pipeline performance). This also
implies a separation into syntactical information, which is more or less fixed, and semantic information,
which is at least partially subjective and not fixed.

The registration service represents a new component, meant to provide one central point to register
and query extractor information, considering the aforementioned needs. Details about the respective
extractor / broker data model and registration process have been described in section 2.9.4. As outlined
in previous sections, Marmotta will be used by the broker for the broker / extraction model storage.
Workflow planning and execution can then reuse this information, and sections 2.9.7 and 2.9.8 will refer
to that.

The registration service will support both a REST API for providing extractor registration informa-
tion, and a front-end for respective user interaction, to complement information that is not or cannot be
provided by an extractor developer at packaging time, including feedback on how well certain pipelines
or extractors performed for content sets.

For the purpose of this document and implementation work in y3, it is especially important to agree
on the registration information that will be provided by developers, as this is includes a lot of informa-
tion, and respective changes will create significant effort for developers. Hence, the following focuses
on the schema to be used for extractor registration via the REST API, now provided as an XML Schema
Definition (XSD). Alternatively, the same information can also be provided as JSON data to the service.

The first entities that are specified in the XSD are the possible types of input and output data, and of
extractor parameters, as shown in figure 10

The types dataType and semanticType reflect the data model design from section 2.9.4. primi-
tiveType, on the other hand, defines a closed set of possible primitive types, which are then used /
combined by extractors to communicate how exactly to interpret the information.

On a high level perspective, as depicted in figure 11, every extractor is providing basic information
about the component, including name, version number and id.

Moreover, one or more modes need to be specified, capturing a specific behavior and functionali-
ties of a component (there can be several modes to one component), which may include a pre-defined
configuration provided by the developer. Every mode needs to provide the broker with:

1. a unique id

46

Figure 10 Broker registration XSD: Basic types

(a) dataType (b) semanticType

(c) primitiveType

2. a description

3. a non-empty list of required input - all inputs need to be provided at once to the extractor.

4. a non-empty list of required output - all outputs are generated by the extractor.

5. (opt.) a non-empty list of parameters, that the user or showcase administrator can select at startup,
when creating a pipeline.

47

Figure 11 Broker registration XSD: Extractor Specification overview

As depicted in figure 12, every input data must define a specific semanticType and a specific
dataType. By default, if many MIME types are listed inside the dataType entry 34, the input can be
represented in any of these format. The cmdLineSwitch attribute, if present, allows the broker to force
the extractor to work only with the specified one.

For extractor modes, it is possible to pre-filter the input depending on its annotated properties, using
one or more constraints. Each constraint is defined by a name, a non-empty list of allowedValues, an
allowedType that is specifying how to parse the allowed values and the constraints, and the dataLocation
– i.e., an LDpath – where the Broker can retrieve the necessary information for the pre-filtering.

34 cfr. Figure 10(a)

48

Figure 12 Broker registration XSD: Input data definition

Figure 13 provides the definition of output data per extractor mode. Every output data has to define
a specific semanticType, a specific dataType and a location – expressed as LD-path – reporting where
exactly data is stored. By default, if many MIME types are listed inside the dataType entry, the output
will be replicated for every entry in the list. The cmdLineSwitch attribute, if present, allows the broker
to force the extractor to produce an output only for the selected format(s).

If the extractor mode is also annotating some specific properties, every annotatedProperty has to be
specified in terms of its name, type and dataLocation, which once again is expressed as LDpath.

49

Figure 13 Broker registration XSD: Output data definition

User-configurable parameters of the extractors are modeled as described in figure 14. During the
registration, a parameter must include

1. a name

2. a description

3. a primitiveType, so that the broker may filter out illegal parameters

4. one between

(a) a non-empty list of allowed values

(b) a non-empty list of allowed ranges. an AllowedRange is specified by setting at least one
between maxIncl and minIncl

5. a defined cmdLineSwitch attribute, that allows the broker to start the extractor correctly

50

6. a defined isSimpleFlag attribute, that informs the broker about the parameter being a simple switch
or not

If the same XSD is used as a model to persist the information about an ExtractorInstance as defined
in section 2.9.4, then instead of choosing a list of allowed values or ranges, is it possible to omit the
attributes and to store the value of the parameter in the element selectedParameter.

Figure 14 Broker registration XSD: User-configurable parameter definition

51

2.9.7 Workflow planning and creation

As outlined in previous sections, one of the key goals of broker v3 is to support the process of creating
new pipelines, using the aforementioned information from the broker model and a respective front-end.
It is not realistic that this will work in a fully automatic manner: Pipeline and extractor performance
always depend the context / use case and content, hence it can only be a semi-automatic approach.
However, even a semi-automatic workflow can provide huge usability benefits, which may very well be
one of the key elements for the cross-media vision of the project.

In order to support workflow creation, the service will exploit several ’information pillars’, including
mimeType, syntacticType, semanticType, and feedback on how well existing pipelines and extractors
performed on content sets, as outlined in the previous sections 2.9.1, 2.9.4 and 2.9.6. In essence, it will
use these ’pillars’ to check compatibility of extractors on several levels and find possible matches, but
it is important to note that the ’pillars’ do not represent a simple hierarchy. Instead, they can be used
to support the creation of pipelines in a variety of ways. For instance, an indication of extractors that
have matching mimeType and syntacticType, but not a matching semanticType can be used to signal to
the service which extractors could match and hence should be ’linked’ via a new semanticType. Vice
versa, if it turns out that e.g. to extractors seem to provide similar output, as signaled by syntacticType
and semanticType, but the mimeType does not fit, this can be treated as indicated that a simple extension
of the extractor to support a new mimeType, e.g. via format conversion, could do the trick.

For instance, broker v3 could be used for semi-automatic workflow creation for video shot detection:
Using the broker v3 front-end, the user could search for extractors that provide locations (timestamps)
for interesting points inside a video. One possible entry in the result list the system may show the TVS-
extractor (section 2.2.2) with a configuration for shot detection. After selection of the TVS extractor, the
workflow planner would then check the input dependencies of that component, query possible extractors
that provide output data in the required format, and show them to the user. The user can then browse
the list and select one or several suitable extractors to combine them as part of a new workflow. This
step can be repeated several times, thereby completing the workflow creation. Once finished, the new
pipeline can be stored, to be used for execution jobs or possible later reuse and extension by the same
or other system users.

2.9.8 Workflow execution

Workflow execution involves four main components:

• The workflow executor as core component, which orchestrates and uses the other components and
is based on the Apache Camel framework [Fou04].

• The RabbitMQ message broker, which is used as communication layer to loosely couple extractors
and the MICO platform [PS04].

• The micoRabbitComp, which is a Camel endpoint component that connects the Camel framework
with the MICO platform, and triggers the extractors via RabbitMQ.

• The auxiliary componentm which is also a MICO-specific extension to Camel that allows extrac-
tion of information from Marmotta to support dynamic routing based on information provided by
extractors of the MICO platform.

Workflow / route execution and related component interaction is illustrated in the following, using
a sample pipeline as example, which is about extracting spoken words from a video. The workflow

52

involves several extractors, the auxiliary component, and a dynamic router to complete the task. The
connections between components and their execution order is depicted in figure 15.

Figure 15 Data model of the MICO broker: Platform management

The first extractor audio demux extracts the audio stream from an injected video file and stores it
within platform storage for further processing. The next two extractors are diarization and language
detection, which are analyzing the audio content in parallel. Finally, the diarization extractor annotates
information about the speaker and tries to detect start and end points of sentences, and language de-
tection is used to identify the spoken language, storing it in the knowledge base. Afterwards, a Camel
component loads that data from storage, and puts it to the Camel message, before a Camel component
for dynamic routing checks the language information and triggers a Kaldi extractor that is configured
with the language model according to the detected language.

53

3 Specifications and Models for Cross-media Publishing

3.1 Introduction

The MICO platform is an environment that allows to break up the hidden semantics of media in context
by orchestrating sets of different components that jointly analyse content, each adding its bit of addi-
tional information to the final result. Instead of publishing the results in proprietary or varying formats,
the platform relies on the Resource Description Framework (RDF) as a solid foundation for a unified
persistence layer, which allows semantic interlinking on the level of single resources and comprehensive
querying with SPARQL.

All results that are produced by the orchestrated extractors (intermediate as well as final results) are
made available following the MICO metadata model vocabulary (introduced in Dx.2.1). This section
covers the refinement of the Model in year 2 of the project. Version 2 of the MICO Metadata model is
based on lessons learned of existing extractors and performed pipelines of the MICO platform. As reca-
pitulation, subsection 3.2 presents a short summary of important terms in the model context. Subsection
3.3 will highlight all important changes of the new MICO Metadata Model in contrast to version 1.0.
Subsection 3.4 contains the detailed specification and documentation of the refined vocabulary. In order
to support developers with a lack of expertise in Semantic Web technologies, subsection 3.5 presents
Anno4j35, a Java library to read and write the MICO Metadata Model.

3.2 Recapitulation

The main workflow implemented by the framework is the analysis of media information units, in this
context called (Content) Items. (Content) Items are representations of media resources together with
their subsequent analysis results, called (Content Parts). (Content) Parts are results of analysis com-
ponents with different media types that are directly related to the same (Content) Item. In other words,
a (Content) Item is a semantic grouping of information objects (Content Parts) considering a specific
multimedia asset. As extraction and analysis processes in general produce a manifold of different re-
sults and output formats, unified ways of storing and querying the content and its context are required.
To enable comprehensive cross-media querying, the underlying data model must be capable to reflect
the performed workflow chain including the interaction and mutual dependencies between all analysis
steps. Metadata as well as provenance can be persisted in close relationship to the multimedia content.
Our existing model basically builds upon the Web Annotation Data Model (WADM, former Open An-
notation Data Model, see D3.1.1) and several existing ontologies like Dublin Core, Media Fragments
PROV-O, and FOAF.

The concept of (web) annotations is adapted and extended to the cross-media environment. The
baseline consists of three concepts, namely annotation, body, and target (see figure 16).

Figure 16 Basic annotation in the MICO data model

annotation

body target

oa:Annotationrdf:type

oa:hasBody oa:hasTarget

35https://github.com/anno4j/anno4j

54

https://github.com/anno4j/anno4j

The body contains ways of describing and classifying the results or outcomes of the extractors. In
general, every extractor has its own output type (e.g. mico:FaceRecognitionBody or mico:NERBody).
The target describes what the body is about and usually refers to the input multimedia asset or previous
(Content) Part and allows the creation of a traceable workflow chain. The target can be extended
with more precise selections to only refer to a temporal or spatial fragment of a multimedia asset (e.g. a
frame of a video). The actual annotation object connects the body and the target and also can be enriched
with context and provenance information about the extraction workflow (e.g. timestamps, creator and
configuration).

As an overall example, figure 17 shows the results of an extractor that runs a face recognition algo-
rithm. Therefore, its body is typed as an instance of the class mico:FaceRecognitionBody. The content
of the extraction result contains a name (corresponding to the person that is recognised) and a confidence
value (which reflects how sure the extractor is about its findings). The target of the annotation refers
to the input of the extraction process. In this case, the target links to its preceding content part, which
itself contains information about the input picture. As the face recognition algorithm also supports the
coordinates of the located face, a link to the sole media item is not enough. For this purpose, a selection
refines the target to specify the selected spatial fragment of the picture.

Figure 17 Face Recognition example

Enhanced selection

Annotation

oa:has
Source

"xywh=
15,190,170,170"

TargetBody

oa:has
Body

oa:has
Target

mico:Face
RecognitionBody

rdf:
type

"Barrack Obama"

0.7

rdf:
value

mico:has
Confidence

Previous
ContentPart

Selector

oa:Fragment
Selector rdf:type

oa:has
Selector

rdf:value

http://www.w3.org/
TR/mediafrags

dcterms:
conforms

To

ContentPart mico:has
Content

oa:Specific
Resource

rdf:type

3.3 Major Changes

The second iteration of the MICO Metadata model is based on lessons learned and includes basic re-
structuring, renaming, and refinement of the semantics of different components. Furthermore stricter
multiplicities of the relationships between components were introduced to allow a well-defined query-
ing. The following list describes a summarised overview over the major changes and explanations of
the refined model, which are also illustrated in figure 18.

Namespace changes Due to upcoming new MICO vocabulary (e.g. broker model vocabulary), the
namespace and abbreviation for the MICO Metadata Model mico - http://www.mico-project.
eu/ns/platform/1.0/schema# was changed to mmm - http://www.mico-project.eu/ns/
mmm/2.0/schema#.

Namespace for Extractor Bodies To split and distinguish between schema vocabulary and Use-Case
specific vocabulary a second vocabulary, called MICO Metadata Model Terms mmmterms (http:

55

http://www.mico-project.eu/ns/platform/1.0/schema#
http://www.mico-project.eu/ns/platform/1.0/schema#
http://www.mico-project.eu/ns/mmm/2.0/schema#
http://www.mico-project.eu/ns/mmm/2.0/schema#
http://www.mico-project.eu/ns/mmmterms/2.0/schema#
http://www.mico-project.eu/ns/mmmterms/2.0/schema#

Figure 18 MICO Metedata Model Version 2.0

mmm:Body

mmm:Part

mmm:hasSource [1/1]

mmm:Specific
Resource

mmm:
Resource

mmm:Item

oa:
Selector

oa:Specific
Resource

oa:
Annotation

rdfs:sub
ClassOf

rdfs:sub
ClassOf

mmm:has
Body [1/1]

mmm:has
Target [1/*]

mmm:hasSelector [0/1]

mmm:
hasPart [0/*]

disjoint
 unionmmm:Asset

mmm:
hasAsset [1/1]

mmm:
hasAsset [0/*]rdfs:Literal

mmm:hasLocation [1/1]

mmm:has
Format [1/1]

mmm:
hasInput [1/*]

//www.mico-project.eu/ns/mmmterms/2.0/schema#) was created. It includes application-
related body and selector classes which are used in MICO Use-Cases.

Renaming of ContentItem and ContentPart mico:ContentItem and mico:ContentPart are re-
named to mmm:Item and mmm:Part to avoid semantic misunderstandings that they always are
connected to binary multimedia content. mmm:Parts can solely consist of metadata annotations
without a binary representation (e.g. multimedia file).

MMM versions of OA vocabularies The mmm introduces extended versions of selected Open
Annotation classes and predicates to modify multiplicities, domains or ranges (e.g.
mmm:SpecificResource, mmm:Body, mmm:hasSource).

Merging ContentPart with Annotation The first version of the model defined that a
mico:ContentPart has exactly one oa:Annotation because of deprecated requirements. The
refined model merges both concepts which results in the mmm:Part class which extends the
oa:Annotation. Hence, mmm:Part is a direct counterpart of an Annotation in the MICO context.

Initial multimedia asset is moved into the Item In the previous model, the initial multimedia asset
(usually the multimedia upload) was defined as a special ContentPart which didn’t denote the
actual relevance of the content in relation to the overall Content Item. Content Items represent
media resources together with their subsequent analysis results. Content Parts are therefore only
results of analysis components. As a result the refined model integrates the initial multimedia
asset directly on the level on the Item and not as a standalone Part. All subsequent Parts then
semantically refer to the same overall Item with directly connected multimedia asset.

Multimedia assets on Part level The location information of a binary file output, formerly presented in
the SpecificResource/Target of an Annotation is now included at the level of Parts. Semantically,

56

http://www.mico-project.eu/ns/mmmterms/2.0/schema#
http://www.mico-project.eu/ns/mmmterms/2.0/schema#

these multimedia assets denote a representation of the whole annotation. (e.g a cropped image for
a face detection annotation or a xml file for a low-level feature).

Modelling of a Multimedia asset Multiple multimedia assets on the level of Item (e.g. initial upload)
or Part (binary representations of extractor results) are modelled with multiple mmm:hasAsset
relationships instead of the former mico:hasLocation relationship. A mmm:Asset can be defined
with a format (dc:format) and the location of the binary asset (mmm:hasLocation).

Introduction of mmm:Resource Because of the modification that initial multimedia assets are moved
to the Item, the selection of a annotation has to be able to either refer to a Item or to a Part.
Therefore mmm:Resource denotes the distinct union of Item and Part instances and is used to
limit the range of the mmm:hasSource predicate.

Input and Target Provenance The former model had inconsistence in specifying the difference of in-
put and target of an annotation. The target side was misused to either use it to denote the input
Content Part of an analysis (e.g. input XML file) or to denote the real target of an annotation (e.g.
input image where a face was detected). The new model allows a clear separation between both.
While multiple inputs now reside on the Part level with mmm:hasInput (also a preparation for an
extensive broker model), the target of an annotation clearly denotes what the annotation is about.

Extractor Provenance As preparation for the broker model, which will also lead to an RDF specifica-
tion in the future, some features are already included in the new model. A mmm:Part will link to
the instance that is responsible for its creation via the relationship oa:annotatedBy. In this case,
the ”instance” is a mode of a given extractor. An extractor has different modes, while every mode
is defined by its inputs, outputs, as well as different dynamic parameters. An example for this
could be a Named Entity Recognition extractor, that takes different languages for every defined
mode. An exemplary excerpt can be seen in figure 19. The given ”extractor” has three different
modes (namely ”mode1” to ”mode3”). The Part in this case is extracted by ”mode3” under its
specified configuration.

Include Fusepool Annotation Model The Fusepool Annotation Model (FAM) defines several annota-
tions for textual content. It supports user level annotations like named entities, topics, sentiment,
as well as machine level annotations like tokens, POS tags, lemmas, or stems. For a detailed
description of the model and its vocabulary elements, see the FAM specification36. The follow-
ing annotations are added to the MICO ontology: language annotations, entity mention annota-
tions, linked entity annotations, topic classifications, and sentiment annotations. All of them are
documented and described in the documentation of mmmterms37. MICO adopts the user level
annotation of the FAM for extractors processing textual content.

3.4 Specification

As part of this deliverable, the appendix contains four documents about the specification of the MICO
model:

mmm Specification Contains the machine-readable OWL specification of the mmm vocabulary. Also pub-
lished online at http://www.mico-project.eu/ns/mmm/2.0/schema#.

36https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.
md

37http://mico-project.bitbucket.org/vocabs/mmmterms/2.0/documentation/

57

http://www.mico-project.eu/ns/mmm/2.0/schema#
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
http://mico-project.bitbucket.org/vocabs/mmmterms/2.0/documentation/

Figure 19 Exemplary Extractor Provenance

mmm:Part rdf:type part

extractor mode1

mode2

input1_1

output1_1

param1_1

param1_2

input1_2

output1_2

mode3

mmm:annotatedBy

mmm Documentation Contains the human readable specification and documentation of the mmm vo-
cabulary. Also published online at http://mico-project.bitbucket.org/vocabs/mmm/2.
0/documentation/.

mmmterms Specification Contains the machine-readable OWL specification of the mmmterms vocab-
ulary. Also published online at http://www.mico-project.eu/ns/mmmterms/2.0/schema#.

mmmterms Documentation Contains the human readable specification and documentation of the
mmmterms vocabulary. Also published online at http://mico-project.bitbucket.org/
vocabs/mmmterms/2.0/documentation/.

3.5 Read and write the MICO Metadata Model

Most of the people interacting with the Semantic Web, no matter if it is a researcher, programmer, or
a data-scientist, do not make (full) use of the Semantic Web technologies, as it requires much effort in
order to use your data in a Semantic Web conform way. You have to face challenges like familiarising
yourself with the de-facto standard RDF (Resource Description Framework [MM04]) as well as its
querying language SPARQL (SPARQL Protocol and RDF Query Language [GSP]). Best practices,
ontologies and different specifications that allow to express the data and information in extensible and
meaningful ways even make it more difficult.

The MICO project uses Semantic Web technologies in an extensive way to model a uniform way
for heterogenous cross-media analysis results and the corresponding workflow chains. At the same
time, the project focus on lowering the barrier to Semantic Web technologies for non Semantic Web
developers to support a wider range of cross-multimedia analysis adoption. Therefore we implemented
a software approach during the project, that tries to facilitate the programmatic access to RDF with the
well known programming language Java. The result is the open-source library Anno4j38, which was
already introduced in Dx3.1. The key features were an extensible creation of MICO (see section 3.4)
or generic W3C Web Annotations with plain Java objects, predefined implementations for Bodies and
Targets conform to the MICO Metadata Model or W3C Web Annotation Data Model, and persisting of
the generated RDF to a local or remote SPARQL 1.1 endpoint.

Consistent with a second iteration of the MICO Metadata Model, Anno4j has also been reworked.
Besides necessary refactoring of the code base to allow for example multiple inheritance of entities,
concurrent usage of Anno4j instances, Anno4j was adapted to the new version of the MICO Metadata

38https://github.com/anno4j/anno4j

58

http://mico-project.bitbucket.org/vocabs/mmm/2.0/documentation/
http://mico-project.bitbucket.org/vocabs/mmm/2.0/documentation/
http://www.mico-project.eu/ns/mmmterms/2.0/schema#
http://mico-project.bitbucket.org/vocabs/mmmterms/2.0/documentation/
http://mico-project.bitbucket.org/vocabs/mmmterms/2.0/documentation/
https://github.com/anno4j/anno4j

Model. Furthermore, Anno4j was enhanced with convenient methods to export created RDF information
in various formats like JSON-LD, Turtle, or XML. The two most important changes are the introduction
of querying and custom extensibility of Anno4j will be presented in the following.

3.5.1 Anno4j Querying

Anno4j now provides an expressive way of querying persisted annotations or parts of them, using a path-
based criteria, which reduces the effort to learn non-experts. Anno4j uses the LDPath39 syntax to define
multiple criteria of the resulting annotation. LDPath is a path-based query language similar to XPath
[DR14] or SPARQL Property Paths [Sea10]. It showed up that, particularly for non-experts, path-based
declaration of annotation criteria with LDPATH is more convenient in contrast to a pattern-based query
languages like SPARQL.

Listing 1 shows an example where multiple criteria are used to define an Annotation where the
Body should be a mmmterms:AnimalDetectionBody and an Elephant was detected. A collection of
individual criteria define the desired characteristic of the resulting annotations. Hence, a developer is
not obliged to create a complex and overloaded equivalent SPARQL query. There is no need for special
LDPath capable endpoint, because LDPath criteria are directly translated to an equivalent SPARQL 1.1
query, which allows developers to reuse generic SPARQL 1.1 endpoints for their use-cases.

Listing 1: Anno4j Query Example

1 List<Annotation> annotations = queryService
2 .addCriteria(”oa:hasBody[is−a mmmterms:AnimalDetectionBody]”)
3 .addCriteria(”oa:hasBody/rdf:value”, ”Elephant”)
4 .execute();

Besides basic path criteria, Anno4j also supports a wide range of different condition types:

• Forward and reverse path conditions

• Recursive Path like OneOrMore(+) or ZeroOrMore(*)

• Comparison methods like equal, greater, or lower

• Union of multiple paths

• Type or Datatype conditions

• Logical combination of conditions

• Custom functions

For further and detailed description of the LDPath criteria, please refer to Anno4j40 and LDPath
specification41.

39http://marmotta.apache.org/ldpath/
40https://github.com/anno4j/anno4j
41http://marmotta.apache.org/ldpath/

59

http://marmotta.apache.org/ldpath/
https://github.com/anno4j/anno4j
http://marmotta.apache.org/ldpath/

3.5.2 Anno4j Custom Extensions

The path criteria accepted by Anno4j will cover essential requirements of the end-users. To be more
flexible to the users needs, Anno4j provides a powerful way to extend the basic querying mechanism by
allowing the user to register custom LDPath syntax, such as function predicates, test functions and fil-
ters. Developers can introduce new query elements by defining LDPath syntax and registering a partial
query evaluator which transforms the new query element to valid SPARQL 1.1 to ensure full compati-
bility with generic SPARQL endpoints. This extension mechanism was induced by the requirement to
integrate query extensions like SPARQL MM (see section 4) into Anno4j. A SPARQL-MM integration
can, for example, query for temporal or spatial relationships of different annotations. Considering the
previous example in listing 1, we could extend the query to search for annotations where an elephant
stands left besides a giraffe by using a custom function in the LDPath query (see listing 2). The param-
eter of the fn:leftBesides function contains an LDPATH query to select the giraffe annotation. The
custom function fn:leftBesides doesn’t represent an actual serialised relationship between two anno-
tations, but rather uses annotation information like the target and selection to evaluate the corresponding
function.

Listing 2: Anno4j Custom Function Example

1 List<Annotation> annotations = queryService
2 .addCriteria(”oa:hasBody[is−a mmmterms:AnimalDetectionBody]”)
3 .addCriteria(”oa:hasBody/rdf:value”, ”Elephant”)
4 .addCriteria(”fn:leftBesides(oa:hasBody/rdf:value, Giraffe)”)
5 .execute();

60

c

4 Specifications and Models for Cross-media Querying

With SPARQL-MM we introduced an Multimedia-specific extension to the existing de-facto standard
query language in the Semantic Web SPARQL. It introduces spatio-temporal filter and aggregation
functions to handle media resources and fragments that follow the W3C standard for Media Fragment
URIs. Basic requirements for this extension as well as a basic specification are already defined in D4.1.1.
and D4.2.1. Additionally we set a proper basis for all technology enablers by aligning them to real world
use cases in D7.1.1 and D8.1.1. In D4.2.1 the specification fulfilled the requirements TE-401 (Support
query by spatio-temporal relationship), TE-402 (Support full-text search on structured datasets), TE-
403 (Support storage and retrieval for structured data), TE-405 (Provide a SPARQL query interface),
and TE-406 (SPARQL 1.1 Support). With the second specification we extend this functionality to:

TE-412: Support complex spatio-temporal fragments By extending the rudimentary Media Frag-
ment URIs to more complex shapes and transformations we support more fine grained annotation
and retrieval for spatio-temporal fragments.

TE-413: Support geographical queries We achieve this by integrating the GeoSPARQL standard
from the Open Geospatial Consortium [Ope11] to Apache Marmotta.

TE-404: Support SPARQL-MM query building We achieve this aim by adding SPARQL-MM func-
tionality to Anno4J (as described in the example in 3.5). The integration currently contains all
spatial and temporal relation functions that are specified for SPARQL-MM and is continuously
adapted to new features. This integration makes the access of annotations and media fragments
seamless.

TE-409: Support media analysis functions and properties We achieve this by cover complex
SPARQL queries (that use and combine existing analysis features) within filter functions and
”magic properties” using SPARQL Inferencing Notation 42.

TE-410: Support image and video fragment presentation We achieve this by providing a web ser-
vice that supports media fragments as query parameter and thus serves cropped images and videos.
As this service is not query but platform specific it is going to be described in the final version of
the MICO platform D6.2.3.

We do not specify TE-408 (Fuzzy SPARQL), TE-411 (Pivot Vocabularies) and TE-407 (RDF based
similarity search) here yet due to the project internal task prioritization. This are considered for the next
iteration of SPARQL-MM.

In this chapter we describe how we build on top of the existing work to extend the functionality,
support missing features and improve the efficiency of SPARQL-MM. We divided the chapter in 3
subsections:

Retrospect gives an overview of existing features of SPARQL-MM.

Extended Specification outlines how we extend SPARQL-MM feature-wise in the this iteration cycle
and informs about the underlying technologies.

42http://spinrdf.org/

61

http://spinrdf.org/

Outlook shows how we are going to address the missing features in the next iteration. Additionally
we give a brief overview on optimization strategies that will allow a more efficient evaluation of
SPARQL-MM. As a third point we show how we are going to automatically generate test-data of
arbitrary cardinality for high-scalability tests.

The sample data and queries are related to MICO use cases, which gives the reader a proper understand-
ing of how to use SPARQL-MM in real world scenarios.

4.1 Retrospect

SPARQL-MM as query language for Linked Media is an important pillar for the bridge between Multi-
media and the Semantic Web. In D4.1.1 we described many features that has to be fulfilled to make this
pillar stable and robust. Like described in [KSK15], SPARQL-MM focused in the first iteration mainly
on functions for spatial and temporal object retrieval. As example (adapted from [Aic+15]) we show,
how SPARQL-MM can be used to issue queries like:

Find scenes where Barack Obama is left beside the Greenpeace MD during the UN climate
change summit ordered by length.

The associated SPARQL-MM query could look like this:

1 PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/1.0.0/function#>
2 PREFIX oa: <http://www.w3.org/ns/oa#>
3 PREFIX ex: <http:mico-project.eu/examples/vocabulary/>
4 PREFIX dbpedia: <http://dbpedia.org/resource/>
5
6 SELECT ?scene WHERE {
7 ?a3 oa:hasBody ?event;
8 oa:hasTarget ?s3. # there are resources about an event
9

10 ?event schema:Event;
11 schema:summary ?description. # which has a description
12
13 FILTER mm:fulltext-search(str (?description),
14 "UN climate conference","en") # about ’UN climate conference’
15
16 ?a2 oa:hasBody dbpedia:Barack_Obama;
17 oa:hasTarget ?s2. # and there are resources about Obama
18
19 ?a1 oa:hasBody ?p1;
20 oa:hasTarget ?s1. # and there are resources
21 ?p1 ex:ceo_of dbpedia:Greenpeace. # about the MD of Greenpeace.
22
23 FILTER mm:leftBeside(?s2,?s1) # Obama has to be at the left of the MD and
24
25 FILTER mm:intersects(?s3,?s2) # has to be appear at the same time like the event.
26
27 BIND (mm:boundingBox(?s1,?s2) AS ?scene) # Wrap the results to scenes
28
29 ORDER BY DESC(mm:duration(?scene)) # and show the longest first.

Like described in the first specification, SPARQL-MM supports by now:

• Media Fragments and Media Fragment URIs, like described in [Tro+12].

• 10 spatial topological relations based on the Dimensional Extended nine-Intersection Model (DE-
9IM) [CFO93]

• 8 spatial directional relations based in simple center point comparison model

• 13 temporal relations based on Allen’s interval algebra [All83]

62

Furthermore SPARQL-MM integrates:

• full-text query and full-text search

• all features defined by SPARQL 1.1 query language [HS13]

In the next section we describe, how SPARQL-MM is extended in several ways.

4.2 Extended Specification

In this section we specify several extensions for Multimedia querying in MICO. It includes an extension
for Media Fragment URIs, a description of the GeoSPARQL implementation, an extension of SPARQL-
MM regarding accessor-functions and an introduction of the SPARQL Inferencing Notation.

4.2.1 Extension of Media Fragment URIs

The existing standard for Media Fragment URIs [Tro+12] specifies the syntax for constructing
media fragment URIs and explains how to handle them over the HTTP protocol. It supports
addressing media along four dimensions, which are spatial, temporal, track (e.g. audio) and id
(e.g. a chapter). Unfortunately the spatial dimension is weak with respect to representation power
because it just supports rectangular regions. This may be the reason why, in comparison to the
temporal fragments that are supported by all major web browsers, spatial fragments lead a niche
existence. Therefor we decided to extend the standard with a) a wider range of geometric shapes b)
basic translations of shapes and c) animations of shapes in a temporal range. As described in D4.2.1
the SPARQL-MM model already considers such extensions and therefore has to be just slightly adapted.

The specification is an outcome of many discussions with the research community in the area of
Linked Media. The extensions are mainly inspired by discussions at the World Wide Web conference
201543 and the work from Tom Steiner44 and Olivier Aubert45.

In the following we interpret coordinates regarding the standard: ”Pixel coordinates are inter-
preted after taking into account the resource’s dimensions, aspect ratio, clean aperture, resolution, and
so forth, as defined for the format used by the resource. If an anamorphic format does not define how
to apply the aspect ratio to the video data’s dimensions to obtain the ”correct” dimensions, then the
user agent must apply the ratio by increasing one dimension and leaving the other unchanged.”[Tro+12].

Extending Shapes
Currently the Media Fragment URI standard supports only rectangular selections. The rectangle can be
specified as pixel coordinates or percentages. According the standard ”Rectangle selection is denoted
by the name xywh. The value is an optional format pixel: or percent: (defaulting to pixel) and
4 comma-separated integers. The integers denote x, y, width and height, respectively, with x=0, y=0
being the top left corner of the image. If percent is used, x and width are interpreted as a percentage
of the width of the original media, and y and height are interpreted as a percentage of the original
height.” Inspired by SVG Basic Shape specification in [Fer01] we recommend four shapes in addition
(or substitution) to xywh:

43https://lists.w3.org/Archives/Public/public-media-fragment/2015May/0003.html
44https://github.com/tomayac/dynamic-media-fragments
45˜urlhttp://olivieraubert.net/dynamic-media-fragments/

63

https://lists.w3.org/Archives/Public/public-media-fragment/2015May/0003.html
https://github.com/tomayac/dynamic-media-fragments

Rectangle: rect=x,y,w,h[,rx,ry]
This is an extension of the existing rectangular basic shape. Rectangle selection is denoted by the
name rect. The value is an optional format pixel: or percent: (defaulting to pixel) and 4 or 6
comma-separated integers. The integers denote x, y, width, height and (optionally) the x and y radius
(rx and ry) of the ellipse used to round off the corners of the rectangle respectively. x=0, y=0 being the
top left corner of the image. If percent is used, x, width and rx are interpreted as a percentage of the
width of the original media, and y, height and ry are interpreted as a percentage of the original height.
An example is outlined in Figure 20. The formal syntax specification is outlined in listing 3.

Listing 3: BNF for Media Fragment Extension: rect

1 rectprefix = %x72.65.63.74 ; "rect"
2 rectparam = [unit ":"] 1*DIGIT "," 1*DIGIT "," 1*DIGIT "," 1*DIGIT
3 ["," 1*DIGIT "," 1*DIGIT]
4 unit = %x70.69.78.65.6C ; "pixel"
5 / %x70.65.72.63.65.6E.74 ; "percent"

Figure 20 Example: rect=75,11,161,283,20,20

Circle: circle=x,y,r
Circle selection is denoted by the name circle. The value is an optional format pixel: or percent:
(defaulting to pixel) and 3 comma-separated integers. The integers denote x and y as the center of the
circle and r as the radius. x=0, y=0 being the top left corner of the image. If percent is used, x and r are
interpreted as a percentage of the width of the original media, and y is interpreted as a percentage of
the original height. An example is outlined in Figure 21. The formal syntax specification is outlined in
listing 4.

Listing 4: BNF for Media Fragment Extension: circle

1 circleprefix = %x63.69.72.63.6c.65 ; "circle"
2 circleparam = [unit ":"] 1*DIGIT "," 1*DIGIT "," 1*DIGIT

64

Figure 21 Example: circle=136,72,65

Ellipse ellipse=cx,cy,rx,ry
Ellipse selection is denoted by the name ellipse. The value is an optional format pixel: or percent:
(defaulting to pixel) and 4 comma-separated integers. The integers denote cx, cy (the center of the
ellipse) and rx, ry (the radius of the ellipse). x=0, y=0 being the top left corner of the image. If percent
is used, cx and rx are interpreted as a percentage of the width of the original media, and cy and ry are
interpreted as a percentage of the original height. An example is outlined in Figure 22. The formal
syntax specification is outlined in listing 5.

Listing 5: BNF for Media Fragment Extension: ellipse

1 ellipseprefix = %x65.6c.6c.69.70.73.65 ; "ellipse"
2 ellipseparam = [unit ":"] 1*DIGIT "," 1*DIGIT "," 1*DIGIT ","

1*DIGIT

Polygon polygon=x1,y2*(,xn,yn)
Polygon selection is denoted by the name polygon. The value is an optional format pixel: or
percent: (defaulting to pixel) and 2*n comma-separated integers (with n ∈ N). The integers denote
x, y as starting point and xn, yn as points on the polyline that borders the polygon; the polygon is
closed. x=0, y=0 being the top left corner of the image. If percent is used, x and xn are interpreted as
a percentage of the width of the original media, and y and yn are interpreted as a percentage of the
original height. An example is outlined in Figure 23. The formal syntax specification is outlined in
listing 6.

Listing 6: BNF for Media Fragment Extension: polygon

1 polygonprefix = %x70.6f.6c.79.67.6f.6e ; "polygon"
2 polygonparam = [unit ":"] 1*DIGIT "," 1*DIGIT *("," 1*DIGIT ","

1*DIGIT)

65

Figure 22 Example: ellipse=271,252,30,50

Figure 23 Example: polygon=213,265,263,198,333,265

As the shapes identify regional fragments there is no necessity for ”open shapes” so we skipped
line and polyline. The existing shape xywh=x,y,w,h can be substituted to rect=x,y,w,h.

Introducing Transformation
Currently the Media Fragment URI standard does not support shape transformation. Even with the
shape extensions we introduced in the former section, the identification of spatial fragments is limited.
Additionally, with regard to further extensions e.g. animations, a proper representation of shape
transformation and translation is lacking. We aim to overcome this limitations by introducing shape
transformations. Inspired by SVG Transformation specification in [Fer01] we recommend:

Translate: translate=x[,y]

66

Translate transformation is denoted by the name translate. The value is an optional format pixel: or
percent: (defaulting to pixel) and 1 or 2 comma-separated integers. The integers denote x horizontal
and y (optionally) for vertical translation. x=0, y=0 being the top left corner of the image. If percent
is used, x is interpreted as a percentage of the width of the original media, and y is interpreted as a
percentage of the original height. The formal syntax specification is outlined in listing 7.

Listing 7: BNF for Media Fragment Extension: translate

1 translateprefix = %x74.72.61.6e.73.6c.61.74.65 ; "translate"
2 translateparam = [unit ":"] 1*DIGIT ["," 1*DIGIT]

Scale: scale=x[,y]
Scale transformation is denoted by the name scale. The value is an optional format pixel: or
percent: (defaulting to pixel) and 1 or 2 comma-separated integers. The integers denote x horizontal
and y (optionally) for vertical scale. x=0, y=0 being the top left corner of the image. If percent is used,
x is interpreted as a percentage of the width of the original media, and y is interpreted as a percentage
of the original height. The formal syntax specification is outlined in listing 8.

Listing 8: BNF for Media Fragment Extension: scale

1 scaleprefix = %x73.63.61.6c.65 ; "scale"
2 scaleparam = [unit ":"] 1*DIGIT ["," 1*DIGIT]

Rotate rotate=a[,x,y]
Rotate transformation is denoted by the name rotate. The values are and 1 or 3 comma-separated
integers. The x and y value (optional) is an optional format pixel: or percent: (defaulting to pixel).
The integers denote a as rotation angle and x,y as center of rotation. x=0, y=0 being the top left corner
of the image. If percent is used, x is interpreted as a percentage of the width of the original media, and
y is interpreted as a percentage of the original height. The formal syntax specification is outlined in
listing 9.

Listing 9: BNF for Media Fragment Extension: rotate

1 rotateprefix = %x72.6f.74.61.74.65 ; "rotate"
2 rotateparam = [unit ":"] 1*DIGIT ["," 1*DIGIT "," 1*DIGIT]

Skew rotate=a[,x,y]
Skew transformation is denoted by the name skew. The values are and 1 or 2 comma-separated integers.
The value is an optional format pixel: or percent: (defaulting to pixel) and 1 or 2 comma-separated
integers. The integers denote x horizontal and y (optionally) for vertical skew. x=0, y=0 being the top
left corner of the image. If percent is used, x is interpreted as a percentage of the width of the original
media, and y is interpreted as a percentage of the original height. The formal syntax specification is
outlined in listing 10.

67

Figure 24 Example: ellipse=157,150,66,145&rotate=345

Listing 10: BNF for Media Fragment Extension: skew

1 skewprefix = %x73.6b.65.77 ; "skew"
2 skewparam = [unit ":"] 1*DIGIT ["," 1*DIGIT]

Transformations in Media Fragment URIs are only considered if one and only one shape is de-
fined. Transformations can be stacked. If a transformation type occurs more than once, only the first
value is considered.

Animating Transformation
The static transformations we introduced are a useful tool for a more special definition of Media
Fragment and may be sufficient for still images. But spatial fragments often needs to trans-
form over time (for videos, interactive charts etc.). Therefore we introduce animated transformations.
In order to keep urls short we just use the prefix a + the name of the transformation that has be animated:

Animated Translate: aTranslate=d1,x1[,y1]*[;dn,xn[,yn]]
Animated translate transformation is denoted by the name aTranslate. The value is an op-
tional format pixel: or percent: (defaulting to pixel) plus a semicolon-separated list of 2 or
3 comma-separated numbers. The first number of each number set (d) is defined as duration
and may be defined in percent (for videos) or milliseconds (for images). The other numbers
represents the translation as specified. The formal syntax specification is outlined in listing 11.

Listing 11: BNF for Media Fragment Extension: aTranslate

1 atranslate = %x61.54.72.61.6e.73.6c.61.74.65 ; "aTranslate"
2 atranslate = [unit ":"] 1*NUMBER, 1*DIGIT ["," 1*DIGIT]

*[1*NUMBER, 1*DIGIT ["," 1*DIGIT]]

Animated Scale: aScale=d1,x1[,y1]*[;dn,xn[,yn]]

68

Animated scale transformation is denoted by the name aScale. The value is an optional format pixel:
or percent: (defaulting to pixel) plus a semicolon-separated list of 2 or 3 comma-separated numbers.
The first number of each number set (d) is defined as duration and may be defined in percent (for
videos) or milliseconds (for images). The other numbers represents the scaling as specified. The formal
syntax specification is outlined in listing 12.

Listing 12: BNF for Media Fragment Extension: aScale

1 ascaleprefix = %x61.53.63.61.6c.65 ; "aScale"
2 ascaleparam = [unit ":"] 1*NUMBER, 1*DIGIT ["," 1*DIGIT]

*[1*NUMBER, 1*DIGIT ["," 1*DIGIT]]

Animated Rotate: aRotate=d1,r1[,x1,y1]*[;dn,rn[,xn,yn]]
Animated rotate transformation is denoted by the name aRotate. The value is an optional format
pixel: or percent: (defaulting to pixel) plus a semicolon-separated list of 2 or 4 comma-separated
numbers. The first number of each number set (d) is defined as duration and may be defined in percent
(for videos) or milliseconds (for images). The other numbers represents the rotaion as specified. The
formal syntax specification is outlined in listing 13.

Listing 13: BNF for Media Fragment Extension: aRotate

1 arotateprefix = %x61.52.6f.74.61.74.65 ; "aRotate"
2 arotateparam = [unit ":"] 1*NUMBER, 1*DIGIT ["," 1*DIGIT ","

1*DIGIT] *[1*NUMBER, 1*DIGIT ["," 1*DIGIT "," 1*DIGIT]]
3

Animated Skew: aSkew=d1,r1[,x1,y1]*[;dn,rn[,xn,yn]]
Animated skew transformation is denoted by the name aSkew. The value is an optional format pixel:
or percent: (defaulting to pixel) plus a semicolon-separated list of 2 or 4 comma-separated numbers.
The first number of each number set (d) is defined as duration and may be defined in percent (for
videos) or milliseconds (for images). The other numbers represents the skew as specified. The formal
syntax specification is outlined in listing 14.

Listing 14: BNF for Media Fragment Extension: aSkew

1 askewprefix = %x61.53.6b.65.77 ; "aSkew"
2 askewparam = [unit ":"] 1*NUMBER, 1*DIGIT ["," 1*DIGIT]

*[1*NUMBER, 1*DIGIT ["," 1*DIGIT]]
3

Animated Transformations in Media Fragment URIs are only considered if one and only one shape is
defined. Animated transformations can be stacked. If an animated transformation type occurs more
than once, only the first value is considered. Figure 25 shows how a spatial fragment is animated over
time in both scale and translation. In this case there is no translation until 70% of the temporal fragment
(8 seconds overall), in the remaining time the shape translates linearly. The scaling is linear over the
whole fragment playtime.

69

Figure 25 Example: ellipse=90,84,7,12&t=0,8&aTranslate=0.7,0,0;0.3,-13,-33
&aScale=percent:1,3,1

On the web46 we provide a draft implementation of our media fragment extension proposal.
This work is on a very early stage and represents only a snapshot of current and ongoing work in an
upcomming W3C working group. To keep on track we recommend to subscribe to the newsletter of the
Media Fragments Working Group47.

4.2.2 GeoSPARQL

”The OGC GeoSPARQL standard supports representing and querying geospatial data on the Semantic
Web. GeoSPARQL defines a vocabulary for representing geospatial data in RDF, and it defines an
extension to the SPARQL query language for processing geospatial data [...]. In addition, GeoSPARQL
is designed to accommodate systems based on qualitative spatial reasoning and systems based on quan-
titative spatial computations.”[Ope11]. In MICO we planed to integrate this standard in the Open Source
framework Apache Marmotta which builds the basis for Metadata Storage Layer of the MICO platform.
To achieve this we used the instruments of the Open Source community and mentored a development
process under the organizational umbrella of the Google Summer of Code 2015 (GSoC48) project. The
whole development is described in the official Apache Issue tracking system under MARMOTTA-58449.
In this section we give a short overview of the implemented parts of the standard. The function
vocabulary uses the prefix geof: http://www.opengis.net/def/function/geosparql/.

Simple Features Topological Relations

46http://tkurz.github.io/media-fragment-uris-ideas/
47http://www.w3.org/2008/WebVideo/Fragments/
48https://developers.google.com/open-source/gsoc/
49https://issues.apache.org/jira/browse/MARMOTTA-584

70

http://tkurz.github.io/media-fragment-uris-ideas/
http://www.w3.org/2008/WebVideo/Fragments/
https://developers.google.com/open-source/gsoc/
https://issues.apache.org/jira/browse/MARMOTTA-584

Function intersects
Syntax geof:sfIntersects(?geom1, ?geom2)

Description returns true if p1.shape contains p2.shape.
Example

Function within
Syntax geof:sfWithin(?geom1, ?geom2)

Description returns TRUE if geom1 is completely inside geom2.
Example

Function contains
Syntax geof:sfContains(?geom1, ?geom2)

Description returns TRUE if and only if no points of geom2 lie in the exterior of
geom1, and at least one point of the interior of geom2 lies in the interior
of geom1.

Example

71

Function overlaps
Syntax geof:sfOverlaps((?geom1, ?geom2)

Description returns TRUE if the Geometries share space, are of the same dimension,
but are not completely contained by each other.

Example

Function touches
Syntax geof:sfTouches(?geom1, ?geom2)

Description returns TRUE if the geometries have at least one point in common, but
their interiors do not intersect.

Example

Function equals
Syntax geof:sfEquals(?geom1, ?geom2)

Description returns TRUE if the given geometries represent the same geometry.
Example

Function disjoint
Syntax geof:sfDisjoint(?geom1, ?geom2)

Description returns TRUE if the Geometries do not ”spatially intersect” - if they do
not share any space together.

Example

72

Function crosses
Syntax geof:sfCrosses(?geom1, ?geom2)

Description returns TRUE if the supplied geometries have some, but not all, interior
points in common.

Example

Eigenhofer Topological Relations

Function equals
Syntax geof:ehEquals(geom1, geom2)

Description returns TRUE if the given geometries represent the same geometry.
Function disjoint

Syntax geof:ehDisjoint(?geom1, ?geom2)
Description returns TRUE if the Geometries do not ”spatially intersect” - if they do

not share any space together.

Function meet
Syntax geof:ehMeet(?geom1, ?geom2)

Description returns TRUE if the geometries have at least one point in common, but
their interiors do not intersect.

Example

Function overlap
Syntax geof:ehOverlap(?geom1, ?geom2)

Description returns TRUE if the Geometries share space, are of the same dimension,
but are not completely contained by each other.

Function crosses
Syntax geof:sfCrosses(?geom1, ?geom2)

Description returns TRUE if the supplied geometries have some, but not all, interior
points in common.

73

Function covers
Syntax geof:ehCovers(?geom1, ?geom2)

Description returns TRUE if the subject spatialObject spatially covers the object
spatialObject. DE-9IM: T*TFT*FF*.

Example

Function coveredBy
Syntax geof:ehCoveredBy(?geom1, ?geom2)

Description returns TRUE if the subject spatialObject is spatially covered by the
object spatialObject. DE-9IM: TFF*TFT** (inverse of covers).

Function inside
Syntax geof:ehInside(?geom1, ?geom2)

Description returns TRUE if the subject spatialObject is spatially inside the object
spatialObject. DE-9IM: TFF*FFT**.

Example

RCC8 Topological Relations

Function equals
Syntax geof:rcc8eq(geom1, geom2)

Description returns TRUE if the given geometries represent the same geometry.

74

Function disconnected
Syntax geof:rcc8dc(geom1, geom2)

Description returns TRUE if the Geometries do not ”spatially intersect” - if they do
not share any space together.

Example

Function externally connected
Syntax geof:rcc8ec(geom1, geom2)

Description returns TRUE if the geometries have at least one point in common, but
their interiors do not intersect.

Example

Function partially overlapping
Syntax geof:rcc8po(geom1, geom2)

Description returns true if geom1 is within geom2 and their borders touches in al-
most one point.

Example

75

Function tangential proper part
Syntax geof:rcc8tpp(geom1, geom2)

Description returns true if geom1 is within geom2 and their borders touches in al-
most one point.

Example

Function tangential proper part inverse
Syntax geof:rcc8tppi(geom1, geom2)

Description returns true if geom1 contains geom2 and their borders touches in al-
most one point.

Function non-tangential proper part
Syntax geof:rcc8ntpp(geom1, geom2)

Description returns true if geom 1 is within geom 2 and their borders doesn’t touches
in almost one point.

Example

Function non-tangential proper part inverse
Syntax geof:rcc8ntppi(geom1, geom2)

Description returns true if geom1 contains geom2 and their borders doesn’t touch in
any point.

Example

76

Non-Topological Functions

Function intersection
Syntax geof:intersection(?geom1, ?geom2)

Description returns a geometry that represents the shared portion of geom1 and
geom2.

Example

Function convex hull
Syntax geof:convexHull(?geom1)

Description the convex hull of a geometry represents the minimum convex geometry
that encloses all geometries within the set.

Example

Function contains
Syntax geof:ehContains((?geom1, ?geom2)

Description returns TRUE if the subject spatialObject spatially contains the object
spatialObject.

Example

77

Function buffer
Syntax geof:buffer(?geom1, radius, units:anyUnit)

Description this function returns a geometric object that represents all Points whose
distance from geom1 is less than or equal to the radius measured in
units.

Example

Function distance
Syntax geof:distance(?geom1, ?geom2,units:anyUnit)

Description returns the shortest distance in units between any two Points in the two
geometric objects.

Example

Function boundary
Syntax geof:boundary(?geom1)

Description this function returns the closure of the boundary of geom1.
Example

78

Function difference
Syntax geof:difference (geom1, geom2)

Description this function returns a geometric object that represents all Points in the
set difference of geom1 with geom2.

Example

Function envelope
Syntax geof:envelope (geom1)

Description this function returns the minimum bounding box of geom1.
Example

Function relate
Syntax geof:relate(geom1, geom2, pattern-matrix)

Description returns TRUE if the spatial relationship between geom1 and geom2 cor-
responds to one with acceptable values for the specified pattern-matrix.
Otherwise, this function returns false. Pattern-matrix represents a DE-
9IM intersection pattern consisting of T (true) and F (false) values.

Function symmetric difference
Syntax geof:symDifference(geom1, geom2)

Description this function returns a geometric object that represents all Points in the
set symmetric difference of geom1 with geom2.

Function union
Syntax geof:union(geom1, geom2)

Description this function returns a geometric object that represents all Points in the
union of geom1 with geom2.

Example

79

Function get spatial reference ID
Syntax geof:getSRID (geom)

Description returns the spatial reference system URI for geom.

For more information we recommend the user and developer documentation at the Apache Mar-
motta Wiki 50 which builds the basis for this section.

4.2.3 Extension of Spatio-Temporal Functions

As described in D3.1.1 we represent spatial-temporal media sections using the Media Fragments
URI specification from the Word Wide Web consortium [Tro+12] - which entails many advantages
including information coherence (the identifier of media and fragment is in one place). But this
also leads to some issues within the Semantic Web where all the information is expressed using
RDF, a graph based approach that tries to formalize all information spread on nodes and edges.
SPARQL-MM tries to integrate both approaches within one access mechanism. In D4.2.1 (the basic
specification of SPARQL-MM) we introduced many functions that allows to compare fragments
with each other. But first tests in real world scenarios showed that an important feature is missing:
accessor functions which allows to extract information from media fragment urls and use it in
other query parts like projection, filtering and ordering. In this section we define three different
kinds of accessor functions; the function identifier follow the schema defined in D4.2.1., the input
and output properties are aligned to the SPARQL-MM object model, which uses the prefix lmo:
http://linkedmultimedia.org/sparql-mm/ns/1.0.0/ontology#.

Spatial Accessor Features (SF):

In order to support pixels and percent we introduce lmo:unitNumber which is defined as:

Listing 15: Defintion: lmo:unitNumber

1 lmo:unitNumber = [unit ":"] 1*number
2 number = INTEGER | DECIMAL
3 unit = %x70.69.78.65.6C ; "pixel"
4 / %x70.65.72.63.65.6E.74 ; "percent"

Function F402-SF-a: getArea

lmo:unitNumber mm:getArea (
lmo:SpatialEntity entity

)

This function returns the area of a spatial entity as unit number. If the property is not a spatial
entity, null is returned.

50https://wiki.apache.org/marmotta/GSoC/2015/MARMOTTA-584

80

https://wiki.apache.org/marmotta/GSoC/2015/MARMOTTA-584

Function F402-SF-b: getBoundingBox

lmo:Rectangle mm:getBoundingBox (
lmo:SpatialEntity entity

)

This function returns the rectangular bounding box for a spatial entity. If the property is not a
spatial entity, null is returned.

Function F402-SF-c: getXY

lmo:Point mm:getXY (
lmo:SpatialEntity entity

)

This function returns the left upper point of the bounding rectangle of a spatial entity. If the
property is not a spatial entity, null is returned.

Function F402-SF-d: getHight

lmo:unitNumber mm:getHight (
lmo:SpatialEntity entity

)

This function returns the height of the bounding box for a spatial entity as unit number. If the
property is not a spatial entity, null is returned.

Function F402-SF-e: getWidth

lmo:unitNumber mm:getWidth (
lmo:SpatialEntity entity

)

This function returns the width of the bounding box for a spatial entity as unit number. If the
property is not a spatial entity, null is returned.

Function F402-SF-f: getCenter

lmo:Point mm:getCenter (
lmo:SpatialEntity entity

)

This function returns the center of the spatial entity as point. If the property is not a spatial en-
tity, null is returned.

Temporal Accessor Features (TF):

81

Currently we only support Normal Play Time (NPT) as specified in the Media Fragment URI
standard.

Function F402-TF-a: getDuration

xsd:decimal mm:getDuration (
lmo:TemporalEntity entity

)

This functions returns the duration of a temporal entity as decimal. If the property is not a spa-
tial entity, null is returned.

Function F402-TF-b: getStart

xsd:decimal mm:getStart (
lmo:TemporalEntity entity

)

This functions returns the start time of a temporal entity as decimal. If the property is not a
spatial entity, null is returned.

Function F402-TF-c: getEnd

xsd:decimal mm:getEnd (
lmo:TemporalEntity entity

)

This functions returns the end time of a temporal entity as decimal. If the property is not a spa-
tial entity, null is returned.

Generic Accessor Features (GF):

These features allow the retrieval of general information regarding Media Fragments and
lmo:unitNumbers.

Function F402-GF-a: isMediaFragment

xsd:boolean mm:isMediaFragment (
xsd:string entity

)

This functions returns true if the string can be parsed to a MediaFragment, false otherwise.

Function F402-GF-b: isMediaFragmentURI

xsd:boolean mm:isMediaFragmentURI (
xsd:string entity

)

82

This functions returns true if the string can be parsed to a MediaFragmentURI, false otherwise.

Function F402-GF-c: hasTemporalFragment

xsd:boolean mm:hasTemporalFragment (
xsd:string entity

)

This functions returns true if the string can be parsed to a MediaFragment(URI) and has a Tem-
poral Fragment, false otherwise.

Function F402-GF-c: hasSpatialFragment

xsd:boolean mm:hasSpatialFragment (
xsd:string entity

)

This functions returns true if the string can be parsed to a MediaFragment(URI) and has a Spa-
tial Fragment, false otherwise.

Function F402-GF-d: toPixel

xsd:decimal mm:toPixel (
lmo:unitNumber number,
xsd:decimal conversionNumber (OPTIONAL)

)

This functions returns the unitNumber converted to pixels based in conversion number. If no
conversion number is given, only values for pixel units are returned, null otherwise.

Function F402-GF-e: toPixel

xsd:decimal mm:toPixel (
lmo:SpatialFragment shape,
lmo:Rectangle conversionShape (OPTIONAL)

)

This functions returns the Spatial Fragment converted to pixels based in conversion shape. If no
conversion shape is given, only values for pixel fragments are returned, null otherwise.

Function F402-GF-f: toPercent

xsd:decimal mm:toPercent (
lmo:unitNumber number,
xsd:decimal conversionNumber (OPTIONAL)

)

83

This functions returns the unitNumber converted to percent based in conversion number. If no
conversion number is given, only values for percent units are returned, null otherwise.

Function F402-GF-g: toPercent

xsd:decimal mm:toPercent (
lmo:SpatialFragment shape,
lmo:Rectangle conversionShape (OPTIONAL)

)

This functions returns the Spatial Fragment converted to percent based in conversion shape. If
no conversion shape is given, only values for percent fragments are returned, null otherwise.

84

4.2.4 Cover Functions

The MICO platform is able to extract information of various kind from various content formats like text,
image, video, etc. All the information is represented in a common annotation schema, which supports
low-level features like color histograms as well as hight level features like concept detection. This wide
range of results makes information retrieval a data expert task. To prevent this and to make results
accessible even for non-experts we are going to provide high-level filter functions, which are internally
translated into complex SPARQL queries and cover the complexity of metadata representation from
users. The SPARQL Inferencing Notation SPIN51 (a W3C member submission from 2011) gives as a
proper basis for that. In this section we give an overview over the SPIN Modeling Vocabulary, ”a light-
weight collection of RDF properties and classes to support the use of SPARQL to specify rules and
logical constraints.”52. Especially we will focus on SPIN Functions and Magic Properties that support
our use case of covering complex functions. The section is inspired by the SPIN primer 53.

SPIN Constraints and Rules

SPIN rules and constraints are used to execute inferences on classes. Whereby rules are represented
as SPARQL CONSTRUCT queries and create new inferences (triples) based on the existing state,
constraints can only be used to verify that certain invariants are not valid via creating new instances of
type spin:ConstraintViolation. Listing 16 shows a constraint that assures that an image of type
ex:ImageWithPerson contains at least one ex:Person. The variable ?this is always bound to the
tested resource.

Listing 16: SPIN Constraint example

1 ex:ImageWithPerson
2 spin:constraint [
3 rdf:type sp:Construct ;
4 sp:text """
5 # must have this relation
6 CONSTRUCT {
7 _:cv a spin:ConstraintViolation ;
8 spin:violationRoot ?this ;
9 rdfs:label "Image must contain a person" .

10 } WHERE {
11 ?this ex:includes/rdf:type ex:person .
12 }
13 """ ;
14] .

SPIN Functions and Magic Properties

SPIN Functions are ”boxed” queries that declare new SPARQL functions. This functions hide the com-
plexity of the underlying SPARQL query and lower the barrier to SPARQL for non-experts. The argu-
ments of the function are described in the spin:constraint part as an ordered list of spl:Argument(s),
which specify the variables that are used within the attendant SPARQL query. Constraints for further

51http://spinrdf.org/
52http://www.w3.org/Submission/2011/SUBM-spin-modeling-20110222/
53http://spinrdf.org/spinsquare.html

85

http://spinrdf.org/
http://www.w3.org/Submission/2011/SUBM-spin-modeling-20110222/
http://spinrdf.org/spinsquare.html

argument checks can also be added here. The spin:body defines the SPARQL SELECT query the
spint:returnType specifies the type of the query. The function in listing 17 is taken from a real world
use case and returns all subjects that were annotated by a specific annotator since a certain timestamp.

Listing 17: SPIN Function example

1 ex:filteredAnnotationsSince
2 rdf:type spin:Function ;
3 rdfs:comment "Returns subjects that were annotated with a specfic
4 annotation body type since a certain timestamp." ;
5 spin:constraint ([
6 rdf:type spl:Argument ;
7 spl:predicate sp:arg1 ;
8 spl:valueType rdf:Resource ;
9 rdfs:comment "The type of the annotation body." ;

10],[
11 rdf:type spl:Argument ;
12 spl:predicate sp:arg2 ;
13 spl:valueType xsd:dateTime ;
14 rdfs:comment "The datetime." ;
15]);
16 spin:body [
17 rdf:type sp:Select ;
18 sp:text """
19 SELECT DISTINCT ?subject WHERE {
20 ?subject mico:hasContentPart ?cp .
21 ?cp mico:hasContent ?annot .
22 ?annot oa:hasBody ?body .
23 ?body rdf:type ?arg1 .
24 ?annot oa:annotatedAt ?date .
25 FILTER {xsd:dateTime(?date) > ?arg2}
26 }
27 """ ;
28] ;
29 spin:returnType oa:Annotation .

This function can than used to issue a simplified SPARQL query; in this case the query returns all sub-
jects that are annotated by the mico:FaceRecognitionBody since October the 26th:

Listing 18: SPARQL SPIN Function example

1 SELECT *
2 WHERE {
3 BIND (ex:filteredAnnotationsSince(
4 mico:FaceRecognitionBody,
5 "2015-10-26T00:00:00+00:00"ˆˆxsd:dateTime
6) AS ?annotation) .
7 }

In order to make access to complex operations even more natural, SPIN supports the definition of so
called Magic properties. Typically, a magic property is backed by a query time calculation function
that determines bindings of the variables on the left or right side of the predicate. In comparison to
SPIN functions they provide more flexibility because they are able to return multiple values and work

86

on unbound input or output variables.

4.3 Outlook

As mentioned there are some specified features lacking within this specification. From use case priori-
tization we decided that similarity search is the next feature we are going to integrate. In this section we
give a short outlook on the next steps. Furthermore we give an overview how we are going to make the
current implementation more efficient to work on a larger scale. As third point we are going to describe,
how we create large scale SPARQL-MM test sets to validate the performance improvements.

Similarity Search

In RDF there are several ways to define similarity. This can include subtype systems, predicate co-
occurrence, various types of literal similarity metrics, and graph based approaches like graph distance,
weighted graph distance, max-flow etc. In MICO we will define proper distance metrics for Multimedia
similarity search based on the MICO Metadata Model, which will be a combination of the above men-
tioned metrics. An integration in the SPARQL environment will enable users to seamlessly combine
similarity search with other SPARQL constructs.

Performance improvements

The current implementation of SPARQL-MM is sufficient for smaller multimedia databases. But if the
amount if images and annotations increases the performance of query evaluation should be improved.
Therefor we wan’t to optimize SPARQL-MM queries in a 3 step optimization process:

1. Re-factor SPARQL operation tree to move SPARQL-MM functions to an optimal position

2. Use database histograms to improve the selection and joining performance

3. Use optimized indexes for media fragment to improve SPARQL-MM geometric functions

Scalability Testing

To measure performance improvements for high scalability we need appropriate test data, namely an-
notated media fragments of arbitrary cardinality plus corresponding SPARQL-MM queries varying in
type and complexity. We are working on an automatic testset creator that builds upon statistics from
the real world test set Microsoft COCO54 that includes more than 300,000 images with about 5 annota-
tions each (from a controlled vocabulary with about 80 categories). We will run the tests with different
SPARQL-MM versions which allows a proper comparison of optimization strategies.

54http://mscoco.org/

87

http://mscoco.org/

5 Specifications and Models for Cross-media Recommendations

5.1 Introduction

During its initial phase and until year 2, WP5 focused mostly on PredictionIO and a respective monitor-
ing API for data collection. However, as it turned out in discussions with showcase partners during year
2, showcases required support for content-based recommendation, for collaborative filtering (based on
user-item interactions), and recommendation using rule-based approaches - it became clear that require-
ments has to be adjusted, that the PredictionIO-focused framework had to be significantly extended,
and that the WP5 framework had to be tightly integrated into the overall MICO platform. All of the
aforementioned points then also lead to a readjustment of WP5 partner responsibilities.

In year 3, WP5 therefore aims at a fully integrated cross-media recommendation framework, i.e., a
framework that can exploit different information sources, using different recommendation approaches:
Depending on the specific use cases, it will allow combination of extractor annotations, content meta-
data, and usage information, using different media types as input, in order to provide recommendations
for other media types as output. At the same time, of course, this means that different approaches and
information sources have to be connected: For instance, collaborative filtering will typically work fine
on an item level, but not on the level of media fragments, e.g., to recommend specific news segments
(related to one specific topic) within news show items, which will require the use of automatic or manual
annotation on a fragment level. The same goes for the linking of different media types, which requires
additional metadata, like describing that various documents, images and videos are actually about the
same species.

The following provides an update and description of the delta with respect to previous deliverables,
summarizing requirement adaptations, and providing a design for the WP5 framework as an integral
part of the MICO platform. Implementation of this WP5 framework design has started, and will be
completed in year 3. More specifically, this section will include:

• an overview over the prioritized and new or adapted WP5 user stories in section 5.2, which are
mainly connected to Snapshot Serengeti for Zooniverse (Work Package 7: Crowd Sourcing Plat-
form), and to the Greenpeace Magazine showcase for InsideOut10 (Video Sharing Platform).
Both showcases require cross-media extraction, and recommendation that offers previously un-
known, but interesting content to end-users.

• relevant datasets, which are key to be able to develop and evaluate WP5 components, are briefly
described in section 5.3.

• a more detailed discussion on the recommendation requirements and needs of showcase partners
for Shoof, Greenpeace Magazine and Snapshot Serengeti in section 5.5.

• a WP5 framework architecture overview in section 5.4.

• a specification of selected WP5 component interfaces / APIs in section 5.6.

88

5.2 Key user stories

Many goals of the MICO project were initially described with the Use Case Compendium that was
released in April 2014, being part of the requirement analysis documents D7.1.1 and D8.1.1. Since then,
new showcases and showcase aspects emerged, which has strongly influenced the needs and priorities
of showcases, especially regarding WP5: Some user stories (US) and technology enablers (TE) lost
importance, or had to be adapted, and others became more important. The following provides a new set
of user stories that were defined in discussions with the showcase partners, which supersede the user
stories from the compendium document, and which represent the goals that the following specification
and implementation work for year 3 will aim at.

5.2.1 Greenpeace Magazine

The following three user stories describe the scope of WP5 for the Greenpeace Magazine. The result is
a REST interface that can be accessed from the Wordlift/Helixware software preparing the Greenpeace
Magazine website.

ID Name Description

US-60 Non-Subscriber Recom-
mendation

As a Greenpeace User (Non Subscriber) I want to receive
meaningful links to related articles so that the number of page
views per session and CTR is increased (so that he/she will
need eventually to subscribe - increasing the opportunity of
bringing the user to the subscribe page).

Recommendation Input:

• Output of Text analysis (entity extraction) components
on GP magazine articles

• Data on user behaviour for CF

US-61 Subscriber Recommenda-
tion

As a Greenpeace User (Subscriber) I want to receive mean-
ingful links to related articles so that the number of page
views per session and CTR is increased.

Recommendation Input:

• Output of Text analysis (entity extraction) components
on GP magazine articles

• Data on user behaviour for CF

89

ID Name Description

US-62 Editor Support As a Greenpeace Editor I want videos and video key frames
(images) that are related to the textual content of the current
article so that I spend less time in crafting and finalizing new
content.

Recommendation Input:

• Output of text analysis (entity extraction) components

• Output of ASR / entity extraction from the audio stream
of the video

• Data on user behaviour for CF (optional, using editor
feedback)

5.2.2 Shoof

Very similar, to the Greenpeace Magazine, the Shoof project profits immensely on item recommenda-
tions, that derive from content analysis.

ID Name Description

US-63 Cross-Media Recommen-
dation

As a Shoof Admin I want to find content interesting for a user
by using results from the WP2 extractors applied on Shoof
content so that the quality of the information on the applica-
tion main stream can improve.

Recommendation Input:

• Output of WP2 extractors (ASR, entity extraction, con-
tainer MD (e.g. geodata), TVS, content similarity) for
Shoof material

• Optional: admin feedback

US-64 User Data Recommenda-
tion

As a Shoof Admin I want content interesting for a user by
using a analysis of their click behavior so that the quality of
information on the application main stream can improve.

Recommendation Input:

• Data on user behaviour (Shoof User Data)

90

5.2.3 Snapshot Serengeti

Making the best out of a volunteer’s time and motivation is the driving force behind the user stories
relevant for the Zooniverse project. While preprocessing subjects gives valuable data, the processes of
using this information to actually modify how subjects are presented to the volunteer is a special form
of a recommendation problem.

ID Name Description

US-65 Subject complexity mix As a Zooniverse Admin, I want to know the complexity of
different images so that I can ensure users get an appropriate
level of complexity in the images they are presented with.

Recommendation Input:

• Results of TE-202

US-66 Volunteer posting analysis As a Zooniverse Admin I want to gain insight from textual
analysis of posts so that I can understand user interest, im-
age complexity and learn other things about subjects and how
users classify them.

Recommendation Input:

• Results of TE-212 and TE-215

US-67 Volunteer clustering As a Zooniverse Admin I want to identify clusters of volun-
teers so that we can target users with a different user experi-
ence according to their “group”, expertise or knowledge.

Recommendation Input:

• Geordi Data (user behaviour data)

• User profile data (from TE-506)

• Talk comments and discussion threads

91

ID Name Description

US-68 Volunteer education As a Zooniverse Admin I want to know which piece of edu-
cation I should give to a volunteer so that I can get the best
out of each volunteer, by improving the quality and quantity
of annotations they provide.

Recommendation Input:

• Geordi Data (user behaviour data)

• User profile data (from TE-506)

• Talk comments and discussion threads

US-69 Volunteer-Subject recom-
mendation

As a Zooniverse Admin I want to know which set of subjects
to present to a specific volunteer using what we know about
user interest, likely image content, user cluster/expertise, so
that I can get the best out of each volunteer, by improving the
quantity of annotations they provide.

Recommendation Input:

• User profile data (from TE-506)

• Image analysis data (blankness/animals present) (from
TE-202)

• Outputs from US-65 (complexity), US-66 (user inter-
est), US-67 (clusters)

92

5.3 Available datasets

For each of the user stories listed in the previous section, different datasets are needed for implemen-
tation and evaluation purposes. The following tables summarize these datasets for the InsideOut10 and
Zooniverse showcases.

5.3.1 Greenpeace Magazine and Shoof

Dataset Description

Extractor data Data from the extractors is stored inside Marmotta and is queried using
the SPARQL endpoint, using Anno4j, as described in section 3.5.
To remove complexity and interdependencies between recommendation
module and extractors, it is assumed that all content items to be consid-
ered for a recommendation task, have previously been annotated within
the platform, using the appropriate pipeline. As described in the WP2
broker chapter of this deliverable, broker v3 will provide improved func-
tionalities to define such pipelines, and to perform respective jobs, i.e. to
execute a specific pipeline using a specific content set. Furthermore, it
is assumed that content items referred to by user activities that are fed
to the API are mappable to content items analyzed by the platform, as
described in the WP2 high-level broker data model.
Using this approach, the recommendation provides a best effort service:
If annotations are available, the recommendation will use it. If only a
subset of annotations exists, recommendation will still work, but its qual-
ity might decrease.
For the Greenpeace Magazine and Shoof showcase, any pipeline config-
uration that produces named entities which can be processed within the
recommendation module can be used. With reference to the extractor
overview table in section 2.1, the following extractors are required by
this specific recommendation:

audiodemux to extract audio from video files for further processing,
which is especially useful if the audio stream contains speech that
can be further processed to deduce information about the content
of the video. For details, see section 2.2.9.

kaldi2txt to extract audio transcriptions for further processing. The task
of speech-to-text extraction for different language is implemented
using the Kaldi speech recognition toolkit. For details, see sec-
tion 2.2.6.

redlink-analysis provides textual analysis for Greenpeace articles and
videos, and for Shoof videos. The NER capabilities of this extrac-
tor will be used for subsequent clustering and therefore support
recommendation of similar items. For details, see section 2.2.7.

93

User behavior data User behavior is tracked as pseudonymous log data, e.g., from Google
Analytics. The minimal set of required fields is as follows

• date: date of the logging event

• eventType: type of the logged event, see below

• pagePath: URL to the respective content item

• userId: numeric value for each user

For the Greenpeace Magazine, these events are mostly page impressions
from registered and unregistered users. For Shoof, there are more event
types, like interactions with the app:

• new content uploaded

• video watched

• video shared

• content rated

5.3.2 Snapshot Serengeti

Dataset Description

Geordi data Geordi (https://github.com/zooniverse/geordi/) is Zooniverse’s
REST-based user event storage system. Since February 2015 Zooniverse
have collected detailed analytics and behavior data for every visitor to
Snapshot Serengeti, including which buttons the users clicked and how
they classified their images. This is a MySQL database.

User profile data As part of TE-506 (see Validation doc) we were able to derive informa-
tion about which species each user is most interested in. Initial experi-
ments suggest this data may not be especially useful, but for now we keep
it under consideration as a possible data source. This is CSV data.

Classification and sub-
ject data

Snapshot Serengeti’s backend database, Ouroboros, contains detailed in-
formation about classifications so far for each subject, and about the
history of which user classified which subject, and when. This is a
MongoDB database.

Talk comments and
discussion threads

Every volunteer on Snapshot Serengeti is able to comment or ask ques-
tions about an image they are classifying, using Zooniverse’s “Talk” dis-
cussion board system. For each subject, the discussion history is avail-
able, as are general topic based threads. Each comment is attributed to a
user and contains a timestamp. This is a MongoDB database.

94

https://github.com/zooniverse/geordi/

Subject content data Using the aggregate answers from Snapshot Serengeti volunteers, we
produced a CSV containing the known content of each image (blank, or
the species present). This data is in a CSV (see Validation deliverable).

TE-202 animal/blank-
ness detection output

As part of validation of the MICO platform (see Validation deliverables),
we produced a database containing MICO’s recommendations about the
likely animals (or lack of animals) present in each image. This is stored in
a PostgresSQL database. We have not yet generated this for all images,
but this data can be regenerated by re-running tests against the MICO
platform.

95

5.4 General architecture and common specifications

WP5 is located ’between’ WP2 extraction and the needs of a showcase partner in the sense that it uses
extraction like a user would: On one hand, it uses the annotations provided by extraction, and the query-
ing infrastructure in a similar way as showcase partners. On the other hand, recommendation can be
considered a high-level ’extractor’ itself, which provides information to the showcase partners. How-
ever, the difference is that in contrast to WP2, in which extractors provide new information annotation
per analyzed item, WP5 typically exploits information about groups of items and/or their annotations.

The following provides a bird’s eye view on the overall architecture of the WP5 framework:

MICO Platform

Pred

Recommendation Engine

Recommendation API

Shoof

WP5
Storage

Recommendation Modules

Prediction.IO

M
A
R
M
o
T
T
A

A
n
n
o
4
j

2

1

3

4

Zooniverse Project

Talk | Panoptes | Geordi

Zooniverse Specific
Recommendation (Nero)

Greenpeace Magazine

Inside OUT Showcase

It is important to note that there is a significant conceptual difference between the two showcases:
For InsideOut10, there are two applications, both relying directly on the MICO Platform for recommen-
dations. Both the Greenpeace Magazine and Shoof showcases are similar in terms of the in- and output
of the recommendation module, and they are therefore discussed jointly in the following, wherever
applicable.

For Zooniverse, input from the platform is combined with results from internal processing, e.g. for
frequently changing data streams that are hard to synchronize with the MICO platform, or for data that

96

required deep understanding of the business logic.
Please also note that in contrast to previous deliverables, the strong functional decomposition of

the recommendation module into several technology enablers was now considered infeasible (due to
the modified functional requirements), and hence dropped in favor of one technology enabler for cross-
media recommendations.

1 Recommendation engine including custom recommendation modules
Basic services that might be reusable for several recommendation use case are implemented here.

2 Recommendation API
Code that is specific to a single user story / need will be put in separate modules that connect to
the Recommendation Modules. The logic for triggering recommendation and I/O with systems
outside of the platform is implemented here. While media analysis data is available via Anno4j,
the recommendation API also offers capabilities to collect user data from the showcases, and
forwards it e.g. to the Prediction.io event server for re-training the recommendation model.

In the case of Zooniverse, the recommendation API will be used largely to obtain insights from
the MICO platform about the analysed images and text content, and Zooniverse will also be de-
veloping a Zooniverse-specific recommendation engine, Nero, to further harness these insights
in a real-time application environment. This is necessary because decisions to take forward the
analyses from MICO and turn them into full recommendations of how to modify the user’s work-
flow can only be done within the context of the Zooniverse web application, and with reference
to other Zooniverse data sources including Panoptes (the new Zooniverse back-end system, Talk
(user comments), and Geordi (user behaviour)). Unlike InsideOut, where a lot of MICO’s rec-
ommendations can be delivered as standalone pieces of metadata that can be offered directly to a
user (related videos for example), Zooniverse can only really harness MICO recommendations in
an algorithmic, real-time context, where changes made to user workflows will be tracked and will
influence subsequent recommendations.

3 Prediction.IO
As described in the previous deliverables, Prediction.io will be responsible for machine-learning
based collaborative filtering tasks. While Prediction.io offers a rich feature set, it comes with
many dependencies. To simplify using it inside the platform, docker was used. For WP5, a cus-
tom dockerfile was written that allows to easily deploy Prediction.io with a single command and
encapsulate its dependencies. A quick introduction on how to use it, i.e., integrate prediction.io
to the MICO platform is desccibed inside the appendix 5.B.

4 Marmotta & Anno4j
Data is stored inside the platform using Marmotta. WP5 will query this data using the Marmotta
SPARQL endpoint, using the querying capabilities of Anno4j when applicable. Anno4j is dis-
cussed inside this deliverable in chapter 3.

5.5 Showcase specific specifications

While the general architecture is designed for being capable to cope with any showcase that might fit into
the MICO ecosystem, the main focus of this is to provide recommendations for the specific showcases
by InsideOut10 and Zooniverse. Shoof, the Greenpeace Magazine and Snapshot Serengeti are briefly
discussed in the following sections 5.5.1 and 5.5.2.

97

5.5.1 InsideOut10: Greenpeace Magazine & Shoof

The InsideOut showcase includes two recommendation cases. As discussed before, the relevant User
Stories for Greenpeace Magazine are:

• US-60: Non-Subscriber recommendation

• US-61: Subscriber recommendation

• US-62: Editor support

The relevant user stories for Shoof are:

• US-63: Cross-Media-Recommendation

• US-64: User Data Recommendation

The main similarity of both scenarios is the need for a recommendation based on user data. The main
difference, on the other hand, is the type of content involved. While the Greenpeace Magazine naturally
involves a lot of text (which is accompanied by audio, video and images) the focus of Shoof is on videos.

Collaborative filtering tasks will be done by Prediction.io. Its event server is exposed by the rec-
ommendation API, training is performed asynchronously. The process of sending user event data to the
platform and the model retraining is shown as a sequence diagram in figure 26.

For the cross-media recommendation, collaborative filtering will be combined with item similarity
results from WP2 extractors. An example to this is the combination of video analysis with speech-to-text
analysis and NER. This allows to cluster the videos regarding their topic - without metadata provided
by a human. Recommendations are accessible by simple GET requests. Figure 27 shows an example
for the Greenpeace Magazine showcase.

98

Figure 26 Sending user event data and asynchronous triggering of Prediction.io

Figure 27 Recommendation using both collaborative filtering and media analysis results (US60 - US62)

99

5.5.2 Zooniverse: Snapshot Serengeti

In contrast to the InsideOut10 showcases, Zooniverse already includes infrastructure for user behavior
analysis and recommendation. Moreover, due to delays regarding framework development in WP5,
Zooniverse has implemented a simple subject recommendation system based on user interest, using a
combination of MySQL queries and Python scripts. However, for MICO, the focus on user interest as
a key input for recommendation is not considered relevant anymore - details of the implementation are
listed in appendix 5.A for reference, but they will not play a role for year 3. A description of the test data
can be found in the TE-506 section of D.7.3.2 Use Cases: Validation Report (First Evaluation 2015).

The second main difference is the large amount of projects inside Zooniverse – 52 at the time of
this writing – which makes it impossible to cover all of them in the scope of this project. Therefore,
the focus is on Snapshot Serengeti, and all the implementation will focus on this Zooniverse showcases.
However, the developed architecture and software components will be reusable for other projects within
Zooniverse.

US-65 to US-68 are applicable to any project, and US-69 refers to “blanks” and other concepts
which are Snapshot Serengeti-specific, but its general goal of recommending subjects could be adapted
to any other Zooniverse project.

5.5.2.1 Workflows

As described above, Zooniverse will be developing a new component, Nero, for Zooniverse-specific
recommendation. This will be built on Panoptes, the new Zooniverse back-end, rather than Ouroboros,
the legacy back-end. As such, we expect Snapshot Serengeti to be ported to the new infrastructure in
order to allow to continue the respective studies.

Panoptes posts classifications made by users into an Apache Kafka message bus as JSON objects.
Nero will pick up and respond to classifications from this message bus. In response to classifications,
Nero sends the current metadata about the project, subject and user belonging to that classification to an
algorithm, which will take appropriate action as configured. This algorithm might be built into Nero or
could be a separate service, e.g., an HTTP web service that takes a POST request with JSON data, and
returns an updated version of that JSON data, along with actions to be taken (like enqueue this subject
for users [x,y,z]; or stop showing this subject to users). It is required to have this process be stateless to
ease scalability and deployment (e.g., to AWS Lambda).

Recommendation in the Zooniverse showcase will be a two-part process, with content-based recom-
mendations from MICO being further enhanced and harness in a real-time application situation using
the Zooniverse-specific recommendation engine, Nero. Nero will handle the business of modifying the
user experience in real time, generating new recommendations and acting upon them dynamically. This
cannot be done at the MICO platform level without building a lot of Zooniverse business logic into the
platform and sacrificing code agility and execution efficiency.

5.5.2.2 Interfaces

All communiation between Zooniverse components and the MICO recommendation API will happen
via a HTTP REST API. We will investigate the possibility of building awareness of the Zooniverse
concepts of subjects (collections of images and talk comments) and users (posters of comments, actors
of classifications) into the MICO API, so that Zooniverse might be able to ask a question of the API such
as “please give me the current insights and metadata for this Zooniverse subject, or for this Zooniverse
user”. The inputs that Zooniverse would expect to provide in a request are:

100

• user ID or subject ID

• specific query parameters/filters (equivalent to e.g. “I only want to know about animal species”
or “I want to know about user skill”) The outputs that would be returned could include any/all of:

• a grouping or expertise level for a user

• a list of interests, topics or vocabulary used by that user

• a list of subjects matched to that user

• a list of likely species contained in the images of a subject

• a list of interesting highlights from discussions about a subject (e.g. user disagreement, sentiments
such as doubt, frustration, strong positive feelings, etc)

• other related ideas as the use cases develop

In order to answer such questions, it is expected that the MICO recommendation engine needs to pre-
process many of the data sources detailed under “data available” above, especially the talk and subject
content data, and outputs from sentiment and image analysis extractors. Hence, it may be reasonable to
create an API interface so that Zooniverse can upload these, or alternatively, the recommendation engine
could provide a mechanism for ingesting these data sources.

This also implies that the platform needs the ability to cope with “new data”, and thus all answers
given back to Zooniverse must indicate which version of the data sources were used to derive their
answer.

101

5.6 Recommendation API reference

This section defines the recommendation module interface that is exposed for the showcases, and the
sequence diagrams and REST interfaces in the following represent the functionality required to address
the aforementioned user stories.

The interfaces presented here are simplified in that they do not include user management and access
control. To protect the system from non-authorized access, every request will be secured with an access
token. OAuth v1 ([HL10]) and an approach for granting access of resources to different clients will be
implemented for this purpose.

Apart from specialized cross-media recommendation, the recommendation engine also provides
basic collaborative filtering capabilities that can be used by all showcases that have user event data
to analyse (e.g., views, clicks, likes, etc.). Figures 28 and 29 specify the generic components.
Recommendation that includes data from the WP2 extractors is implemented separately. Figure 30
shows the basic REST interface for getting recommended items for a currently edited article. Figure 31
shows the request for getting videos that might be interested for a certain Shoof user as described in
US-63: Shoof cross media recommendation. The recommendation interfaces for the Snapshot Serengeti
showcase will be developed along the guidelines given in section 5.5.2.2.

The following table provides a summary of the specified API and the covered user stories:

Interface Related User Story

Figure 28: Sending user event data US60 - US64

Figure 29: Simple item Recommendation US60, US61, US64

Figure 30: Greenpeace editor support US62

Figure 31: Shoof Cross Media US63

102

Figure 28 Submitting user behaviour data to the recommendation API (US60 - US64)

This call submits a list of user events to the recommendation module. The recommendation engine will
start retraining upon new data being sent to the system, as long as there is no running training job. The
showcase site can access the current status of the engine to determine whether the transmitted data is
already included in the recommendation.

1 POST reco_api_endpoint/<showcase>/userevent

1 events: {
2 [
3 {
4 "event_type": <Event Type>
5 "user_id": <User Id>
6 "item_id": <Item Id>
7 "time_stamp": <Time Stamp>
8 "properties": {<Custom Properties>}
9 },

10 {
11 "event_type": ...
12 "user_id": ...
13 "item_id": ...
14 "time_stamp": ...
15 "properties": ...
16 },
17 ...
18]
19

20 }

103

Figure 29 Simple item recommendation. (US-60, US-61, US-64)

This call retrieves a number of recommendations based on user behavior data transmitted to the platform.
It provided, the recommendation is customized for a user (US-61: Subscriber Recommendation) or
generic based on the behavior of all known users (US60: Non-Subscriber recommendation.)

1 GET reco_api_endpoint/<showcase>/simplereco?entityId=<entity
id>&userId=<user id>&limit=<limit>

1 response: {
2 meta: <technical meta data>
3 recommendations: [// array of objects sorted by

confidence/score
4 {
5 entity: <entity id> // the entity driving the recomendation
6 item: <recommended item id> // the recommended item
7 confidence: 0.8765 // the confidence/score
8 },
9 {

10 entity: ...
11 item: ...
12 confidence: ...
13 },
14 ...
15]
16 }

Request parameters:

entity id The id of the item to get recommendations for (e.g., news article or video)

user id Optional: The id of the user to get recommendations for.

limit The maximum number of items returned.

Response parameters:

entity id The id of the item the recommendation is for

entity id The id of the recommended item

confidence Confidence value of the recommendation, Range: (0, 1]

meta Additional showcase dependent data

104

Figure 30 Greenpeace editor support (US-62)

This call retrieves videos and images related to the current article.

1 GET reco_api_endpoint/gp/editorsupport?articleId=<article_id>

1 response: {
2 meta: <technical meta data>
3 recommendations: {
4 related_articles:
5 [
6 {
7 <references to related articles from greenpeace magazine>
8 }, ...
9],

10 related_media:
11 [
12 {
13 <references to related video or audio items>
14 }, ...
15]
16 }
17 }

Figure 31 Shoof Cross Media Recommendation (US-63)

This call retrieves content relevant for the specified Shoof user.

1 GET reco_api_endpoint/shoof/mediareco?userId=<user_id>

1 response: {
2 meta: <technical meta data>
3 recommendations: [// array of objects sorted by

confidence/score
4 {
5 entity: <entity id> // the entity driving the recomendation
6 item: <recommended item id> // the recommended item
7 confidence: 0.2333456 // the confidence/score
8 source: "video-asr-ner"
9 },

10 {
11 entity: ...
12 item: ...
13 confidence: ...
14 source: ...
15 },
16 ...
17]
18 }

105

5.7 Deviations from D5.2.1: First specifications

The following outlines some clarifications of points that were mentioned in previous WP5 specifica-
tion documents, by commenting on design choices in D5.2.1 for relevant technology enablers. The
main source for respective changes were updated requirements, and the focus on user stories instead on
showcase-independent technology enablers.

To signal which text passages are taken from D.5.2.1, they are framed .

5.7.1 TE-501. User Activity and Context Monitor

The main outcome will be a Activity Monitoring API implemented as REST services integrated in
the MICO platform. The API will be very simple and will allow integrators to send users’ prefer-
ences data in a concrete fixed format. The data structure used for representing users’ preferences
must fit with the proposed recommendation models for WP5 but also must be consistent with the
representations foundations in MICO. For those reasons, a reasonable approach is to use an ontol-
ogy for representing users preferences.

Comment:
There is no dedicated Activity Monitoring API: For the Zooniverse showcase, this task was taken over
by Geordi, which has direct access to the Zooniverse platform. For the needs of the InsideOut show-
cases, the activity monitoring was integrated into the Recommendation API, using the storage back-end
provided by the Prediction.io event server.

5.7.2 TE-502. User Similarity Calculator

Correlation or vector-based implementations are nowadays provided by many open-source Rec-
ommender systems like Apache Mahout, Prediction.io or MyMediaLite. All these implementations
use Ratings data for computing the similarity between users, using boolean or numeric values as
rates. Also, most of these frameworks allow to define custom or complementary domain-dependent
similarity functions. Independently of the selected framework for the final implementation, it is
important to expose an API for easing the inclusion of custom data for calculating the similarity
between users. [...]

Comment:
No changes. Prediction.io was chosen as a collaborative filtering based recommender for WP5. Its
functionality is exposed via an API as described in section 5.6.

106

5.7.3 TE-503. Item Similarity Calculator

As stated in section 4 (Preliminaries and Basics for the Metadata Model), all the extracted features
from the content analyzed in MICO will be stored as triples following the specified aforementioned
Metadata Model. These features will be part of the items’ vectors that will feed the similarity
functions. [...]

Comment:
No changes. Extracted metadata is stored as triples inside the platform’s Marmotta which is queried
using Anno4j.

5.7.4 TE-504. Cross-Modal Content Recommender

D5.2.1 proposed the following architecture for a cross-modal content recommender:

Comment:
The architecture diagram from section 5.4 differs mainly with respect to the presentation and inclusion
of showcases. However, the main components and their connectivity remained the same:

Mico Platform No changes. The cross media recommendation relies heavily on the work done by the
extractors.

KiWi Triple Store No changes The KiWi triplestore is used within Marmotta. It is preferably queried
using Anno4j, SPARQL queries remain possible.

107

Recommender Framework Prediction.io is used as a collaborative filtering framework. There was no
need to integrate Apache Solr and Mahout in addition to that.

Recommender API No changes.

Monitoring API Integrated to the Recommender API, see description on TE-501

5.8 Work planned for year 3

To summarize, the main goals for WP5 in year 3 are

• to complete the general recommendation framework, by implementing the remaining compo-
nents, as outlined in the previous chapters

• to fully integrate the framework into the MICO platform, including stable interfaces between WP5
and the MICO extractor and broker infrastructure

• to complement the above with an implementation of the showcase-specific components needed
for cross-media evaluation for the prioritized user stories

108

5.A Appendix: Subject recommendation for Snapshot Serengeti

The following diagram illustrates how recommended subjects are derived for each user based on just
two things, user analytics data from our Geordi database, and classifications data from the Ouroboros
database:

GEORDI
DATABASE

(USER
ANALYTICS

EVENTS)

COLLECT SUBJECT INTEREST DATA

OUROBOROS
DATABASE

(CLASSIFICATIONS
DATA)

DETERMINE SUBJECT CONTENT

DETERMINE SPECIES INTEREST TD-16
(SUBJECT
CONTENT

DATA)

TD-14
(USER

PROFILE
DATA)

GENERATE USER PROFILES

GENERATE SUBJECT SETS
PER SPECIES

SUBJECT
SETS
PER

SPECIES
RECOMMEND SUBJECT SETS PER USER

SUBJECT
RECOMMENDATIONS

Each of the narrow rectangles represents a different stage of the scripting/querying process. These will
be referred to below. Each of the larger rectangles represents an intermediate MySQL data table or CSV.

5.A.1 Test that species preferences match user behaviour (TP-506-01)

This test focussed on validating that a recommendation system trained upon user analytics data and
species content data could correctly identify a user’s species preferences.

First, subject species content (TD-16) was calculated for all past Snapshot Serengeti users using a
combination of MySQL queries and Python scripts [”DETERMINE SUBJECT CONTENT”]

Figure 32 DETERMINE SUBJECT CONTENT - Pseudocode

1 for each subject
2 combine all user classifications for this subject
3 find the mode species (ie. that which the most users specified)
4 store this as the dominant species for this subject
5 next subject

This was done by aggregating all user classifications for the subjects and taking the most commonly
occurring answer, or “blank”, as the correct indication of subject content - as shown in the pseudocode
above. Where more than one species was present (only 6% of images) we take the more numerous
species.

109

Now that we have this data, we are then able to determine users’ preferred species by looking at which
subjects they prefer. The general approach for generating TD-14 was as follows (again this was done
using a combination of MySQL queries and Python scripts).

The procedure was

• Identify and tally indications of positive interest in a subject from the analytics data [”COLLECT
SUBJECT INTEREST DATA” in diagram above]. We included the following user events:

– User favourites the subject

– User shares the subject via Facebook, pinterest or Twitter

– User views the discussion page for a subject

– User views the map for a subject

Figure 33 COLLECT SUBJECT INTEREST DATA - Pseudocode

1 for each user
2 for each "positive interest" user analytics event
3 increment interest counter for that subject for that user
4 next analytics event
5 store total interest by subject for each user
6 next user

• Convert each tallied indication of interest in a subject, to an indication of interest in the dominant
species (or “blank”) of that subject [”DETERMINE SPECIES INTEREST” in diagram above].
Each indication of interest is assigned a simple numerical score of 1.

Figure 34 DETERMINE SPECIES INTEREST - Pseudocode

1 for each user
2 for each subject with positive interest
3 determine which species is present (from TD-16)
4 increment interest counter for that species for that user
5 next subject
6 store total "expressions of interest" per species for this user
7 next user

• Assign a score per user, per species, based on the sum of total expressions of interest in that
species by that user [”GENERATE USER PROFILES” in diagram above]. So for example, if a
user favourites an image of a zebra and shares two images containing lions, they would score 2.0
for lions and 1.0 for zebra. A higher score indicates a stronger interest in that species, and the two
highest scoring species for a user can be deemed as that user’s “favorite” species.

110

Figure 35 GENERATE USER PROFILES - Pseudocode

1 for each user
2 for each species with positive interest
3 add an entry in that user’s profile that they like that species
4 count number of expressions of interest for that species
5 assign that number as a score to the user profile entry
6 next species
7 next user

5.A.2 Test that the subjects recommended match the preferred species (TP-506-02)]

This test focussed on ensuring that the correct subjects would be recommended (in line with the cal-
culated species preferences for each user) for a user once that user’s species preferences were known.
Subject recommendation was performed as follows, using a combination of MySQL queries and Python
scripts:

• A random set of 100 subjects was chosen for each species and “blank”, using the TD-16 data. We
ensured that these images did not contain other secondary species.

Figure 36 GENERATE SUBJECT RECOMMENDATION SET - Pseudocode

1 for each species
2 initialize subject set for this species
3 while subject set contains < 100 items
4 current subject = random subject
5 while current subject does not contain this species
6 pick another random subject
7 end while
8 add this subject to the subject set
9 end while

10 next species

Figure 37 RECOMMEND SUBJECT SETS PER USER - Pseudocode

1 for each user
2 create a subject recommendation set
3 pick the two species with highest score from TD-14
4 for each favourite species
5 pick 20 random subjects from the subject set for that species
6 add these subjects to the recommendation set for that user
7 next favourite species
8 next user

111

5.B MICO WP5 Platform Integration

To make testing and deployment more easy, Prediction.io with a customized MICO recommendation
template is provided encapsulated as a docker image, derived from the official prediction.io dockerfile
on GitHub (https://github.com/sphereio/docker-predictionio).

5.B.1 Install on platform

1 $ sudo apt-get install curl
2 $ curl -sSL https://get.docker.com/ | sh
3 $ sudo usermod -aG docker user

Logout, Login again

5.B.2 Running prediction.io inside a docker container

Docker accepts git repositories instead of local files as references to Dockerfile & Co. This allows us to
store the Dockerfile inside the project’s Bitbucket. In a public release this will be published on a public
repository, making this adjustment step only required for development.

1 $ docker build --tag="wp5"
https://user@bitbucket.org/mico-project/recommendation.git#master:platform/docker

2 $ docker run -p 8000:8000 -p 7070:7070 -p 9000:9000 wp5

The Engine is deployed to port 7070, an overview page of the Prediction.io status is available on port
8000. Scripts for training the engine with Greenpeace Magazine data are accessible from the Dockerfile.

5.B.3 Testing

On build, a minimal set of entries (user buys item, user rates item) is given to the engine as training data.
Alternatively, the REST endpoint can be used directly using curl. To Retrieve num=2 recommendations
for user user=1:

1 $ curl -H "Content-Type: application/json" \
2 -d ’{ "user": "1", "num": 2 }’ http://localhost:8000/queries.json

Resulting in something similar to:

1 {
2 "itemScores":[
3 {
4 "item":"2",
5 "score":3.996582770292206
6 },
7 {
8 "item":"0",
9 "score":1.3457

10 }
11]
12 }

112

https://github.com/sphereio/docker-predictionio

References

[Aic+15] Patrick Aichroth et al. “MICO – Media in Context.” In: Proceedings of the 2015 IEEE
International Conference on Multimedia and Expo (ICME). Torino, Italy, June 2015.

[All83] J.F. Allen. “Maintaining Knowledge About Temporal Intervals.” In: Communications of the
ACM 26.11 (1983), pp. 832–843.

[CFO93] Eliseo Clementini, Paolino Di Felice, and Peter van Oosterom. “A Small Set of Formal
Topological Relationships Suitable for End-User Interaction.” In: SSD. Ed. by David J. Abel
and Beng Chin Ooi. Vol. 692. Lecture Notes in Computer Science. Springer, 1993, pp. 277–
295. URL: http://dblp.uni-trier.de/db/conf/ssd/ssd93.html#ClementiniFO93.

[DR14] Michael Dyck and Jonathan Robie. XML Path Language (XPath) 3.1. W3C Working Draft.
http://www.w3.org/TR/2014/WD-xpath-31-20140424/. W3C, Apr. 2014.

[DT05] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human Detection.” In: Com-
puter Vision and Pattern Recognition. 2005.

[Fel+10] P.F. Felzenszwalb et al. “Object Detection with Discriminatively Trained Part Based Mod-
els.” In: IEEE Pattern Analysis and Machine Intelligence 32.9 (2010), pp. 1627–1645.

[Fer01] Jon Ferraiolo. Scalable Vector Graphics (SVG) 1.0 Specification. W3C Recommendation.
http://www.w3.org/TR/2001/REC-SVG-20010904. W3C, Sept. 2001.

[Fou04] The Apache Software Foundation. Apache Camel. Oct. 2004-2015. URL: http://camel.
apache.org/ (visited on 10/30/2015).

[GSP] Steve H. Garlik, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 Query Language.
http://www.w3.org/TR/sparql11-query/. URL: http : / / www . w3 . org / TR / sparql11 -
query/.

[HL10] E. Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849. http://www.rfc-editor.org/
rfc/rfc5849.txt. RFC Editor, Apr. 2010. URL: http://www.rfc-editor.org/rfc/
rfc5849.txt.

[HS13] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. 2013. URL: http://www.
w3.org/TR/sparql11-query/.

[KSK15] Thomas Kurz, Kai Schlegel, and Harald Kosch. “Enabling access to Linked Media with
SPARQL-MM.” In: Proceedings of the 24nd international conference on World Wide Web
(WWW2015) companion (LIME15). 2015. DOI: 10.1145/2740908.2742914.

[Lin+15] Chris Lintott et al. D7.2.1 & D8.2.1 Combined Use Cases: First Prototype. Deliverable.
MICO, 2015. URL: http://www.mico-project.eu/wp-content/uploads/2015/08/
Combined-Deliverable7.2.1-8.2.1UseCasesFirstPrototype1.pdf.

[LZ13] Jianguo Li and Yimin Zhang. “Learning SURF Cascade for Fast and Accurate Object De-
tection.” In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2013, pp. 3468–3475. ISBN: 1063-6919. DOI: 10.1109/CVPR.2013.445.

[MM04] Frank Manola and Eric Miller. RDF RDF Primer. W3C Community Draft.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/. W3C, Feb. 2004.

[Poz13] Annual Public Report 2013. Tech. rep. Sharing AudioVisual language resources for Auto-
matic Subtitling (SAVAS), 2013.

113

http://dblp.uni-trier.de/db/conf/ssd/ssd93.html#ClementiniFO93
http://camel.apache.org/
http://camel.apache.org/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.rfc-editor.org/rfc/rfc5849.txt
http://www.rfc-editor.org/rfc/rfc5849.txt
http://www.rfc-editor.org/rfc/rfc5849.txt
http://www.rfc-editor.org/rfc/rfc5849.txt
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://dx.doi.org/10.1145/2740908.2742914
http://www.mico-project.eu/wp-content/uploads/2015/08/Combined-Deliverable7.2.1-8.2.1UseCasesFirstPrototype1.pdf
http://www.mico-project.eu/wp-content/uploads/2015/08/Combined-Deliverable7.2.1-8.2.1UseCasesFirstPrototype1.pdf
http://dx.doi.org/10.1109/CVPR.2013.445

[PS04] Inc. Pivotal Software. RabbitMQ - Messaging that just works. Oct. 2004-2015. URL: https:
//www.rabbitmq.com/ (visited on 10/30/2015).

[RAR14] Josu Bermudez Rodrigo Agerri and German Rigau. “IXA pipeline: Efficient and Ready to
Use Multilingual NLP tools.” In: Proceedings of the 9th Language Resources and Evalua-
tion Conference (LREC2014) Reykjavik, Iceland (2014).

[Sea10] Andy Seaborne. SPARQL 1.1 Property Paths. W3C Working Draft.
http://www.w3.org/TR/2010/WD-sparql11-property-paths-20100126/. W3C, Jan. 2010.

[Soc+] Richard Socher et al. “Recursive Deep Models for Semantic Compositionality Over a Sen-
timent Treebank.” In: Conference on Empirical Methods in Natural Language Processing
(EMNLP 2013) ().

[Tro+12] Raphaël Troncy et al. Media Fragments URI 1.0 (basic). W3C Recommendation. W3C,
Sept. 2012.

[Ope11] Open Geospatial Consortium. OGC GeoSPARQL - A Geographic Query Language for RDF
Data. Tech. rep. Open Geospatial Consortium, 2011.

114

https://www.rabbitmq.com/
https://www.rabbitmq.com/

	Executive Summary
	Specifications and Models for Cross-Media Extraction & Orchestration Components
	Extractor Overview
	Extractor Updates and New Extractor Specifications
	Object and Animal Detection – OAD (TE-202) – UPDATE
	Temporal Video Segmentation – TVS (TE-206) – UPDATE
	Audiovisual Quality – AVQ (TE-205) – UPDATE
	Face detection – FDR (TE-204) – UPDATE
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	

	
	
	
	
	
	

	
	
	

	
	
	
	

	
	
	
	
	
	

	
	
	
	

	
	
	
	

