

DR9.6a: Specification of the System Object Model
(revised)

Copyright © PROMISE Consortium 2004-2008

DELIVERABLE NO DR9.6a: Specification of the System Object Model (revised)

DISSEMINATION LEVEL PUBLIC

DATE 15.05.2007

WORK PACKAGE NO WP R9: Development of PROMISE Information management system

VERSION NO. 1.0

ELECTRONIC FILE CODE DR9.6a.1.0.Doc

CONTRACT NO 507100 PROMISE
A Project of the 6th Framework Programme Information Society
Technologies (IST)

ABSTRACT In the present document, an object model describing the attributes of
objects required for the representation of the data handled by the
PROMISE application scenarios such as BOL, MOL, and EOL
product structures and field data and their relations are described in
detail. The model primarily addresses semantic issues, i.e.
comprehensible representation of domain knowledge for
communication between users and applications, but discusses also
technical issues, i.e. the efficient storage of data in physical
databases. Basically a copy of deliverable DR9.2 “Specification of the
System Object Model” that referred to version 1 of the PDKM, the
present deliverable updates the model based on the experiences with
working with the model.

Written by:

Jacopo Cassina, Maurizio Tomasella, POLIMI
Altuğ Metin, Michael Marquard, InMediasP

STATUS OF DELIVERABLE

ACTION BY DATE (dd.mm.yyyy)

SUBMITTED (authors) Maurizio Tomasella, Jacopo Cassina1, Altuğ
Metin, Michael Marquard 06.06.2007

VU (WP Leader) Andreas Edler 06.06.2007

APPROVED (QIM) D. Kiritsis 06.06.2007

1 The two authors from POLIMI did not work on DR9.6a itself. However, they were main contributors to DR9.2,
which is revised with the present deliverable. Hence, they are listed as authors as well.

Copyright © PROMISE Consortium 2004-2008 Page ii

@

Revision History

Date
(dd.mm.yyyy)

Version Author Comments

09.03.2006 0.1 Michael Marquard Document initiated (copy of final version of DR9.2
[7])

31.05.2007 0.2 Michael Marquard Changes all over the document

01.06.2007 0.3 Altuğ Metin Additions and changes to data model diagrams

04.06.2007 1.0 Michael Marquard Changes all over the document; document finalised
for review

Authors’ contact information

Name Organisation E-mail Tel Fax
Jacopo Cassina POLIMI jacopo.cassina@polimi.it +39 02 2399 3951 +39 02 70638377
Maurizio Tomasella POLIMI maurizio.tomasella@mecc.polimi.it +39 02 2399 4898 +39 02 70638377
Michael Marquard InMediasP promise@inmediasp.de +49 3302 559 420 +49 3302 559 124
Altuğ Metin InMediasP promise@inmediasp.de +49 3302 559 420 +49 3302 559 124

mailto:jacopo.cassina@polimi.it
mailto:maurizio.tomasella@mecc.polimi.it
mailto:promise@inmediasp.de
mailto:promise@inmediasp.de

Copyright © PROMISE Consortium 2004-2008 Page 1

@

Table of Contents
1 INTRODUCTION..5

1.1 WORK PACKAGE OBJECTIVES..5
1.2 SCOPE OF DELIVERABLE DR9.6A...5
1.3 OVERALL APPROACH...6
1.4 BOUNDARY CONDITIONS AND LIMITATIONS ..6
1.5 DOCUMENT OVERVIEW..6
1.6 DELTA TO DELIVERABLE DR9.2 “SPECIFICATION OF THE SYSTEM OBJECT MODEL”7

2 DR9.6A’S CONNECTION TO OTHER PROMISE DELIVERABLES ..8
2.1 WP R2: PROMISE GENERIC MODELS ...8
2.2 WP R7: INFORMATION AND KNOWLEDGE MANAGEMENT METHODOLOGIES..8
2.3 WP R9: DEVELOPMENT OF PROMISE INFORMATION MANAGEMENT SYSTEM..9
2.4 WPS AX: APPLICATION SCENARIOS 1 TO 11 ..9

3 STATE OF THE ART ON PRODUCT DATA MODELLING ACROSS PRODUCT LIFE CYCLE9
3.1 STEP – ISO 10303 ..11
3.2 STEP NC (ISO 14649)..15
3.3 PLCS – ISO 10303-239:2005 ...16
3.4 MANDATE – ISO 15531 ...20
3.5 PLM XML ..22
3.6 ANSI/ISA-95 (ISO 62264) ...25

4 GENERAL SYSTEM OBJECT MODEL (SEMANTIC MODEL OF THE PDKM)..................................29
4.1 IMPORTANT NOTES ON THE MODELLING CRITERIA ADOPTED ...29
4.2 CLASS DIAGRAM OF THE SEMANTIC MODEL: AN OVERVIEW ON CLASSES AND ASSOCIATIONS AMONG THEM
 30

4.2.1 Product instances across their life cycles: from the identification problem to the representation of the
BOL, MOL, and EOL product structures ...31
4.2.2 Life cycle related information: description of life cycle phases and the related field data....................40

5 THE TECHNICAL DATA SCHEMA ...48
5.1 MAPPING TO MYSAP PLM..48
5.2 PURELY TECHNICAL INFORMATION ...48

6 MAPPING THE SEMANTIC OBJECT MODEL TO REAL CASES: SOME EXAMPLES FROM THE
PROMISE APPLICATION SCENARIOS..50

6.1 BOL SCENARIO: THE BOMBARDIER CASE FROM WP A10 ...51
6.1.1 As-Designed Product Structure ...51
6.1.2 As-Used Product Structure ..52
6.1.3 Instantiation...54
6.1.4 Field Data..55
6.1.5 Maintenance Event ..56
6.1.6 Storage of Product Knowledge ..57
6.1.7 Concluding remarks for section 6.1...57

6.2 MOL SCENARIO: THE MTS CASE FROM WP A7 ..57
6.2.1 Predictive Maintenance Management in the MTS scenario: an example..58

6.3 EOL SCENARIO: THE CRF CASE FROM WP A1 ..59
6.3.1 ELV Management in the CRF scenario: the decision strategy and its implementation.........................60

6.4 CONCLUDING REMARKS FOR SECTION 6 ..63
7 CONCLUDING REMARKS...63

REFERENCES ..64

APPENDIX: UML NOTATION ..66
CLASS DIAGRAM ...66
OBJECT DIAGRAM ...69

Copyright © PROMISE Consortium 2004-2008 Page 2

@

List of figures
Figure 1: Architecture overview of the PDKM system...5
Figure 2: Standards throughout Life Cycle Phases ...10
Figure 3: Parts defining STEP implementation...12
Figure 4: STEP - the Application Protocol Development Process and Implementation Components

(arrows indicate reference to other sections of STEP) ..13
Figure 5: Example of an Application Activity Model (AAM) in IDEF0 Notation (from AP225

(ISO 1995))..13
Figure 6: Comparison between the current state of the integration between design at the backend

and production at the shop floor level and the STEP NC proposal...15
Figure 7: The STEP NC approach - encapsulation of product geometry and machining operations

to be performed..16
Figure 8: PLCS Domain ..16
Figure 9: Inter-operability of life cycle software applications through PLCS17
Figure 10: The PLCS Vision ...17
Figure 11: PLCS concepts ...18
Figure 12: Abstraction of module hierarchy ...19
Figure 13: EXPRESS-G schema of the ARM for the “Required resource” Application Module

(1267) ..19
Figure 14: EXPRESS-G schema of the MIM for the “Required resource” Application Module

(1267) ..20
Figure 15: EXPRESS-G Entity Level schema of the MIM for the “Required resource” Application

Module (1267) ...20
Figure 16: Grouping of product information in PLM XML..22
Figure 17: PLM XML Interoperability..23
Figure 18: Group level shared collaboration...24
Figure 19: Integration with business applications ...24
Figure 20: Functional hierarchy ..25
Figure 21: Functional enterprise/control model: the dotted line shows the boundary of the

interface ...26
Figure 22: Areas of information exchange..26
Figure 23: Schema for Production Capability ...27
Figure 24: Schema for Product Definition ..27
Figure 25: Schema for Production Information...28
Figure 26: Production Capability model ...28
Figure 27: Complete schema of the semantic object model..32
Figure 28: The product structure of physically existing products and the PHYSICAL_PRODUCT

class ...33
Figure 29: The “identification problem” of product items and the ID_INFO class........................34
Figure 30: The BOL as-designed product structure and the AS_DESIGNED_PRODUCT class ..36
Figure 31: Product life cycle information: different classes for different purposes........................41
Figure 32: The FIELD_DATA class and its relationships with other model components43
Figure 33: Describing the life cycle phases of a product: events, resources, activities, and related

classes ..46
Figure 34: As-designed structure for a converter ..51
Figure 35: As-used structure for a converter with component replacement52
Figure 36: As-used structure for a second converter...53
Figure 37: Two instantiations for a wheel...54
Figure 38: Field data attached to a wheel instance..55
Figure 39: Re-profiling of a wheel as maintenance event...56
Figure 40: Knowledge associated to wheel design..57

Copyright © PROMISE Consortium 2004-2008 Page 3

@

Figure 41: A7 MOL scenario – events, activities, and resources..59
Figure 42: BOL structure of the passenger vehicle considered in the A1 application scenario......60
Figure 43: decision strategy of A1 application scenario ...61
Figure 44: Properties of the clutch component – some examples ...62
Figure 45: Conditions on the clutch component – a simple example..63
Figure 46: A typical class diagram for the management of incoming orders67
Figure 47: Use of the association class construct in a UML class diagram68
Figure 48: Alternative way to represent the information contained in figure 4768

Abbreviations
Abbreviations used in this document:

AAM Application Activity Model
AIC Application Interpreted Construct
AM Application Module
ANSI American National Standard Institution
AP Application Protocol
API Application Programming Interface
AR Application Resources
ARM Application Reference Model
ASPI Assured Product and Support Information
B2MML Business To Manufacturing Markup Language
BOL Beginning Of Life
BoM Bill of Material
CAD Computer Aided Design
CAE Computer Aided Engineering
CAM Computer Automated Manufacturing
CAx Computer Aided x
CORBA Common Object Request Broker Architecture
DoW Description of Work
DSS Decision Support System
EDS Electronic Data Systems Corporation
EOL End Of Life
IAR Integrated Application Resource
ICAM Integrated Computer-Aided Manufacturing
ID IDentifier
IDEF ICAM Definition Languages
IE inter-enterprise
IGR Integrated Generic Resource
ISA Instrumentation, Systems, and Automation Society
ISO International Organization for Standardization
MANDATE MANufacturing DATa Exchange
MIM Module Interpreted Module
MOL Middle Of Life
NC Numerical Control
NURB Non Uniform Rational B-spline
OASIS Organization for the Advancement of Structured Information Standards
OMG Object Management Group
PDKM Product Data & Knowledge Management
PDM Product Data Management

Copyright © PROMISE Consortium 2004-2008 Page 4

@

PEID Product Embedded Information Device
PLCS Product Life Cycle Support
PLM Product Life Cycle Management
PLM XML A standard on Product Life Cycle Management using XML (see below)
PROMISE PROduct life cycle Management and Information tracking using Smart

Embedded systems
SDAI Standard Data Access Interface
STEP STandard for the Exchange of Product model data
UML Unified Modelling Language
UoF Unit of Functionality
WBF World Batch Forum
WP PROMISE work package
XML eXtended Mark-up Language
XSD XML Schema Definition language

Copyright © PROMISE Consortium 2004-2008 Page 5

@

1 Introduction
1.1 Work Package objectives
WP R9 “Development of PROMISE Information management system” is part of Research cluster
RC-4, Knowledge Treatment and Decision Making, and is dedicated to the design, specification,
and implementation of the Product Data & Knowledge Management system (PDKM). As
specified in the DoW [1] of the PROMISE project, the roadmap to this goal consists of several
tasks and is also closely integrated with the tasks of WP R10 “Design and implementation of an
integrated and personalized user interface for the PDKM system”.

The first version of the present document, deliverable DR9.2 “Specification of the System Object
Model” [7], was outcome of task TR9.2 of WP R9. It was revised in task TR9.6, leading to the
present deliverable DR9.6a.

1.2 Scope of deliverable DR9.6a
This document presents an object model describing the attributes of the required objects of the
PDKM system, as well as their relations in detail. The object model primarily addresses semantic
issues, i.e. comprehensible representation of domain knowledge for communication between users
and applications, but also discusses technical issues, i.e. the efficient storage of data in physical
databases. A major emphasis is given to semantic issues, modelling “the entities which the
business users are familiar with and can easily communicate about. Entities (…) (are) further
described by attributes and relationships to other entities and business terms used in this context.
(…) (Such) a semantic model offers a common basis for data communication and exchange
between applications, between users, as well as between users and applications” [2].
DR9.6a does not present the complete data model as required by the PDKM, but is explicitly
focused on the pieces of information that the application scenarios are interested in. A certain
level of abstraction was required in the modelling process, in order to meet all their requirements.

Metadata flow Data flow

Data Analytics & DSS

Data Integration

Data
Management

PLM
Data Warehouse

BOL Functions

Metadata
Manage-

ment

System
Manage-

ment

User & Control Interfaces (Web, WAP, Mobile, …)

MOL Functions EOL Functions

Data Mart Data Mart

Data Sources

Metadata flow Data flowMetadata flow Data flow

Data Analytics & DSS

Data Integration

Data
Management

PLM
Data Warehouse

BOL Functions

Metadata
Manage-

ment

System
Manage-

ment

User & Control Interfaces (Web, WAP, Mobile, …)

MOL Functions EOL Functions

Data Mart Data Mart

Data Sources

Data Analytics & DSS

Data Integration

Data
Management

PLM
Data Warehouse

BOL Functions

Metadata
Manage-

ment

System
Manage-

ment

User & Control Interfaces (Web, WAP, Mobile, …)

MOL Functions EOL Functions

Data Mart Data Mart

Data Analytics & DSS

Data Integration

Data
Management

PLM
Data Warehouse

BOL Functions

Metadata
Manage-

ment

System
Manage-

ment

User & Control Interfaces (Web, WAP, Mobile, …)

MOL Functions EOL Functions

Data Mart Data Mart

Data Sources

Figure 1: Architecture overview of the PDKM system

Copyright © PROMISE Consortium 2004-2008 Page 6

@

Referring to the PDKM components of the PROMISE PDKM architecture shown in figure 1, the
present semantic data model describes the core of the Data Management layer, whose main task is
to provide a global semantic view on product and product life cycle data for all analysis
applications.
Examples of PDKM components not covered by the semantic model are the System Management
tower and the Metadata Management tower, which is treated in the development of the technical
data model in tasks TR9.5, TR9.11, and TR9.13.
Moreover, this deliverable does not intend to provide the data model that is required by the DSS
e.g. to store algorithms even if the DSS is, according to DR9.1 “Design of PROMISE Information
Management System (PDKM)” (see also figure 1), one of the components of the PDKM. That
part of the data model is developed by WP R8 “Methodologies for decision making for BOL,
MOL, EOL”.

1.3 Overall approach
The first step to the definition of the semantic object model of the PDKM system was the analysis
of user requirements defined by all of the application scenarios. A detailed description of the
inputs that have been used for this, and how they have been used, is presented in chapter 2.
At the same time, an analysis of the relevant industrial standards in the field of product life cycle
data modelling was carried out. This study provided the partners working on task TR9.2 with
many useful ideas for the development of the semantic model.
Thereafter, a first draft of the model was developed during a workshop. Then the application
scenarios have been iteratively mapped to the draft model, by this improving it. The final version
was developed and checked during another workshop and is reported in the present deliverable.
Finally, also the mapping of three exemplifying application scenarios to the semantic model is
documented in chapter 6.

1.4 Boundary conditions and limitations
The present deliverable DR9.6a focuses on the Semantic Object Model. The technical data model
is only discussed to the extent necessary for the completion of this work package, but important
aspects are summarized in chapter 5.

1.5 Document overview
The rest of this document is organized as follows:

• In chapter 2, the connection to other work packages of the PROMISE project is outlined.
Some of them provided input about the domain to be covered by the model (e.g. WP A1 to
WP A11). Some gave some constraints of different strengths (e.g. WP R7). Some provided
reference frameworks, to which the work developed in tasks TR9.2 and TR9.6 had to be
compliant (e.g. WP R2).

• In chapter 3, an overview of existing industrial standards for product data modelling across
the life cycle is presented. The aim is to identify interesting standards to refer to in the
construction of the semantic data model. The most interesting standards are briefly
outlined and their main features described. The compatibility of the semantic model with
these approaches is considered to be of great impact both from a conceptual point of view
and from an interoperability point of view, where comparing the approach of the semantic
object model with that of already existing solutions.

• Chapter 4 outlines the semantic object model. Before entering a detailed description of the
model, with its classes, attributes and associations, a brief introduction on how the model
was developed is provided, in order to outline the used point of view, the pieces of
information modelled, and the relations with other key PROMISE issues. Then, an
overview on the main classes and relations among them is given. Finally, each class of the

Copyright © PROMISE Consortium 2004-2008 Page 7

@

model is presented with its most important attributes, and a more detailed description of
the associations with other classes of the model is provided.

• Chapter 5 provides important details on the technical data schema, relating it both to the
mySAP PLM software chosen in previous deliverables as the system to be customized for
the purposes of the PROMISE PDKM, and to some of the most important technical issues
to be considered during implementation work.

• In chapter 6, the semantic data model is mapped to three of the PROMISE application
scenarios, providing a first overview of, which are its modelling capabilities for the
project’s purposes. The compliance of the model with the needs of the different
application scenarios represented a big issue to be solved during the development phase of
the model: a first exposition of the modelling concepts to solve these issues is given in this
chapter with reference to the three chosen scenarios.

• Chapter 7 provides some concluding remarks on the work developed in task TR9.2 and
TR9.6.

1.6 Delta to deliverable DR9.2 “Specification of the System Object Model”
The present document is based on the former deliverable DR9.2 [7] and aims at updating it based
on the experiences made so far during the work with the semantic object model. Hence, it
basically is a copy of DR9.2 with punctual changes. In order to help the reader to identify the
differences between DR9.2 and this deliverable, the most significant changes are listed here:

• References to future versions of PDKM or DR9.2, namely DR9.6a, and future tasks of
WP R9 have been removed or updated. There are not scheduled any further revisions of
this deliverable. Hence, this deliverable tries to cover the most important aspects of the
semantic object model. Nonetheless, minor changes to the semantic model not anticipated
until now might occur. They will be described in deliverable DR9.13 “PDKM Prototype
Version 3”, due M40.

• The present section 1.6 has been added.
• Section 4.2.1:

o The attribute Product_Type was removed from the PHYSICAL_PRODUCT class.
o The attribute Parent was moved from the PHYSICAL_PRODUCT class to the

PART_OF class.
o The attribute Parent was removed from the AS_DESIGNED_PRODUCT class. In

the same turn, the self-association of the AS_DESIGNED_PRODUCT class was
changed to be a directed association.

o The association between the CONDITION class and the AS_DESIGNED-
_PRODUCT class was replaced by an association between the CONDITION class
and the PHYSICAL_PRODUCT_GROUP class.

o The attribute Group_Identifier_ID of the CONDITION class was renamed to
Group_ID.

o Only in figures showing the CONDITION class, the attribute Reference-
_GROUP_ID has been removed and the attribute Flag_FD/Condition was renamed
to Flag_FD/Property. This was already reflected in the text.

o Only in figures, the attributes Property_Set and Condition_Set has been removed
from the AS_DESIGNED_PRODUCT class. This was already reflected in the text.

• Section 4.2.2:
o The attribute Supply_Environment was added to the PRODUCT_BOL_SUPPLY

class.
o The attribute EOL_Environment was added to the PRODUCT_EOL class.
o The association between the FD_SOURCE class and the ID_INFO class that was

described in the text was replaced by an association between the FD_SOURCE

Copyright © PROMISE Consortium 2004-2008 Page 8

@

class and the PHYSICAL_PRODUCT class. However, a composition-association
was added between the FD_SOURCE class and the ID_INFO class.

o Only in figures, the attribute Definition_Domain has been removed from the
VALID_FD_TYPE class. This was already reflected in the text.

• Section 5.1: The mapping table was replaced by a reference to a corresponding, up-to-date
table in deliverable DR9.6b.

• Section 6.1: Most of the examples have been substantially reworked.

All changes to the semantic model have been reflected in all figures and in the corresponding text.
Besides that, there have been minor editorial changes all over the document not changing the
content.

2 DR9.6a’s connection to other PROMISE deliverables
The work in TR9.2 and TR9.6 has been carried out considering the results of other work
packages. Consequently, the outcome of this deliverable is closely related to other deliverables.
This section makes a brief analysis of the main inputs and explains their impact on this
deliverable.

2.1 WP R2: PROMISE generic models
With respect to deliverable DR2.1 “PROMISE generic models (version 1)” [3], which is
mentioned in the DoW [2] as input to the task TR9.2, a major objective of TR9.2 and TR9.6 was
to ensure that the generic product life cycle models and the generic product information flow
models described in that deliverable are fully supported by the resulting object model. Thus, the
system object model was designed to enable system functionality that facilitates the use cases and
information flow models described for the generic models. To ensure this, several informal
walkthrough sessions have been conducted WP R9 internally where the object model has been
checked against the generic model.
The use cases and information flow models presented in DR2.1 cover the entire scope of the
project including hardware aspects, PEID and middleware issues. Although these topics are not in
the focus of the PDKM development phase, they were considered as well in order to ensure the
compatibility of the object model with adjacent components and processes.

2.2 WP R7: Information and Knowledge Management Methodologies
In WP R7, and more precisely in deliverable DR7.3 “Selection of Tools and an existing PDM
System to support PROMISE specific Knowledge and Information Management Processes” [4],
the PLM system mySAP PLM has been recommended for use as a basis for the PROMISE
PDKM system. In order not to constrain us, this recommendation has not been considered during
the development of the system object model in the sense that the semantic model must easily fit
into the mySAP PLM data model. However, it was considered in the sense that we were allowed
to focus on selected areas that are important for the communication and alignment with the
application scenario WPs A1 to A11 and other work packages such as R6 and R8. Details of
areas, which are standard functions in mySAP PLM (e.g. the issue of access rights management),
could be left out.
However, the mySAP PLM data model has a significant influence on the technical data model.
The main objective with respect to compliance with the SAP system is to enable the development
of a SAP-based PDKM system that realises the system object model. This aspect is discussed in
more detail in section 5.1.

Copyright © PROMISE Consortium 2004-2008 Page 9

@

2.3 WP R9: Development of PROMISE information management system
The design and conceptual architecture of the PROMISE PDKM system was introduced in the
first deliverable DR9.1 [2] of WP R9. This document cannot to be seen as an input to DR9.6a in a
strict sense; more precisely the present deliverable has to be considered as an important
supplement to what was described in DR9.1, since it provides many details of the required object
model. Referencing the architecture represented in DR9.1, the object model described here is the
core of the Data Management layer. The object model does not cover the other components like
the System Management tower, the Metadata Management tower or the DSS, which is, again
according to DR9.1, one of the components of the PDKM. These are treated in the development
of the technical data model during the activities of tasks TR9.5, TR9.11, and TR9.13, or –
regarding the DSS – in WP R8.
Nevertheless, the object model was checked in informal walkthrough sessions conducted WP R9
internally in order to guarantee that it does not contradict but – where applicable – supports the
conceptual design presented in DR9.1.
Certainly, also the work on other tasks and deliverables of WP R9 (compare DoW [1]) fostered
the refinement of the semantic object model.

2.4 WPs Ax: Application scenarios 1 to 11
The scope of the application scenarios was described in detail within the deliverables DA1.1 to
DA11.1 “Scope, definition and description of the current state vs. critical issues”; more details
have been provided in further deliverables of the application work packages [5]. These documents
served as the main input for the work in this deliverable since they describe the needs of the
application scenarios and have been used to check the applicability of the object model. In order
to do this, the object model has been iteratively applied to the application scenarios during its
development. This process has been carried out in an informal way and helped to identify missing
points and improve the data model. Three examples of the application of the object model to an
application scenario are documented in chapter 6 of the present document.

3 State of the art on product data modelling across product life cycle
In this section, an overview on the most important standards on product data is provided. The
main features of the cited standards are outlined, as well as their capability of modelling product
data throughout all, or part, of the product life cycle.
One of the basic requirements for the development of the product data model was that of
achieving an easy understanding of the model by people or organizations of different countries,
languages and cultures. This, as well as the intention to avoid misunderstanding of concepts, ideas
or definitions, are supported by making use of or considering, whenever possible, shared
standards. Moreover, the consideration of these standards for the purposes of the model outlined
here permits more compatibility of the developed model with existing applications and standards.
This enables easier interoperability and sharing of import and export data.

A literature review on standards for product design, manufacturing control and product support
was first carried out. This review proved that none of the existing standards is capable of
modelling the complete life cycle of a product, at least in the sense of the PROMISE project’s
vision. The semantic model of the PDKM outlined in the following pages has the purpose of
achieving this capability. Nevertheless, though not “complete” in the sense stated above, each of
these standards proved to be useful as a reference in the development phase of the semantic
model, e.g. because it represents in a simple and compact manner some particular and
fundamental concepts of a product’s life. So, each of the standards presented in this section helped
in building one or more of the bricks the object model is built out of. Some of them only provided
concepts, some other gave ideas on the objects to be modelled in order to define a specific aspect

Copyright © PROMISE Consortium 2004-2008 Page 10

@

of a product’s life, and some other finally inspired some names for the classes and attributes or
even some compact and clear modelling constructs.

Among all, the following standards were identified and studied:

• STEP
• STEP NC
• PLCS
• MANDATE
• PLM XML
• ANSI/ISA-95

These standards have some properties and features in common, but are as well distinguishable by
a lot of remarkable differences. First, they were designed by different organizations, with different
scopes and for different targets. STEP, STEP NC, PLCS and MANDATE can be grouped together
at first sight, because they are all ISO (International Organization for Standardization) standards;
furthermore, PLCS is an application protocol of STEP.
STEP is an industry standard for product data representation and it is composed of several parts
(application protocols) whose aim is to focus on a specific industrial context. There are
application protocols for product design, for mechanical and electrical engineering, for sheet-
metal manufacturing, for product assembly, for the automotive industry, etc.
PLM XML is an open standard developed mainly by EDS (Electronic Data Systems Corporation)
and dealing with the product design phase.
ISA-95 is an ANSI (American National Standard Institution) standard, except for its first part,
ANSI/ISA-95.00.01, which is also an ISO standard (ISO 62264-1). All together, ANSI/ISA-95
Parts I, II, and III describe the interfaces and activities between an enterprise’s business systems
and its manufacturing control systems: it mainly focuses thus on the area corresponding to the
production phase of a product.

STEP

Product
Development

Product
Supply MOL EOL

PLM@XML ISA-95

MANDATE

PLCS

STEP-NC

BOL

Figure 2: Standards throughout Life Cycle Phases

Copyright © PROMISE Consortium 2004-2008 Page 11

@

One more remark concerning another interesting standard should be stated here. In the deliverable
DI1.2 “PROMISE Standardization Domains” [6], the standard dubbed PLM Services, published
by the OMG (Object Management Group), is mentioned as one of the relevant standards for the
PROMISE PDKM system. However, PLM Services is not included in the list given above
because it focuses on the exchange of product life cycle data via Web-Services. The underlying
data model itself is compliant to STEP AP214. Thus, PLM services might be relevant for other
aspects of the PDKM development but it is not of special importance for the development of the
object model since it is sufficiently covered by dealing with STEP.
In figure 2, the life cycle phases of interest and their association to the studied standards are
shown. The figure also illustrates that none of the considered standards covers the whole product
life cycle. The BOL, MOL and EOL phases are reported, as in the PROMISE vision.
The BOL phase is divided into two parts: the Product Development phase and the Product Supply
phase. The first one is about the design and development of the product; here the physical product
does not exist, it is only an idea represented on drawings and design information. Lots of
standards focus here; the PLM XML and the STEP standards were chosen among the others
because of their spread, importance and the fact that they are “open” standards.
The Product Supply phase is about the production of the physical product, the management of its
supply chain and of its delivery to the final customer. Some of the most interesting standards that
focus on this phase are ISA-95, MANDATE, STEP NC, and PLCS. However, some of them focus
more on the production phase, such as STEP NC, some other on the delivery and none can be seen
as “complete” in the sense stated above.
For the MOL phase, more or less specialized standards exist, such as again MANDATE and
PLCS among those studied here. The same holds for the EOL phase, which is dealt with by PLCS
and STEP.
In the rest of chapter 3, a short overview on the mentioned standards is provided, focusing on the
characteristics that have been considered during the development of the data model.

3.1 STEP – ISO 10303
ISO 10303 – STEP (STandard for the Exchange of Product model data) is an international
standard for the computer-interpretable representation and exchange of product definition data. It
was developed with the aim to provide a mechanism capable of describing product data as defined
in ISO 10303-1 ("representation of facts, concepts or instructions about one or more products in
a formal manner suitable for communication, interpretation, or processing by human beings or by
automatic means"), independently from any particular system. Its natural implementation is that
of a computer system and CAD, CAM, CAE software for product design. The way it was
designed for describing product data makes it suitable for neutral file exchange among different
software solutions, also in a distributed engineering or manufacturing environment. It can also
operate as a basis for implementing and sharing product databases and archiving.
One of the most important aspects of STEP [9] is its extensibility. This extensibility is the result
of the decision to base STEP on a proper information modelling language, i.e. the EXPRESS
language. The standard is organized as a series of parts, each one published separately. The
structure is shown in figure 3.

Copyright © PROMISE Consortium 2004-2008 Page 12

@

Figure 3: Parts defining STEP implementation

The Information Models, in particular the Application Protocols describe the data structures and
constraints of a complete product model. Each application protocol combines one or more
information models and places additional constraints on those models. For example, the
application protocol for 2D drafting combines parts #42 and #46 and restricts the former so that it
only describes two-dimensional data.

The Implementation Methods are protocols that are driven by the EXPRESS language. They are
used to move real EXPRESS-defined application data between tools, and to make that data
available to application developers.
The first implementation method is the STEP physical exchange file, often referred to as “Part
#21 file format”. The Part #21 specification is the medium provided by STEP to move EXPRESS-
defined data between databases and CAD systems.

STEP does not attempt to produce a single standard model that applies across disciplines. Rather,
the STEP approach aims at producing standard product models for use within specific areas of
application, called Application Protocols (APs), and strives to harmonize and coordinate these
models across application areas to the greatest extent possible. The process of developing an AP is
illustrated in figure 4.

Copyright © PROMISE Consortium 2004-2008 Page 13

@

Figure 4: STEP - the Application Protocol Development Process and Implementation

Components (arrows indicate reference to other sections of STEP)
To begin, AP's grow out of specific, perceived industry needs, and these needs must be well
formulated and understood. Given an industry need, the role of the AP is documented in an
Application Activity Model (AAM). The AAM identifies the business processes in which the AP
is used, and shows the information flows among the processes. The AAM is presented typically
using IDEF0 notation, which lists business activities and the information flows between them (see
figure 5). The AAM is often the first interface with industry participants in the modelling process
and is the primary tool for determining how the model is to be used.

Figure 5: Example of an Application Activity Model (AAM) in IDEF0 Notation (from
AP225 (ISO 1995))

Copyright © PROMISE Consortium 2004-2008 Page 14

@

Given this understanding of the model's role, the Application Reference Model (ARM) is
developed. The ARM is a model that depicts the information that needs to be included in the AP
using the terminology and concepts of the application domain. The development of the ARM
encompasses the bulk of the model development effort, but it is still within the scope of the
industry experts (rather than being the responsibility of modelling specialists alone).

Once the AAM and the ARM are developed, the task shifts to developing a model that fully
defines all the necessary data representation structures in a way that is compatible with other parts
of the STEP standard. This is the interpretation process and it results in an Application
Interpreted Model (AIM), which draws upon the ARM and other reference models, both STEP-
wide resources, Integrated Generic Resources (IGRs) and Integrated Application Resources
(IARs). A Mapping Table correlates the entities from the ARM and AIM models.

In addition, Conformance Classes are defined (i.e. different levels, to which implementations of
the model may adhere) and suites of test data are developed, through which implementations can
be tested. Finally, where the interpretation process leads to the same basic concepts being
represented in two or more AIMs, these model segments are defined in an Application Interpreted
Construct (AIC) for use in future AIMs.

The actual AP document includes the following sections:
• A statement of the scope of the AP
• A list of normative references (e.g., other STEP parts that are explicitly referred to in the

AP)
• A list of definitions and abbreviations used
• The information requirements for the AP: this section describes the ARM in terms of a

listing of objects organized into related sets called Units of Functionality (UoFs), a
complete listing of the application objects and their attributes, and a list of application
assertions that specify the relationships between application objects, the cardinality of the
relationships, and the rules required for the integrity and validity of the application objects

• The AIM described as a mapping table that maps ARM elements (objects, attributes, and
assertions) to one or more AIM elements and as a complete listing in EXPRESS, a data
modelling language that is itself part of the STEP standard.

• Appendices that include graphical representations of the AAM, ARM, and AIM

A fully developed AP, specifically the AIM model presented in EXPRESS language, is intended
to be implemented to support information exchange. There are two primary implementation
approaches directly supported by STEP. The first is file transfer, in which the data corresponding
to some specific project is exported from one computer application, structured according to the
AP, and formatted as defined by the STEP Physical File Format (STEP part 21). This file can
then be imported and interpreted by another computer application. The second implementation
method is direct access to the data as stored in a database or similar system. In this case, STEP
Part 22 defines the Standard Data Access Interface (SDAI), which provides a programming
interface to the on-line data (bindings of the SDAI interface to languages such as C, C++, and IDL
are being defined).

Some examples of STEP Application Protocols are:

• ISO 10303-201:1994 Explicit Draughting
• ISO 10303-202:1996 Associative Draughting
• ISO 10303-212:2001 Electro-technical design and installation
• ISO 10303-239:2005 Product Life Cycle Support (PLCS)

Copyright © PROMISE Consortium 2004-2008 Page 15

@

3.2 STEP NC (ISO 14649)
STEP NC [10] is a standard, which is explicitly focused on the design and production phases of
the product life cycle. In particular, as the acronym NC (Numerical Control) indicates, it is
focused on the integration between the activities performed at the backend during the design
phase, i.e. the construction of CAD/CAM models, and those directly performed at the shop floor
level, by the numerically controlled machine tools. Figure 6 shows the difference between the
current situation and the one proposed by the STEP NC approach, in an intuitive way.

Figure 6: Comparison between the current state of the integration between design at the

backend and production at the shop floor level and the STEP NC proposal

The basis for the necessary information technologies are in general as well as in the production
phase data models and exchange formats to define how information is represented and to predict
what can be processed and in which way. To close one of the last gaps in the complete and
continuous information flow, ISO 14649 provides a standard (STEP NC) and an interface for the
shop floor with its workflow. By referencing the ISO 10303 series, existing IT developments for
the manufacturing sector such as for EDM and CAx can be used further on and be integrated into
the modern numerically control production. Functionalities based on complex information are
thus no longer limited to off-line working systems. Control vendors as well as software and
system suppliers can realise more integrated, intelligent, and powerful applications, which are at
the same time easy to handle due to high-level graphical user interfaces.

STEP NC (figure 7) is capable of representing both geometrical aspects concerning the product,
i.e. its geometrical features such as holes, pockets, planes, etc., and the information describing
how to machine the product (the so-called “workpiece”), i.e. which operations have to be
performed at the shop floor, e.g. drilling and milling operations, the tool path to be followed
during machining, the machining parameters, the strategy to be used, etc. A powerful hierarchical
object model of all these pieces of information is provided by the standard by means of
EXPRESS-G diagrams. This object model was used as a reference for the development of the
semantic model described in this document, which in turn resulted to be compliant with it in the
sense that a STEP NC representation of a product can be inserted into the framework provided by
the semantic object model, if needed.

Copyright © PROMISE Consortium 2004-2008 Page 16

@

Figure 7: The STEP NC approach - encapsulation of product geometry and machining

operations to be performed

3.3 PLCS – ISO 10303-239:2005
Product Life Cycle Support (PLCS) [11] is an Application Protocol of ISO 10303 (STEP). It was
born as an initiative supported by both industry and national governments with the aim to
accelerate the development of new standards for product support information. Now the work
passed to OASIS (Organization for the Advancement of Structured Information Standards), which
is a non-profit, international consortium that drives the development, convergence, and adoption
of e-business standards.

Figure 8: PLCS Domain

Copyright © PROMISE Consortium 2004-2008 Page 17

@

PLCS, as represented in figure 8, should be able to describe products in its whole life cycle
(Design, Production, Use, and Decommissioning), with particular emphasis on needed support
and work required to sustain and maintain the products in operational conditions.
As it was built around STEP, it is easy to integrate PLCS data and applications within complex
and heterogeneous software systems, reaching a high degree of interoperability. PLCS, indeed,
shares the same common interface of other STEP-based software for product design and
development, for maintenance management, for manufacturing scheduling and so on (as shown in
figure 9).

Figure 9: Inter-operability of life cycle software applications through PLCS
For specifying or recording the required support activities throughout product life cycle, a set of
Assured Product and Support Information (ASPI) is defined. Life cycle data for a specific product
is composed by both ASPI and their related information, such as feedback on product history,
activities and resources used, etc. All these pieces of information can be managed in an integrated
form, represented by the so-called PLCS Vision (figure 10).

Figure 10: The PLCS Vision

Copyright © PROMISE Consortium 2004-2008 Page 18

@

PLCS is based on three top-level concepts (figure 11): Product, Activity and Resource. Each of
these concepts is in relation with Properties, States or Locations, and Conditions can be applied to
these relationships. The idea of Products, Activities, and Resources has been used also in the
developed model (compare section 4.2).

Figure 11: PLCS concepts

Products are described by means of the Application Module Product Structure (AM 1134). This
references other AMs to define product sub-components, their relationships, their assembly
structure and many types of breakdown, by which a product can be affected.
Activities are defined within AM 1047. Examples of activities are works done by people or
organizations, usage of products, planned maintenance, etc. It is noticeable how PLCS
distinguishes between future planned activities and activities that have already taken place or
recently started (defined in AM 1259, Activity as Realized).
Resources are required to perform a task, can be quantified, specified, and are distinguished
between required resources (AM 1267) and resource item (AM 1266). These resources are used
by activities involving products and can represent, for example, people providing product support,
instrumentation, software, tools for repairing products, and so on.
Products, activities and resources are characterized in terms of location, properties and state
attributes.
Starting from this conceptual model, PLCS defines an abstract module hierarchy (figure 12),
which implements the previously described concepts. For example, the main module is the
Product Life Cycle Support module, acting as the root for the other related modules, such as
Product Status Recording, Activity Recording, etc.
In the PLCS Application Protocol, the Application Modules are closely bound in a hierarchical
structure, starting with a root AM called Product Life Cycle Support (ISO 10303-439). This main
module is the root, for example, of Product Status Recording and Activity Recording AMs
(respectively AM 1304 and AM 1287), as displayed in figure 12.

Copyright © PROMISE Consortium 2004-2008 Page 19

@

Figure 12: Abstraction of module hierarchy

The PLCS standard uses the same language used in the STEP standard, i.e. EXPRESS, and more
precisely its graphical representation, namely EXPRESS-G, which allows a synthetic
representation of ARM and MIM within a module. Each AM is defined both using EXPRESS and
EXPRESS-G. The result is a collection of AM schemas detailed at two different levels, both for
ARM and MIM. The first level is a “Schema Level” focusing on the relationships with other
required AMs. The second level is an “Entity Level” and focuses on entities and entity types as
building blocks for the AM definition. Figures 13 and 14 show an EXPRESS-G schema of ARM
and MIM for a specific module at Schema Level, whereas figure 15 is an Entity Level MIM
schema belonging to the same AM.

Figure 13: EXPRESS-G schema of the ARM for the “Required resource” Application

Module (1267)

Copyright © PROMISE Consortium 2004-2008 Page 20

@

Figure 14: EXPRESS-G schema of the MIM for the “Required resource” Application

Module (1267)

Figure 15: EXPRESS-G Entity Level schema of the MIM for the “Required resource”

Application Module (1267)

3.4 MANDATE – ISO 15531
MANDATE (ISO 15531) [13] is a part of the set of standards provided by TC184/SC4; it has
been under development for quite a long time, but there are only a few easily accessible results.
The main intention of the developers of this standard is to provide capabilities for the description
and management of product data throughout the portion of the product’s life concerning its
production.

Copyright © PROMISE Consortium 2004-2008 Page 21

@

The areas of interest for TC184/SC4 are:

• ISO 15531 (MANDATE) Industrial automation systems and integration - Industrial
manufacturing management data

• ISO 13584 Industrial automation systems and integration - Parts Library
• ISO 14959 Industrial automation systems and integration - Parametrics
• ISO 10303 (STEP) Industrial automation systems and integration - Product data

representation and exchange

MANDATE (MANufacturing DATa Exchange) tries to define a common representation for all of
the manufacturing pieces of information.
The scope of the standard is the representation of production information and resources
information including capacity, monitoring, maintenance (from a global point of view in relation
with their impact on the flow control), and control, as well as the exchange and sharing of
production information and resources information including storing, transferring, accessing, and
archiving.
STEP takes a product-oriented view of manufacturing while MANDATE is concerned with the
processes of the organization, which are carried out to produce the products.

MANDATE is divided in three series of parts based on a common overview and fundamentals:

• ISO 15531-1 : Overview and fundamental principles
• ISO 15531-2x : Production Data: External Exchange
• ISO 15531-3x : Manufacturing Resources Usage Management Data
• ISO 15531-4x : Manufacturing Flow Management Data

Some more information on the three series of parts:

• Parts 15531-2 series (Production Data: External Exchange): These parts refer to the
representation of production information, which has to be exchanged with the external
environment. The aim is to model the main production information exchanged between
industrial companies, using the EDI protocols. The domain includes all information and
functions necessary to support quality and order management issues, such as planning,
executing, controlling, and monitoring of product quality, orders, and shipments.

• Parts 15531-3 series (Manufacturing Resources Usage Management Data): These
Parts refer to the resource usage management, such as resource configuration and
capabilities, operation management of manufacturing devices, installation and facilities.
They also include quality features, maintenance-features (regarding the availability), and
safety-features.

• Parts 15531-4 series (Manufacturing Flow Management Data): These parts refer to the
material flow control and are intended to standardize data and elements, which support the
control and monitoring of the flow of material in manufacturing or industrial processes.
This includes all the elements describing the material flow, including inventory. They need
strong relationships with resources usage management data.

ISO 15531 addresses operations dealing with product manufacturing, and uses components that
will be consistent with STEP. In particular, MANDATE will be compliant with the STEP
architecture and the different parts of MANDATE will use as far as possible the EXPRESS
language. As cited above, this standard is – though of interest – still under development and was
used therefore for the purpose of the development of the semantic object model only as a general
guide.

Copyright © PROMISE Consortium 2004-2008 Page 22

@

3.5 PLM XML
PLM XML [12] is an open standard proposed by EDS to facilitate high-content product life cycle
data sharing. This standard especially focuses on the design phase of the product’s BOL.
The functional objectives of PLM XML are:

• to orchestrate product structure, product information and geometric representation data in
an open, lightweight and extensible form,

• to share relevant information through the product life cycle by offering a standardized
protocol for data interoperability,

• to integrate collaborative product life cycle processes by providing a coherent flow of data
within a heterogeneous application environment.

Figure 16: Grouping of product information in PLM XML

All the information is grouped in one unique file that can also contain the open solid model format
Parasolid XT and the visualization format JT (see figure 16).

PLM XML schemas define a hierarchy of product information and relationships; the supported
data includes the following:

• Evaluated product structure: PLM XML schemas define a mechanism for exchanging
an evaluated product structure, suitable for product development, BoM (Bill of Material),
and assembly visualization. The product structure can be represented via an instance graph
structure as well as multiple occurrence-based product views. The product views can
reference the instance graph to enable display configurations based on an internal
structure. For part representation, PLM XML includes the concept of a part and its
metadata, but does not include schema definitions for the explicit geometric component
representations. Instead, parts within PLM XML can reference multiple external
representations such that the receiving application can decide which representation is
suitable for loading.

• Visualization properties: PLM XML provides visualization property exchange in the
form of view controls (view directions, view ports, view characteristics) and display
controls (lights, backgrounds, etc.).

• Reference geometry: PLM XML can exchange reference or wire frame geometry via its
geometry schemas. The schemas are based on Parasolid geometry definitions and include
NURBs and analytic forms.

• Visualization Features: PLM XML supports the representation of product features,
including feature hierarchy, suitable for visualization and feature browser applications.

• Associativity: PLM XML defines elements to enable associativity back to the sending
application. This associativity is an optional element that may be added to virtually any
PLM XML element that describes the name of the sending application and a persistent
label for the object itself (an optional version may also be specified). The label is specific
to the sending application but may be used by the receiving application to label the
equivalent object.

• Component reference: PLM XML uses a standard URL/URI mechanism for specifying
the location of data elements within a distributed data environment.

• Entity reference: PLM XML has extended the URI mechanism via a “PLM XML
pointer” syntax to enable entities within data files or components to be referenced.

Copyright © PROMISE Consortium 2004-2008 Page 23

@

This initial set of capabilities is being expanded to encompass a broader range of data that passes
between applications during collaborative working in the product life cycle, including additional
product structure information, product manufacturing information, and product data management
(PDM) metadata.

PLM XML can be useful for enterprises for the following reasons:

• Interoperability: For example with respect to part file or assembly data exchange, PLM
XML can provide a vehicle for sharing product information, allowing common access to
structure, attribute data, and referenced representations. Figure 17 shows PLM XML being
used both as a directly supported format in sending and receiving applications, and as a
tool for abstracting the native part file format to extract the essential product data.

Figure 17: PLM XML Interoperability

• Collaboration: to deliver a packet of information to an extended team of consumers for
collaborative review, while the receiving applications can identify and consume the data
most appropriate to their needs and application capabilities. PLM XML will allow
receiving applications to consume selectively the contents of the PLM XML file, enabling
the same payload to be used for collaboration with a variety of participants (figure 18).

Copyright © PROMISE Consortium 2004-2008 Page 24

@

Figure 18: Group level shared collaboration

• Integration: PLM XML can embody the data payload in more formalized enterprise

application integration scenarios, where there is a need to compose data payloads from
potentially multiple data sources and communicate to multiple recipients within a given
transaction context. Using PLM XML means that the payload can be high level (for
example, product structure as opposed to single objects) and can be received and
processed in a variety of application environments to maintain consistency across an
extended enterprise. In this way, the PLM XML payload protocol can be used in
formalized transactions between tightly integrated systems and at the same time be
distributed to more loosely coupled systems, which need to be connected (figure 19).

Figure 19: Integration with business applications

Copyright © PROMISE Consortium 2004-2008 Page 25

@

3.6 ANSI/ISA-95 (ISO 62264)
ANSI/ISA-95 [14], which has been accepted by ISO community and published as ISO 62264, is a
standard composed by different parts aiming at the definition of the interfaces between enterprise
activities and control activities.

Part1 (Enterprise/Control System Integration) describes the relevant functions within an enterprise
and within the control domain of an enterprise, stating, which objects are normally exchanged
between these domains. In detail, this first part concerns with the interface between two levels of
the functional hierarchical model proposed in figure 20: in particular the interfaces between
“Level 4” (Business Planning and Logistics) and “Level 3” (Manufacturing Operations and
Control).

Figure 20: Functional hierarchy

Taking into account this purpose, it is necessary to define, which are basic functions involved at
this interface, which is their organizational structure, and which is the information flowing among
these functions. ANSI/ISA-95 part 1 defines, in other words, a functional model and a related
information model. Figure 21 shows the functional model, highlighting the boundary of the
enterprise/control interface, which in turn corresponds to the interface between the previously
shown levels 3 and 4.

Copyright © PROMISE Consortium 2004-2008 Page 26

@

Figure 21: Functional enterprise/control model: the dotted line shows the boundary of the

interface

On the other side, ANSI/ISA-95 defines general categories of information shared by the
functional model and their specific structure. Figure 22 represents areas of generic information
exchange.

Figure 22: Areas of information exchange

Copyright © PROMISE Consortium 2004-2008 Page 27

@

Each of these areas of interest is then treated in further details. For instance, Production Capability
(figure 23) is a collection of information related to the production capability of personnel,
materials, and equipment for a specific manufacturing area or site. This information is completed
with maintenance data for each equipment within the same production area and by information
regarding the availability of capability for single process operations or grouping of operations,
which define a process segment. All this information and data define, in other words, for each
production unit, site or area, the up-to-date capability for each product-processing phase. This area
takes care of enterprise-side information.

Figure 23: Schema for Production Capability

Product Definition (figure 24) describes for each product type its product production rules, bill of
materials, and resources. This information area contains all data needed for technically defining a
product manufacturing operation, specifying, which product subcomponents are required, which
resources as machines, personnel, tools, and so on shall be used and how. The point of view of
this area is focused on the product.

Figure 24: Schema for Product Definition

The last main area is that of Production Information (figure 25). Here, information on product
production history (log), on production inventory of consumed and produced materials, and
information on production scheduling are collected. This area is interested in describing how

Copyright © PROMISE Consortium 2004-2008 Page 28

@

products are produced and displaying production performances. This way, it put together a
product-based view with an enterprise-side based view.

Figure 25: Schema for Production Information

Within all these areas, there are types of information, which are shared among several areas as
well as specific types of information used for a single area only. ANSI/ISA-95 makes use of UML
1.0 (Unified Modelling Language) representation for displaying each class of information and its
relations with other classes. Detailed object models are developed for these pieces of information
(see for instance figure 26) and also a detailed description of the most important attributes
belonging to the classes of the object models are provided (part 2 of the standard).

Figure 26: Production Capability model

Copyright © PROMISE Consortium 2004-2008 Page 29

@

4 General System Object Model (Semantic model of the PDKM)
In this section, the General System Object Model of the PDKM system is outlined. Before
entering a detailed description of the model with its classes, attributes, and associations, a brief
introduction on how the model was developed is provided in order to state the used point of view,
the pieces of information modelled, and the relations with other key PROMISE issues.
Then, an overview on the main classes and relations among them is given as a first guidance.
Finally, each class of the model is presented with its most important attributes and a more detailed
description of the associations with other classes of the model is provided. Attributes of minor
importance or with an obvious intention that does need further explanation were sometimes
omitted. Where considered as helpful for the understanding of the concept, examples are given.

4.1 Important notes on the modelling criteria adopted
The semantic model of the PDKM system presented here is capable of providing the PROMISE
consortium with a conceptual view of the system, representing the main concepts belonging to the
domain of interest. These concepts are in a natural correspondence with the rest of the PDKM
system and with the way, all of them are implemented, but such links are not developed further
here; instead, they are studied in other activities of WP R9. The model, however, was designed
with the aim of providing the system with a basis for representing product data throughout the
whole product life cycle.
The focus is more on data modelling than on complete software systems modelling. The
completeness of the model, in the sense of a complete specification of all required classes and of
all of their attributes, is both not intended and not required to show in a clear way the domain of
interest of the PROMISE vision and approach. Thus, there might be classes of minor importance
as well as attributes of listed classes not be mentioned at all.
In the Semantic Object Model presented in the next pages, particular importance is given to the
representation of the information whose loops across the product’s life have to be closed by the
PROMISE project in the different application scenarios. This requires a proper modelling activity
for the information one wants to be attached to each product instance or even product components
and subassembly instances where requested by means of smart product embedded devices.
A certain degree of abstraction was required in order to make the present model capable of
representing the different needs coming from the whole set of PROMISE application scenarios.
Considerable importance was given to the pieces of information describing each of the product
life cycle phases, such that the PDKM system is able to manage data and knowledge in the way
required by each application scenario. Different scenarios focus on different life cycle phases, in
different ways and for different purposes.
The pieces of information concerning product types rather than those concerning product
instances are also included, even if they do not represent the focus here. Thus, only a small
portion of the model refers to pieces of information on products “as-designed”, since most PDM
Systems (mySAP PLM, used for the PDKM, included) widely treat this data much better than the
way it could be done here. Nevertheless, this kind of data has not to be excluded from the model,
since most of the PROMISE application scenarios clearly require them.
Another key aspect of the Semantic Object Model is that it describes field data, relating them to
the different life cycle phases where they are first collected and then analyzed. To develop this
portion of the model, some abstraction was required again in order to be compliant with the
different needs of the different PROMISE scenarios.

These are the most important, high-level features of the PDKM Semantic Object Model.
Concerning the modelling methodologies, languages, and tools used in the development phase,
the statements in the rest of this section hold.

Copyright © PROMISE Consortium 2004-2008 Page 30

@

The model is explicitly object-oriented, by this following today’s most used paradigm for
software development. UML (see [21]), an important standard language for graphical modelling
purposes was chosen and used, by this also following the general tendencies in the PROMISE
project (refer e.g. to DR2.1 [3]). The model is compliant with UML 2.0 [18].
An existing approach from the literature on product data modelling throughout the product life
cycle was used as a first reference (refer to [15], [16], and [17] for example). The model presented
there is also object oriented and represented in UML language and provides an interesting
representation of the basic concepts one should define in order to enable the complete product
traceability, both “forward” and “backward” (see again [15]), along a product’s life.

Since the Semantic Object Model only contains the static view on the PDKM system, in the terms
defined above and further treated below, the UML Class Diagram was chosen as the main UML
tool to be used in the modelling activity. Only a subset of the whole UML syntax for class
diagrams is used here, since there are some constructs, which enable a clear description of the
concepts behind a graphical model, without the need of using more complex constructs with low
value added to the semantic description of the domain of interest. The focus is on the classes
building up the model as well as on the attributes describing their main features. Associations
among classes are used as well as the generalization construct. Sometimes associations are
described as compositions to show where complex objects (e.g. more complex products) are built
out of components and subassemblies, for which information must be stored and managed. Some
other constructs, such as the aggregation, have intentionally not been used, since the object
community has not reached a common agreement on its meaning and utility yet, despite of the
fact that aggregation is sometimes widely used (but with different meanings, as reported in [18]).
Therefore, instead of aggregations, normal associations have been used.
Cardinalities of associations and attributes are shown, while only some generic reference is
reported on data types corresponding to the defined attributes. For instance, if an attribute refers to
the date and time that a certain event on the product has occurred, e.g. the date and time when the
clutch of a car broke, it is stated that the attribute is of type “Date” even if “timestamp” would be
more appropriate. The “Boolean” data type is also indicated, as well as some other data types.
However, often no data type is shown. This is especially the case if the required data type would
be some complex object e.g. representing the BoM for a product. In these cases, most often the
attribute’s name or its description indicates what the respective data type should look like. Thou,
it was not in the scope of this deliverable to detail all this complex data types. Latter is dealt with
in other tasks of WP R9. In the model, sometimes a generic “string” data type was specified for
those attributes as default, which should not be misunderstood as string being indeed the
corresponding data type. In the appendix is a short reference guide to the meaning of the subset of
UML syntax used to describe the semantic object model.

4.2 Class Diagram of the Semantic Model: an overview on classes and associations among

them
A first insight into the Semantic Object Model can be given as follows (figure 27). Regarding the
viewpoints cited in the previous section, two main areas are found in the whole model:

• A first area, bounded by the red, continuous line, comprises on the one hand the basic
pieces of information on each product instance, whose information loops the PROMISE
end-user wants to be closed, when making use of the technologies developed by the
PROMISE project. These pieces of information should reveal some important information
such as the serial number of the product instance, the product type, to which it belongs, the
product structure of the product if needed, the main properties valid for the product
instances, the conditions to be checked on them, etc. In addition, this area also describes
the product as a product type. The latter does not represent a focus of the present model,

Copyright © PROMISE Consortium 2004-2008 Page 31

@

but the information modelled by it is clearly requested to be managed in most PROMISE
application scenarios, and thus must be properly represented. The product type is closely
related to the other elements in this area of the diagram, as stated by many associations,
and models pieces of information such as the different BOL structures (see DR9.1 [2]),
properties, and conditions applicable to the different product types etc.

• A second area, bounded by a blue, dotted line, aims at modelling the pieces of information
connected to the different life cycle phases, in which the PROMISE end-user is interested.
This enables the description of the main events, out of which a certain life cycle phase is
composed (i.e. product failures or breakdowns, replacements of components of a complex
product, etc.), of the PROMISE end-user’s resources involved in the scenario concerning
that life cycle phase (i.e. the garage crew, the designer, the production manager, etc.), and
also of the activities performed by these resources in that life cycle phase (e.g. dismantling
of a car’s components, maintenance of a truck, etc.). Besides that, an important portion of
this area is dedicated to the representation of field data, one of the crucial elements in the
PROMISE approach.

In the following, a more complete explanation of each of these areas is given, considering the
classes involved and the associations among them as well as the most important attributes
describing each class in detail. Attributes that are not mentioned explicitly in the explaining
text represent information that is more generic. They are usually implemented in very different
ways depending on the chosen PDM system underlying the PDKM system.

4.2.1 Product instances across their life cycles: from the identification problem to the
representation of the BOL, MOL, and EOL product structures

The PROMISE approach to PLM is a “product instance-centric” one. Each instance of a
certain product type should be followed all along its life cycle in order to close the desired
information loops, thereby creating value. The concept of PEID is capable of enabling the link
to all these product items and their related information. A central portion of the semantic
model should thus reflect this approach and properly represent the information on each
product at the item level.

Copyright © PROMISE Consortium 2004-2008 Page 32

@

Figure 27: Complete schema of the semantic object model

Copyright © PROMISE Consortium 2004-2008 Page 33

@

Figure 28: The product structure of physically existing products and the

PHYSICAL_PRODUCT class
The PHYSICAL_PRODUCT class (figure 28) is intended to cover this issue by modelling some
basic information on each product item as reflected by its attributes:

• Product_Type_ID (inherited from AS_DESIGNED_PRODUCT, not shown in figure 28):
This is the name of the product type/model/variant (depending on the meaning given to
these words in different industrial contexts), to which the product item belongs. It directly
corresponds to the value of the Product_Type_ID attribute of one and only one object of
the AS_DESIGNED_PRODUCT class. More precisely, it states the name of the object of
the AS_DESIGNED_PRODUCT class, from which the general attributes of the product as
an instance of a product type are derived, as indicated in the diagram by the classification
linking the AS_DESIGNED_PRODUCT class and the PHYSICAL_PRODUCT class.

• Object_Lot_ID: This shows the ID of the production lot to which the product item
belongs, in case it is important to store this information in the specific application
considered. A typical example of a situation, in which this information turns out to be
important, can be that of a recall campaign that a company must carry out when a serious
defect has been detected in one or more products of the same lot, such as some cases
happened in the last years in the automotive industry.

• Birth_Date: This models the date, at which the existence of the product item actually
starts. This can correspond to different time instants in different applications, e.g. the
moment at which the product item exits the last station of the production line, or the
moment when the product item enters the first stage of that line, etc. The first can be the
case of a company, which is not interested in following specifically each product item in
the different phases of the production cycle, but e.g. is interested in tracking and tracing
the product inside the warehouse or/and across its supply chain. The second can be instead
the case of a company, which gives importance to the tracking and tracing of the product
all along the production cycle, such as those companies, which daily apply RFID
technologies for this reason at the shop floor level.

• End_Date: This represents the date, at which the product item reaches its end of life. The
cardinality, differently from the previous attributes, which have cardinality of one and only
one, is in this case zero to one. This reflects the fact that this attribute is not instantiated
until the product item reaches its end of life.

Copyright © PROMISE Consortium 2004-2008 Page 34

@

In the case of more complex products, it is very important to track the history concerning the
physical components/subassemblies belonging to a single physical product entity. To understand
the importance of such an information think as an example on a car whose life cycle has to be
managed up to the end of life phase, as well as that of its main components, e.g. the clutch, and
subassemblies, e.g. the engine, such as in the FIAT A1 EOL scenario. The PART_OF association
class tracks this kind of history.
At the beginning of the car's life, the From attribute of the PART_OF association class related to
the link between each of these components/subassemblies and the whole product is set to the
current date. Then, if at a certain point in the car's life a component has to be replaced by another
one of the same type, e.g. because its residual life has expired, its To attribute is set to the new
current date and, as soon as the new component is attached to the complex product, a new object
of the PART_OF class is created and the From attribute related to the new component is set to the
proper value. This enables the PDKM system to keep an updated list of components/
subassemblies of each product item, as well as a list of old components/subassemblies, together
with the related periods of relative belonging:

• From (Date): This attribute keeps record of the date and time when the
component/subassembly is attached to the product. The cardinality of 1 says that there can
only be one value for this attribute.

• To (Date): This attribute keeps record of the date and time when the
component/subassembly is detached from the product. The cardinality of 0...1 is intended
in the sense that this attribute is set to no value at all for the whole time span, during which
the component/subassembly is attached to the product, and then is set to its value when it
is detached from it.

• Parent: This attribute gives the name, i.e. the ID of the father node in the tree
corresponding to the structure of a product as a whole. Each node of this tree corresponds
to one and only one product item, i.e. a PHYSICAL_PRODUCT. So, it is important to
notice that at this level only the product structure for the phases BOL supply, MOL, and
EOL, i.e. the structure of physically existing products is actually addressed (see in the
following pages for an explanation of these terms; refer also to DR9.1 [2]), while the BOL
as-designed structure of the product (see again DR9.1) is treated in an analogue way by the
AS_DESIGNED_PRODUCT class. The cardinality of this attribute is one since a
PART_OF object is only instantiated if there is indeed a parent-child- respectively
assembly-part-relationship between two PHYSICAL_PRODUCTs.

Figure 29: The “identification problem” of product items and the ID_INFO class

Copyright © PROMISE Consortium 2004-2008 Page 35

@

The ID_INFO class (figure 29) is important to enable the traceability of the product. The
identification of the product instance and the information on where it is possible to retrieve other
information on the same product instance are enclosed in this class. Many traceability systems
have been developed up to now (e.g. the Dialog System developed by the Helsinki University of
Technology, the WWAI-World Wide Article Information concept, the AUTO-ID proposal, etc.),
and the ID_INFO class should be compatible with all of them, at least from a conceptual
viewpoint. There are two types of links to additional information, URI and
INFORMATION_PROVIDER objects. Each ID_INFO object may be linked to zero or many of
these objects. URI is a pointer to a source for or a recipient of information regarding the
respective PHYSICAL_PRODUCT. Besides that, the URI class can be used for presenting the ID
of the respective PHYSICAL_PRODUCT in URI format if needed. The INFORMATION-
_PROVIDER object contains information that can be used to control the request for information
from e.g. a traceability system, including the inter-enterprise communication system in the
PROMISE Middleware (developed by WP R6). However, often such systems, like the PROMISE
Middleware, take care of identifying the respective information providers, by this taking this task
from the PDKM. The same is possible with the URI information sources.

The ID of a PHYSICAL_PRODUCT is represented as a string in the ID_INFO object. The
ID_Type attribute identifies the coding schema of the ID. An attribute Alt_Pres (alternative
presentations) can be useful if the ID is shown in different formats for different purposes
(machine communication, human readability etc.). The URI object has got a Type that identifies
the purpose of the URI.
An ID_INFO object may be linked to zero to many URI objects or zero to many
INFORMATION_PROVIDER objects. The URI objects are used for linking external information
sources to the ID if relevant (such as in HUT's Dialog approach). INFORMATION_PROVIDER
objects are used when the backend application wants to address explicitly a specific information
source in the inter-enterprise (IE) communication layer (e.g. another backend system) when
requesting information for an instance of PHYSICAL_PRODUCT. Alternatively, this is taken
care of by the IE layer of the PROMISE Middleware.

The ACCESS_RIGHTS class (figure 29) represents the part of the PDKM infrastructure that aims
at realising and controlling user access control, realising rights and capabilities associated to user
profiles and user roles.
These access rights should be managed at different levels and concerning many of the classes
represented in this semantic object model. Thus, the presence of the ACCESS_RIGHTS class in
the class diagram without connections to any other class is only to underline at a semantic level
the need for managing these pieces of information in the PDKM.
The chosen constellation of software tools (refer to the final chapters of DR9.1), especially
mySAP PLM and SAP NetWeaver Portal as core systems, provides the PDKM developers with
the needed infrastructure. This issue is covered in detail in other tasks of WP R9.

Copyright © PROMISE Consortium 2004-2008 Page 36

@

Figure 30: The BOL as-designed product structure and the AS_DESIGNED_PRODUCT

class

The AS_DESIGNED_PRODUCT class (figure 30) represents the BOL as-designed structure of
the product (compare DR9.1 [2]). The important pieces of information at this level of the model
concern the following:

• The product structure has to be represented, if needed. This is permitted by the self-
association of the AS_DESIGNED_PRODUCT class.

• The states a product can pass through all along its life must be defined, both stating,
which are the different valid states, and also defining the information, from which the
present state of the product can be derived, e.g. which is the set of properties of the
product that together must be used to understand the current product state. For
instance, the fact that the door switch of a home appliance such as a refrigerator is on
or off, and the fact that the light inside the same refrigerator is also switched on or off,
together with the fact that the power currently absorbed by the refrigerator is "X" watt,
can help to understand if the product state is "ALL IS OK”, or maybe if it can be
something like “LAMP BROKEN” etc.

• The set of conditions (refer to the CONDITION class) and of properties (refer to the
PROPERTY class) valid at the product type level, i.e. for each product item belonging
to that specific product type, must be referenced.

Copyright © PROMISE Consortium 2004-2008 Page 37

@

• CAD models of the product type as well as other common representations following
e.g. the STEP or PLCS standards, just to cite two of them, must also be referenced at
this level, depending on the kind of representation needed in the single application.

• Other information on materials, on the product variants, on the Bill of Materials, on the
tests a product must overcome during its life etc. must also be referenced if needed.

All of these pieces of information are reflected by the attributes and associations of the
AS_DESIGNED_PRODUCT class. The most important attributes are:

• Product_Type_ID: This attribute shows the identifier of the product type. The cardinality
is one and only one.

• Product_State_Set: This attribute defines the valid set of strings describing the product
state that each product item of that product type can adopt during its life.

• Product_State_Definition: This attribute defines the set of information objects/sources i.e.
field data types or product properties to use in order to derive the currently valid product
state-string out of the Product_State_Set (see the refrigerator example above).

In contrary to PHYSICAL_PRODUCT with the PART_OF-classified self-association, there is no
dedicated Parent attribute for an AS_DESIGNED_PRODUCT. Such an attribute could have been
added to a respective association-class for the self-association of the AS_DESIGNED-
_PRODUCT. However, it was omitted since this would have been the only attribute of such a
class and since it is not required from a modelling approach. Instead, to underline the different
roles, parent and child, that AS_DESIGNED_PRODUCTs play in such an association, the self-
association is directed. In this way, the self-association allows representing a tree corresponding
to a BOL as-designed product structure if required. As indicated, this approach differs slightly
from the one chosen for the case of the structure for physically existing products discussed in the
description of the PHYSICAL_PRODUCT and PART_OF classes. This is mainly because it is
not worthwhile to store the information about the duration, for which the product type
components/subassemblies are part of a given BOL as-designed structure. When a component is
changed from type 'A' to type 'C', usually a new BOL as-designed product structure is easily
created e.g. as a variant starting from the previous one, but having the component type 'A'
replaced by the component type 'C'. Nevertheless, PLM systems usually provide some kind of
revision history for the as-designed product structure. However, this is not in our focus since the
structure of a physically existing product, which is in the focus of PROMISE, is derived from one
fixed product variant, i.e. one fixed as-designed product structure, respectively. It should also be
noted that in contrary to structures for PHYSICAL_PRODUCTs one AS_DESIGNED_-
PRODUCT could be part of many as-designed product structures.

The PROPERTY class (figure 30) is intended on the one hand to define properties, which are
valid for specific product types or only for some specific product items, as indicated by the
associations between the PROPERTY class and the AS_DESIGNED_PRODUCT class and the
PHYSICAL_PRODUCT class respectively, but are not common to almost all product types or
product items, and thus are not modelled as attributes of the AS_DESIGNED_PRODUCT class or
PHYSICAL_PRODUCT class.
Additionally, this class is also intended to model the properties one should know about the
resources of the company involved in the PLM scenario and are not common to all resources of
the respective resource type, and thus are not modelled as attributes of the respective resource
type class. In particular, the class is able to model both general and specific properties of
personnel, equipment, and materials (refer to section 4.2.2).
The attributes of the PROPERTY class state the name of the property, the actual value, the
allowed/valid values, and the category/type of the property. The latter indicates if the value of this

Copyright © PROMISE Consortium 2004-2008 Page 38

@

property is fixed, might be changed arbitrarily, might be changed according to the given
Valid_Values etc.
The CONDITION class is intended to represent conditions one wants to check about product
types and/or entities. For this reason, the associations between the CONDITION class and the
PHYSICAL_PRODUCT_GROUP class (see below) and the PHYSICAL_PRODUCT class
respectively are defined, with a cardinality of zero to many, for the sake of generality. Note, that a
PHYSICAL_PRODUCT_GROUP object might represent an AS_DESIGNED_PRODUCT. The
CONDITION class is linked to both the PROPERTY class and the FIELD_DATA class via
associations, since elementary conditions involve the validation of a property or a FIELD_DATA
value respectively, i.e. the evaluation of a Boolean expression in the sense that the value of the
respective PROPERTY or FIELD_DATA object is checked against a range of values. An
example of the semantics of an elementary condition where the measurement coming from a
sensor i.e. a FIELD_DATA object is involved might be “if the temperature sensor gives a
measurement of more than 150 °C then the product is operating in unsafe conditions: claim for
immediate maintenance action”.
The class can be used to model both such elementary/atomic conditions and complex conditions.
In the latter case, a grouping mechanism is used.
The attributes of the CONDITION class are:

• Condition_ID: This identifies the condition among all the objects of the CONDITION
class.

• Flag_FD/Property (Boolean): This attribute states if an atomic condition involves a field
data type or a property of a PHYSICAL_PRODUCT object.

• Type_ID: This references, depending on the value of the Flag_FD/Property, either the
Property_Name of the PROPERTY object or the FD_Type of the FIELD_DATA object
that should be validated. The cardinality is zero to one, indicating that this attribute is only
used for elementary conditions.

• Condition_Value: This attribute contains the singular value, set of values, or interval that
the PROPERTY object or the FIELD_DATA object respectively should be checked
against.

• Group_ID: This references the Condition_ID of a CONDITION object that groups the
actual CONDITION object with other CONDITION objects and so building a more
complex condition (see the Flag_OR/AND attribute).

• Flag_OR/AND (Boolean): This attribute is used if the object of the CONDITION class
links as a grouping object to other objects of this class in order to build more complex
conditions to be evaluated. The linked CONDITION objects are concatenated with AND
or OR respectively as indicated by this flag. By using this flag as well as the means for
identifying groups of conditions (i.e. the Group_ID attribute), one can – following his
specific purposes – build whatever kind of complex Boolean expressions built up of
elementary conditions in the sense described above. See the example below illustrating the
concept.

• Action_When_Met: This attribute defines what action has to be carried out when the
condition is met, i.e. when the Boolean expression evaluates to TRUE.

• Action_When_Not_Met: This attribute defines what action has to be carried out when the
condition is not met, i.e. when the Boolean expression evaluates to FALSE.

The cardinalities are, except from the Condition_ID attribute with cardinality one, zero to one for
every attribute of this class, mostly depending on if the respective CONDITION object models an
elementary or a complex condition as described exemplarily for the Type_ID.

Copyright © PROMISE Consortium 2004-2008 Page 39

@

An example illustrates how to group more than one condition together in order to build up
conditions that are more complex. Imagine that the following condition has to be checked for a
product: “If the residual life of the component X is less than 30 days and either the maintenance
crew A or the maintenance crew B is available, then …”

This is equivalent to say that the following composed condition has to be checked:

C1 AND (C2 OR C3)

with

• C1: The residual life of the component X is less than 30 days.
• C2: The maintenance crew A is available.
• C3: The maintenance crew B is available.

This is represented by the object model with five objects of the CONDITION class, briefly
outlined in the following with the respective set of attributes (only the ones directly concerning
the creation of the complex/composed condition are mentioned):

Object #1 representing C1:

• Condition_ID: 1
• Essence of Flag_FD/Property, Type_ID, and Condition_Value: “Residual Life of

component X is < 30 days”
• Group_ID: 5
• Flag_OR/AND: (none)

Object #2 representing C2:

• Condition_ID: 2
• Essence of Flag_FD/Property, Type_ID, and Condition_Value: “Maintenance crew A is

available”
• Group_ID: 4
• Flag_OR/AND: (none)

Object #3 representing C3:

• Condition_ID: 3
• Essence of Flag_FD/Property, Type_ID, and Condition_Value: “Maintenance crew B is

available”
• Group_ID: 4
• Flag_OR/AND: (none)

Object #4 representing the OR-join:

• Condition_ID: 4
• Essence of Flag_FD/Property, Type_ID, and Condition_Value: (none)
• Group_ID: 5
• Flag_OR/AND: OR

Copyright © PROMISE Consortium 2004-2008 Page 40

@

Object #5 representing the AND-join:

• Condition_ID: 5
• Essence of Flag_FD/Property, Type_ID, and Condition_Value: (none)
• Group_ID: (none)
• Flag_OR/AND: AND

The value 4 of the Group_ID of C2 and C3 references to the Condition_ID of CONDITION
object #4. Taking into account the value of Flag_OR/AND of object #4 evaluating this object is
equivalent to evaluate

C2 OR C3

Similarly the value 5 of the Group_ID of C1 and object #4 references to the Condition_ID of
CONDITION object #5. Thus, again taking into account the respective value of Flag_OR/AND
evaluating object #5 is equivalent to

C1 AND (evaluation of object #4)
which is equivalent to

C1 AND (C2 OR C3)

In this manner, arbitrary Boolean expressions can be modelled as long as the basic elements are of
the form of the elementary conditions mentioned above.

Finally, the PHYSICAL_PRODUCT_GROUP class is intended to model the possibility for the
PDKM system and its users to group together a set of PHYSICAL_PRODUCT objects on the
basis of some commonalities e.g. concerning their BOL as-designed structure or the field data
collected. This is stated by the associations linking the PHYSICAL_PRODUCT_GROUP class
with the AS_DESIGNED_PRODUCT class, the PHYSICAL_PRODUCT class, and the
FIELD_DATA class. Think as an example on a quality assessment report modelled as field data
(see below for the explanation of the FIELD_DATA class). Most of this kind of data is valid for a
whole set of PHYSICAL_PRODUCTs, i.e. a PHYSICAL_PRODUCT_GROUP.

4.2.2 Life cycle related information: description of life cycle phases and the related field
data

The information on product life cycle phases has to be modelled from a conceptual viewpoint.
This section presents the classes, attributes and associations implied by the PROMISE PLM
vision and approach. Some of this information is common to all life cycle phases of a product and
can thus be modelled by the same class and set of attributes, whereas some other information
cannot. Three different classes, namely the PRODUCT_BOL_SUPPLY class, the
PRODUCT_MOL class and the PRODUCT_EOL class, have been defined for this purpose.
The PRODUCT_BOL_SUPPLY class (figure 31) contains the pieces of information, which are
specific to the SUPPLY phase of the product, and which cannot be described by using the
LIFE_CYCLE_PHASE class or the EVENT, RESOURCE or ACTIVITY classes (figure 32). The
attribute Supply_Environment represents a reference to the environment/information required
further during the SUPPLY phase; that might be arbitrarily complex. Thou, the
Supply_Environment is not in the focus of this deliverable since it is usually sufficiently covered
by the PLM system underlying the PDKM or other, connected systems. The zero to one
cardinality of the association between the PHYSICAL_PRODUCT class and the
PRODUCT_BOL_SUPPLY class states that in application scenarios where the SUPPLY phase is
not explicitly managed, the PRODUCT_BOL_SUPPLY class has not to be instantiated.

Copyright © PROMISE Consortium 2004-2008 Page 41

@

Figure 31: Product life cycle information: different classes for different purposes

As SUPPLY phase, it is intended the set composed of the product production phase and the
product delivery phase. From the BOL phase as intended by the PROMISE consortium, only these
two phases have been modelled in this sense, while the product design phase has not been
explicitly modelled. This was mainly due to the following reason:

The life cycle phases covered by PRODUCT_BOL_SUPPLY refer to existing product items,
while the design phase is related to the product type concept, which is addressed by the
AS_DESIGNED_PRODUCT class. These two categories essentially differ in the sense that for
existing product items there can be retrieved field data in the sense of measurements, events that
the physically existing product is involved in, and similar, which is a core input in all PROMISE
application scenarios. This is not the case for products that exist “only electronically” as a product
design.
In order to collect all this data that is created during the life of a physically existing product, the
LIFE_CYCLE_PHASE class with its sub-classes has been introduced. For an
AS_DESIGNED_PRODUCT no data needs to be collected during the design phase but all
relevant data already exist when the PROMISE application scenarios start and thus can readily be
associated to the respective AS_DESIGNED_PRODUCT object, respectively – as indicated in the
model – assigned to the corresponding attributes of this object.
This is not in contradiction to the application scenarios where the generated knowledge influences
the design process since these influences are covered by new AS_DESIGNED_PRODUCT
objects e.g. variants of already designed product types, while the existing

Copyright © PROMISE Consortium 2004-2008 Page 42

@

AS_DESIGNED_PRODUCT objects are not changed. Please also note that modelling the design
process of a product is not in the focus of the PROMISE project.

It is worth noticing that these two phases that are covered by PRODUCT_BOL_SUPPLY are in
the focus of most of the current applications of product identification technologies, of which the
RFID applications constitute one of the most known examples. Also in the PROMISE project
some application scenarios are closely related to e.g. the production phase or the logistics
management inside the warehouse.

The PRODUCT_MOL class and the PRODUCT_EOL class play the same role as the
PRODUCT_BOL_SUPPLY class but are related to respectively the MOL and to the EOL phase
of a product’s life. The attribute EOL_Environment of PRODUCT_EOL corresponds to
Supply_Environment of PRODUCT_BOL_SUPPLY, thereby representing a reference to the
respective further required environment/information. The same remarks apply as for
Supply_Environment.

Two last notes on this set of “life cycle classes”:

• Each scenario needs a different number of objects of these classes to be instantiated, e.g. a
scenario purely devoted to predictive maintenance may need only the object of the
PRODUCT_MOL class to be created such as in the MTS case of WP A7. On the
contrary, another scenario might need to model only the production phase of the product,
thus having the need of instantiating the object of the PRODUCT_BOL_SUPPLY class,
e.g. the CRF BOL case of WP A11. Again, another scenario may need both the
PRODUCT_BOL_SUPPLY class and the PRODUCT_MOL class to be instantiated, e.g.
the WRAP case of WP A8.

• The more the application scenario is complete, i.e. the longer the portion of the product
life cycle considered in the scenario is, the greater is the number of these classes to be
instantiated. In case all of them are needed, they are instantiated one after another,
following the product item’s life, with the related shifts from one life cycle phase to
another, acting as the trigger for the instantiation of the object of the immediately
following life cycle phase.

The FIELD_DATA class (figure 32) is another crucial class in the semantic model in the sense
that it enables the overall PROMISE approach to Product Life Cycle Management by collecting
data from the field, thus, also enabling the improvement of product performance and in general
the creation of economic value from PLM activities.
Field data can be of different types (VALID_FD_TYPE class), and is collected by means of
sources like e.g. sensors (FD_SOURCE class). It might be organized in documents (DOCUMENT
class) with attached physical files (FILE class). The associations among these classes show the
most important existing links; the cardinalities are all zero to many, to take into account the most
general cases.

Copyright © PROMISE Consortium 2004-2008 Page 43

@

Figure 32: The FIELD_DATA class and its relationships with other model components

The attributes belonging to the FIELD_DATA class are:

• FD_ID: This attribute represents the identifier of each single field data record. The
cardinality is one and only one.

• FD_Type: This attribute shows the type of the field data, and directly corresponds to a
specific object of the VALID_FD_TYPE class, i.e. the string defining the FD_Type must
be equal to the string defining the ID of an object of the VALID_FD_TYPE class. The
cardinality is also one and only one.

• Document_Flag (Boolean): This attribute states if the field data is contained in or
represented by an attached document (refer to the DOCUMENT class for more
information).

• Value: This contains the value of the field data record. The cardinality is zero to one
depending on the Document_Flag.

• Accuracy: With cardinality zero to one, this attribute states the accuracy of the field data
measurement if needed.

• /WHO: This attribute shows who is responsible for the field data measurement, i.e. which
is the source of the field data. It can be derived (in UML indicated by “/” preceding the
attribute name) e.g. from a corresponding object of the FD_SOURCE class linked with the
object of the VALID_FD_TYPE class that is associated to the present FIELD_DATA
object.

Copyright © PROMISE Consortium 2004-2008 Page 44

@

• WHAT: This attribute can for instance explain what the field data stands for, i.e. the
meaning of the data itself.

• WHERE: This attribute states the location where the measurement was made if needed by
the specific application scenario (the cardinality is zero to one), i.e. the location where the
product was situated when the present field data was collected.

• WHEN (Date): This is simply the timestamp indicating the moment when the field data
was recorded.

• Reference_GROUP_ID: The usage of this attribute is very similar to that of the Group_ID
attribute of the CONDITION class (see related example above). It references the FD_ID
of an associated FIELD_DATA object that keeps some information regarding a group of
FIELD_DATA objects. On the contrary to the CONDITION class, FIELD_DATA objects
might be grouped without such a group-representing object if it is not necessary to keep
additional information with respect to the group. In these cases, the following Group_ID is
used. Thus, the cardinality of the attribute is zero to one.

• Group_ID: This attribute gives the ID of the group of field data, to which this field data
record belongs, if such a group exists. The cardinality of the attribute is zero to one. In
contrary to the Group_ID attribute of the CONDITION class, it does not reference another
FIELD_DATA object (see the preceding attribute Reference_GROUP_ID).

Some last considerations on the FIELD_DATA class are:

• The FIELD_DATA class is a very generic class, which can be utilized in different
applications, for different purposes and different meanings. For instance,
information/knowledge generated by the DSS and to be stored in the PDKM might be
treated in the present model as a single field data record or a group of field data records; if
suitable, it might also be stored in a proper format in documents attached to field data
records. Another example, which is treated in the model as a field data record, is the
current product state-string e.g. derived from a group of field data records by applying the
state definition valid for that product type/product item.

• The WHERE information can become very useful, together with the /WHO, WHAT and
WHEN pieces of information, when trying to realize the complete (and, in some cases, the
"real time") product traceability.

The VALID_FD_TYPE class is intended to model the information concerning the type of a given
field data object e.g. “Temperature_Sensor_1” or “Average_Temperature_Sensor_2”, its set of
categories e.g. {”Temperature Measurements”, “Calculated Values”}, its measuring unit, e.g. K,
W, N, kg, m, etc., and the data type, e.g. integer, double, float, string etc. These pieces of
information are provided all with cardinality of one and only one or zero to one depending on the
data type.
The VALID_FD_TYPE class is associated to both the PHYSICAL_PRODUCT class and to the
AS_DESIGNED_PRODUCT class. Both associations have zero to many cardinalities, to state
that a field data type might be defined on the one hand on the level of a product type, and so is
also inherited by all derived product items, and on the other hand for a specific product item only.
These associations also support the case that recorded field data e.g. a test report is attached to an
AS_DESIGNED_PRODUCT object via a PHYSICAL_PRODUCT_GROUP and thus this field
data is also inherited by product items derived from this AS_DESIGNED_PRODUCT object after
the field data was recorded. The VALID_FD_TYPE class is also attached to the
PHYSICAL_PRODUCT_GROUP class, e.g. for the case that all products (locomotives, boilers,
etc.) of this group have attached a specific sensor.

Copyright © PROMISE Consortium 2004-2008 Page 45

@

The FD_SOURCE class is used to define the identity of the source of a given valid field data type.
This is shown in the following attributes:

• Source_ID: This is the ID of the source of field data; for instance, it can represent the
identity of the sensor of the PEID being responsible of the measurement of that specific
field data, e.g. "sensor #5 linked to the on-board computer", which performs
measurements over time of the temperature, at which the product operates. The cardinality
of this attribute is one and only one. Besides that, there is an optional aggregation-
association (cardinality zero to one) to the ID_INFO class (see figure 27) allowing for
FD_SOURCEs the same options regarding addressability beyond the PDKM boundaries
as discussed for the association between PHYSICAL_PRODUCT and ID_INFO.

• Type_Flag: This attribute defines, if needed in the application scenario (cardinality is zero
to one), the type of the source for the considered valid field data type, e.g. "thermocouple
sensor".

Finally, note that the FD_SOURCE class is also linked with the AS_DESIGNED_PRODUCT
class and to the PHYSICAL_PRODUCT class via associations (see figure 27). This is to state that
for each product type or even each product item, the list of e.g. sensors, with which it is equipped,
can be given if required by the application scenario.

The DOCUMENT class defines in this context a document containing field data if the
Document_Flag in FIELD_DATA is set to TRUE. A DOCUMENT object serves as a kind of
container for one or more FILE objects. Respective metadata can be assigned to its attributes. The
FILE class finally models the physical file that is attached to the DOCUMENT and actually stores
the field data content.

The DOCUMENT and FILE classes are also used in the same way in other contexts.

The LIFE_CYCLE_PHASE class (figure 33) contains the life cycle information of the product
item that is common to all the different life cycle phases. The attributes shown in the class are, as
also in other parts of the present model, not intended to be a complete list of all the possible
attributes, but on the contrary they aim at representing a good example of the information to be
included in this class, when instantiating the model in a single application scenario. In figure 33,
the following attributes are considered:

• Residual_Life: This represents the residual life of the product item. This information can
be updated, maybe in different ways and at different steps of a product's life, and for
different reasons. In some cases, it is one of the most important pieces of information to be
considered as the main support to life cycle decisions, such as in some EOL scenarios,
even in the PROMISE project. The fact that in each moment of a product's existence it is
possible to define a value for this attribute drove the modeller to put it into the
LIFE_CYCLE_PHASE class instead of putting it into one or more of the "single phase"
classes. Interesting information can be the number of time units, e.g. seconds, minutes, or
hours, depending on the case, representing the residual life of the product, and the time
stamp, expressed by a “date” data type, from which the residual life must be counted. The
cardinality of this attribute is one and only one.

• Product_State_Set_Its_Own: This attribute defines the set of product state-strings, which
are valid specifically for the current PHYSICAL_PRODUCT object in the current life
cycle phase, in addition to the states common to all the product items of the same product
type if this is needed in the considered scenario. Thus, the cardinality is zero to one.

Copyright © PROMISE Consortium 2004-2008 Page 46

@

• Product_State_Definition_Its_Own: This attribute defines the pieces of information
needed to define the current product state-string of a product item, but specifically defined
for the current PHYSICAL_PRODUCT object in the current life cycle phase if needed in
the considered scenario. The cardinality here is also zero to one.

Figure 33: Describing the life cycle phases of a product: events, resources, activities, and

related classes
It should be noticed again that the state describing attributes mentioned above are in the
LIFE_CYCLE_PHASE class and not in the PHYSICAL_PRODUCT class since these attributes
might have different instantiations in each life cycle phase.

Up to this point, none of the mentioned modelling elements has been intended to describe each
single life cycle phase in the way that it is intended to be managed, i.e. no element represented the
main events happening during a life cycle phase, the people and other kinds of resources of the
company, which are involved in the life cycle phase, and the activities performed during this
phase. These issues are addressed by the EVENT, RESOURCE, and ACTIVITY classes, which
provide the PROMISE user with powerful means of describing everything he wants concerning
one specific phase.
For instance, in a predictive maintenance scenario, such as those in the PROMISE project, one
would like to model the event of breakdown of a component/subassembly or even of the entire

Copyright © PROMISE Consortium 2004-2008 Page 47

@

product as a whole as well as the maintenance activities and the resources, human and not human,
involved in such activities. The aim could be for example to predict the point in time when the
product will probably break down, to plan the related maintenance activities, and finally to record
the actual time instant when the breakdown really occurs, or even to delete the breakdown event
from the "list of predicted events", just because the component causing the possibility of product
breakdown has been replaced by a new one, which eliminates the main cause of breakdown. The
repair activities at the garage of the maintenance provider should also be first described and then
properly managed in accordance with the corporate strategy of the company and in a PLM vision.
So the availability of resources like free hours of the garage crew to be possibly allocated, or even
the availability of the needed materials and equipments to perform the maintenance activities
should be checked, and eventually, such as in some PROMISE application scenarios, the
maintenance activities should be economically planned and managed.
For these purposes, the RESOURCE, ACTIVITY, and EVENT classes with a certain set of
attributes have been added to the model. In addition, three associations, one for each pair of these
classes, have been added to state that an event triggers an activity, which involves some resources,
which in turn manage the event as an important part of a specific life cycle phase. The attributes
state that an event is something related to a specific time instant, while an activity generally
concerns a time interval and is thus associated to a duration in terms of time. An activity has at
least two events associated with it: the event "ACTIVITY STARTS" and the event "ACTIVITY
ENDS". The event is triggered by some kind of condition and causes in general the shift of the
product state from some "STATE A" to another "STATE B". Again, one should have the
possibility, as written above, to mark with a proper flag if the event is a planned event, or if it is a
predicted event, or again if the event has already happened, or has been cancelled because it
cannot happen anymore (refer in figure 33 to the Flag attributes in the EVENT class). In addition,
an activity can cause an event, such as the maintenance activity can cause the "REPLACEMENT
OF COMPONENT XYZ PERFORMED", with a consequent update of the product's residual life
that, if not anymore under the minimum threshold, causes the "PRODUCT BREAKDOWN"
event to be cancelled, such as in the example above. Finally, the resources can be human beings
(PERSONNEL_RESOURCE class), equipments (EQUIPMENT_RESOURCE class), materials
(MATERIAL_RESOURCE class) and documents (DOCUMENT_RESOURCE class). Some of
the information related to these resources is given as attributes, and some other kind of
information is specified as objects of the PROPERTY class. Some important examples can be the
maintenance crew as objects (e.g. one for each person) of the PERSONNEL_RESOURCE class,
the tools for performing the maintenance activities as objects of the EQUIPMENT_RESOURCE
class, the spare parts needed as objects of the MATERIAL_RESOURCE class, and, finally, the
product user manual, the maintenance manual, or the CAD model of the product layout as objects
of the DOCUMENT_RESOURCE class.
Moreover, for each resource a set of possible states is defined, and the current state is recorded.
This is required for example in cases where the information on the availability of the garage all
along a certain time period can be very important to plan the maintenance activities at the garage,
such as in the CRF MOL scenario WP A4 about predictive maintenance of a fleet of trucks.
Hence, two states such as AVAILABLE and NOT AVAILABLE can be defined as exhaustive
and mutually exclusive states, and the setting of the product state of the garage to one or the other
of these values can be used to understand if a given time interval can be assigned to the
maintenance of a specific product item or not.
In conclusion, there also exists an association between the RESOURCE class and the
PHYSICAL_PRODUCT class to state that it sometimes can be possible that the object of the
PLM system, which is a resource for one company, e.g. a truck used for the delivery of the
products produced by the company, may be a product item for another company, e.g. it can be
part of a fleet of trucks, on which the truck builder/dealer performs predictive maintenance. Such
a scenario is up to now not so realistic since both companies probably would not share the same

Copyright © PROMISE Consortium 2004-2008 Page 48

@

PDKM. Nonetheless, it is interesting to notice that the boundary between an object as a resource
and an object as a product itself, as implied by the PROMISE vision, is not so well defined and
even not so thick as one would think.

5 The Technical Data Schema
As indicated in section 1.4, the focus of this deliverable is the semantic object model.
Nevertheless – as already mentioned in DR9.1 – when talking about data models, there has to be
distinguished between the semantic and the technical data model. The latter is the focus of this
chapter. However, the driving question for this chapter is not concerning “what the technical data
model is”, but rather, “why to distinguish between a semantic and a technical model” and “what
are the relevant aspects with respect to this”.

A starting point for developing a technical data model is that it is identical to the semantic model
and then necessary deviations are identified. This chapter gives an impression of important
aspects with respect to the development of the technical data model but has not the ambition of
complete coverage of this subject.

5.1 Mapping to mySAP PLM
A driving factor of the technical data model is that it is not intended to build the solution from
scratch but to base the PDKM on an already existing PDM system, here the mySAP PLM (see
chapter 2.2). Thus first deviations are due to that the use of the abilities from mySAP PLM has
been decided, hence there is a mapping from the semantic model described in the chapter 4 to
entities of mySAP PLM.
The mapping of the most important entities is given in table 1 of deliverable DR9.6b
“Specification of System Functions (revised)” [8]. However, this table is not, and does not intent
to be, complete in the sense that it covers all elements of the semantic model. It has also to be
understood that this table shall not be understood as a 1:1 mapping. E.g., the SAP-entity Material
that is listed there does not readily cover all attributes from the referenced
AS_DESIGNED_PRODUCT, but Material can be associated with all relevant information.
The entities of mySAP PLM that are mentioned there have themselves an associated technical
data model since these semantic entities of the mySAP PLM have a corresponding
implementation using a technical schema. However, from the PDKM point of view – not
concerning the DSS as a component of the PDKM – this underlying technical schema is not of
interest, since the corresponding API provided by mySAP PLM is used.
As far as other work packages, such as WP R8 developing the PROMISE DSS, need more
detailed knowledge about the underlying technical data model of mySAP PLM they get the
required information on detailed request to WP R9. There is no document readily available for
public use that covers the whole technical data model from mySAP PLM but there exist
mechanisms to retrieve the necessary information by using the system itself.

5.2 Purely technical information
Besides this aspect of the technical data model concerning the mapping from the developed
semantic model to mySAP PLM entities there is another aspect regarding the technical model, i.e.
the purely technical information.
Again, this deliverable is not the right place to list all aspects regarding this, instead there are
examples given to illustrate what this aspect is covering:

• Each association given in the semantic model has to be realized by referencing from one
object to the other by using its unique keys. If such a key is not defined in the semantic
model, a technical ID has to be introduced. Uniqueness in this context is meant with
respect to the object-type; i.e. the tuple [object-type, key] uniquely identifies the object in

Copyright © PROMISE Consortium 2004-2008 Page 49

@

the technical data model. Such a technical ID might also be introduced if this is easier to
handle than e.g. a key composed of several attributes.

• There have to be technical entities that ensure the uniqueness of newly generated object-
keys.

• Often, new objects have to be introduced e.g. for implementing n:m relations, new tables,
that realise these associations by storing the tuples [ID of object 1, ID of object 2].

• What is treated in the semantic model as an object-attribute-relation is often mapped in
the technical model to an object-object-relation. E.g., the object
AS_DESIGNED_PRODUCT has as an attribute CAD_Model, but from a technical point
of view, these CAD-models are not dealt with as attributes but as objects that are
referenced from the AS_DESIGNED_PRODUCT.

• The same holds if there are alternative specifications given for an attribute type e.g.,
/WHO in FIELD_DATA might be a string or a reference to a FD_SOURCE. In such
cases, it is sometimes easier from a technical point of view to treat /WHO as a separate
object instead of an attribute in the FIELD_DATA object. Another possible solution is
introducing a flag that indicates the usage of an attribute.

• In an analogue way, it is often more efficient to associate an object to each member of a
group of information instead of saving a set of information as an attribute of that object.

• Semantic objects sometimes drop out completely since all their information is easier
stored in objects referenced by them. Nevertheless, these objects ease the understanding
of the semantic model, so they are kept there.

• Often, objects are added for storing all allowed values e.g. for the state-string for a
specific product.

• Objects might be introduced to avoid duplicating contents in many instantiations of a
class.

• Usually, there are purely technical data schemas that are necessary for formatting the
output presented to the user e.g., how a generated report is formatted.

• As mentioned in the introduction the focus of this deliverable’s semantic model is the
management of any product related data. But as described in DR9.1, there is also a lot of
more or less technical information such as:

o the mapping between the data model of the Data Management layer and the data
model of an input source

o information required to run import jobs
o information needed for data processing
o data for the technical connection to PDKM-external systems etc.

Due to its technical nature, this is seen as part of the technical data model.
• Performance issues might suggest deviations between the technical and the semantic data

model. An example is that it might be critical for “real life” applications to store all field
data in a single data base table as indicated by the semantic model. If this is the case, a
solution might be to distribute the data over several tables. For example, there can be
single tables for each type of values, i.e. string, integer, float, etc. However, data can also
be spread over separate tables, e.g. by the ID of the PHYSICAL_PRODUCT, to manage
the size of these tables. Thou, it shall be mentioned that performance is not focus of the
PDKM prototype targeted in the duration of the PROMISE project.

• Frequently, a direct mapping of inheritance of objects to the technical schema is
inefficient. A more pragmatic approach is then to treat objects inheriting from the same
class as completely independent objects.

• Last but not least, it should be noted – as mentioned in section 4.1 – that the semantic
model does not need to cover all details since they are not necessary for its purpose. The
technical model, however, implements every necessary detail.

Copyright © PROMISE Consortium 2004-2008 Page 50

@

6 Mapping the Semantic Object Model to real cases: some examples from the
PROMISE application scenarios

In this section, a first verification of the semantic object model is shown by applying the General
System Object Model to some representative cases chosen among the eleven PROMISE
application scenarios. Since no formal verification technique can be applied to the conceptual
model proposed above, this way of proceeding represented the best way to demonstrate to the
reader, e.g. to the PROMISE application partners, the real modelling capabilities of the proposed
model for the purposes of the whole PROMISE project.
Three cases were chosen among the application scenarios, one case for each of the three macro-
life cycle phases (BOL, MOL, and EOL). In particular, the same applications already chosen in
other PROMISE work packages for prototyping purposes were considered. In the following
subsections, a description of how the proposed model can provide the means to represent the most
important issues related to the studied scenarios is shown by using the Object Diagram framework
of UML 2.0 (refer to the appendix for more information on object diagrams).
To be noted that, as already mentioned in section 1.3, the semantic model was developed using an
iterative approach by applying the model under development alternatively to all the different
application scenarios and for the purposes defined by the PROMISE technology’s end-users in [5]
with good results in the whole set of scenarios.
In the following, the section about the first application scenario contains some more examples
described less detailed in order to give in form of a static snapshot an overview of the modelling
power of the semantic model. On the contrary, the sections about the two remaining scenarios
depict certain aspects but describe those much more detailed in order to foster the understanding
of how the chosen entities “work” in the respective scenario.
To keep the figures easy to understand, objects and attributes of minor importance for the
respective example have been omitted respectively have not been filled with corresponding
values.

Copyright © PROMISE Consortium 2004-2008 Page 51

@

6.1 BOL scenario: the BOMBARDIER case from WP A10
This chapter gives an example for a possible application of the semantic object model to a BOL
application scenario. The Bombardier scenario (see [5]) has been chosen to demonstrate the
applicability of the model. The example does not provide a complete instantiation of the model,
but gives possible applications of the model to important domains.

6.1.1 As-Designed Product Structure
The object diagram in figure 34 illustrates a part of a possible as-designed structure for a
converter. The same object type (AS_DESIGNED_PRODUCT) is used to represent design
information of the components of a product at any level.

Figure 34: As-designed structure for a converter

Copyright © PROMISE Consortium 2004-2008 Page 52

@

6.1.2 As-Used Product Structure
The as-used product structure holds information about the "product instance" (actual, physically
existing product). The example in figure 35 shows a possible, simplified instantiation of the
converter. The components of the product instance are connected via an association object
(PART_OF), which holds historical configuration information. It can be seen that the cooling
system has been replaced once.

Figure 35: As-used structure for a converter with component replacement

Copyright © PROMISE Consortium 2004-2008 Page 53

@

Figure 36 shows the instantiation of a second converter to illustrate that there might be numbers of
instantiations not related to each other for the same AS_DESIGNED_PRODUCT.

Figure 36: As-used structure for a second converter

Copyright © PROMISE Consortium 2004-2008 Page 54

@

6.1.3 Instantiation
The example in figure 37 shows the relationship between the as-designed structure of a wheel and
its two instantiations. There are also shown examples of the use of the classes PROPERTY and
CONDITION.

Figure 37: Two instantiations for a wheel

Copyright © PROMISE Consortium 2004-2008 Page 55

@

6.1.4 Field Data
The simplified object model2 in figure 38 illustrates possibilities of attaching field data from
different life cycle phases to a product instance.

Figure 38: Field data attached to a wheel instance

2 Due to readability, not all VALID_FD_TYPE instances are shown.

Copyright © PROMISE Consortium 2004-2008 Page 56

@

6.1.5 Maintenance Event
The example in figure 39 demonstrates a possible maintenance event, which consists of re-
profiling a wheel.

Figure 39: Re-profiling of a wheel as maintenance event

Copyright © PROMISE Consortium 2004-2008 Page 57

@

6.1.6 Storage of Product Knowledge
Figure 40 shows examples on how knowledge is represented in the PDKM system.

Figure 40: Knowledge associated to wheel design

6.1.7 Concluding remarks for section 6.1
More aspects of the application scenarios have been modelled in an informal way using the
provided semantic model. In conclusion, it can be said that the model is capable of covering all
aspects as required by the application scenario. The focus was laid on giving in form of a static
snapshot an overview on how the model’s semantic entities are used to cover the semantic entities
of the application scenarios.
In the following sections the focus is more on selected aspects but going into more detail about
the usage of the applied entities in order to foster the understanding of “how the entities work” in
the respective scenario.

6.2 MOL scenario: the MTS case from WP A7
One focus of the A7 application scenario and of the related demonstrator was according to [5] to
assess the predictive maintenance capability of the PROMISE DSS. The reason for this is that a
major interest of MTS was to improve the after sales service, in particular maintenance and
repairing actions, by being able to predict in advance, which failure is going to happen, and after
which time. The chosen product of reference was a boiler, namely the ACO COMBI 27 KW. The
after sales service should be able to schedule in advance a visit to a customer in order to replace a
component or to perform maintenance on the gas boiler before it goes into lockout state. The
technician will also be able to reach the customer with the right spare part needed, solving the real
problem in the first visit, without any future need of e.g. revisiting the customer and change other
parts (the ones defective since the beginning) just because at the first visit the real problem was
not detected and the “wrong” part was replaced. In other words, again as stated in [5], the main
scope of the A7 demonstrator was:

• Improving the efficiency of after sales service operations

Copyright © PROMISE Consortium 2004-2008 Page 58

@

• Reducing the amount of spare parts replaced
• Increasing the availability of the boiler for the end-user
• Reducing the cost for the service contract paid by the user
• Reducing the environmental pollution due to non-optimal working conditions for a long

time and by waste of material generated by “wrong” parts replaced without actual
motivation

Since in such a scenario predictive maintenance plays a central role, the following subsection is
devoted to the representation of some important objects of the semantic model, providing the
overall PDKM system with the needed information to enable the needed closure of information
loops. An example is given, whilst the aim is mainly to show the modelling capability of the
classes defined above rather than to give a complete and exhaustive picture of the A7 MOL
scenario.
It should be noted that the A7 demonstrator was stopped since MTS withdraw from the
PROMISE project. Nevertheless, it was kept as the MOL example since the modelling capabilities
are demonstrated nonetheless.

6.2.1 Predictive Maintenance Management in the MTS scenario: an example

In figure 41, the way, in which the semantic model defined in chapter 4 can be used to model the
predictive maintenance actions, is reported. The event of interest is the breakdown of the boiler’s
water pump: MTS aims, by using the appropriate algorithms developed in RC-4 activities, at
predicting this event with a certain time in advance. This concept is represented with an object of
the class EVENT called Pump_BREAKDOWN_predicted. Another important object of the
diagram is the Maintenance object of the ACTIVITY class. This object can be of two different
types: the PM_Action_PUMP, which defines all, that is necessary to know about how to perform
predictive maintenance on the pump of the boiler, and CM_Action_PUMP, which on the contrary
defines all that is interesting about the corrective maintenance actions on the same component.
Then two instances of the Operator object of the RESOURCE class, which are of the
PERSONNEL_RESOURCE type, are shown, as well as a property connected to the Operator
object, called Personal_Schedule, representing the schedule of maintenance visits to customers of
each single operator working for the after sales service company.

Now the following situations can be described. The breakdown of the boiler’s pump has been
predicted to happen on 05/08/2007. The prediction is performed by the DSS component of the
PDKM system and can be read on the diagram as the value of the Time_Stamp attribute of the
object Pump_BREAKDOWN_predicted. A closer look at this object says that the breakdown
causes the boiler to shift from the UP state to its DOWN state. In addition, the collections of flags
say that the event has been predicted but has not happened yet. Then, MTS is interested in
managing the predictive maintenance action on that specific boiler, and in particular has to
organize the visit to the customer. Let’s say that the after sales service company can count on two
different operators: Operator #231 and Operator #232. From the diagram, one can see that they
are objects of the PERSONNEL_RESOURCE class, and thus also of the RESOURCE class. From
their attributes, one can also note that their state can be of two types: AVAILABLE and
NOTAVAILABLE. Anyway, at the current time only one of the two operators is actually
available (namely Operator #232). Since the breakdown event has not occurred yet, but is
predicted to happen in the future, MTS can plan the maintenance activity with time in advance.
Thus, the availability of its two operators in the future is checked and, together with the other
predicted events, a schedule for each operator is organized and eventually updated.

In the case that at a certain point in time the pump of another boiler breaks down before the
maintenance activity is carried out, an object of the EVENT class called

Copyright © PROMISE Consortium 2004-2008 Page 59

@

Pump_BREAKDOWN_happened is created, and its Time_Stamp attribute is set to the current
date and time. The Leaving_Product_State and the Entering_Product_State are the same as in the
Pump_BREAKDOWN_predicted object, but in this case, the flags show that this event was not
predicted but that it has actually happened. Therefore, there is a sudden need to visit the customer
and perform a corrective kind of maintenance (which corresponds to the today’s approach in after
sales services). Now, the information on the availability of the two operators turn out to be very
useful and, after a quick check of the operator’s capabilities (who should be able to perform the
needed action), the maintenance action can be performed.

Figure 41: A7 MOL scenario – events, activities, and resources

This was only a brief description of the modelling capabilities of the semantic object model. One
should also check if the classes and attributes are capable of defining what happens after the
maintenance action has been performed, e.g. what attributes of the different classes have to be
updated, what objects may be cancelled, and finally, what objects have to be created. It can be
stated here that also for these other purposes the performance of the semantic model was
satisfactory.

6.3 EOL scenario: the CRF case from WP A1
The overall scope of the A1 application scenario and of the related demonstrator (see [5]) is to
reduce costs during deregistration and dismantling of ELV (End of Life Vehicles), in particular
identifying the components of the vehicle, which are worthwhile being re-used or re-
manufactured. The motivation to this scope derives directly from the EU Directive on ELV of

Copyright © PROMISE Consortium 2004-2008 Page 60

@

September 18th, 2000. Besides that, a relevant business opportunity is expected to come out of
this.
Here, the product of interest is a passenger vehicle, whose BOL as-designed structure is
represented in figure 42. The main object in this diagram is represented by the product as a whole,
i.e. the Passenger Vehicle “V1” object of the AS_DESIGNED_PRODUCT class. This is the root
of the tree representing the BOL as-designed product structure, and corresponds to the father node
of all of the other objects in the diagram, representing the five most important car
components/subassemblies of interest in the A1 scenario, namely the clutch, the starter, the
battery, the air conditioning compressor, and the on board computer. The associations state, that
Passenger Vehicle “V1” object is the one and only parent of all of them. All of these
components/subassemblies are interesting for the A1 scenario both because the EU Directive
forces to manage the end of life of some of them (e.g. the battery) and because in all the cases a
sensible cost reduction is expected from the EOL operations management.

Figure 42: BOL structure of the passenger vehicle considered in the A1 application scenario

6.3.1 ELV Management in the CRF scenario: the decision strategy and its implementation
The contribution of the PROMISE DSS in the scenario reported above is very important in order
to evaluate the best solution for the end of life of the identified components/subassemblies. The
decision strategy in the A1 application scenario is reported in figure 43. For each
component/subassembly, a series of tests has to be carried out. First, one should check if the end
of life of the component must be managed because of the currently active laws or not, such as in
the case of the car’s battery. If yes, then the component must be surely removed from the car and,
with the aid of the DSS, a statistical analysis of BOL and MOL data/information recorded for that
specific component is carried out, and the decision of reusing/recycling or remanufacturing the
component is made. If, on the contrary, the dismantler is not forced to remove the component,
then the opportunity for the removal process to be cost-effective must be evaluated. Therefore, a
series of tests is performed, namely it is first checked if the component satisfies a minimum
quality level requested for its removal to be worthwhile, then, if the removal cost is lower than the

Copyright © PROMISE Consortium 2004-2008 Page 61

@

most probable sales price, and finally, if the constraint on the minimum stock level required for
that component is also satisfied. Whenever one of these tests is not passed by the component, then
the component is not removed from the car and is destined to go directly to the shredder with the
rest of not reusable/not recyclable/not re-manufacturable parts of the car. If all of these tests are
passed by the component, then the component is first removed, and then, again with the help of
the DSS, the best end of life solution for it is derived.

No

No

No

No

ELV with
component

X to
dismantler

Does component
X have to be

removed by law?

Does component
X pass minimum

quality level?

Does component X
cost less to remove
than the probable

sales price?

Does component X
pass minimum

stock level
requirements?

Leave
on ELV Shredder

Remove part

Yes

Yes

Yes

Yes

List of parts to be
removed by

legislation; or list
of materials to be

removed for
recycling

Performance
measures:

Visual inspection

Performance
measures:

Dismantling cost
vs. probable sales

price

Performance
measures:

Sales forecast;
Inventory level

Assume
75% by
weight

recycled;
i.e. metal
content

etc.

Read part usage
statistics

Input to DSS

Reuse /
Remanufacture /

Recycle

Store in appropriate
position

Figure 43: decision strategy of A1 application scenario

Copyright © PROMISE Consortium 2004-2008 Page 62

@

In figure 44, some examples of properties to be defined in order to manage the end of life of the
car’s components, as requested by the strategy reported above, are reported. In the figure, one can
see the object describing a certain clutch, namely the clutch number 0132434765 (see object
Component “Clutch 0132434765”: PHYSICAL_PRODUCT), which is an instantiation of the
clutch “as-designed” (see object Component “Clutch”: AS_DESIGNED_PRODUCT). The clutch
item inherits all of the attributes and properties eventually defined for the “as-designed” product.
In the figure, only some properties directly instantiated for the clutch number 013234765 are
reported as well as their attributes. The property called Flag_By_Law says if the end of life of the
component must be managed according to some law/rule derived by the EU Directive. In this
case, the only two possible values are YES and NO and for the clutch number 013234765 the
attribute Property_Value is set to YES, thus, stating that the end of life of the clutch must be
managed. Then, the Sales_Price property tells that the most probable sales price for the clutch is
€ 100, and that sales prices above € 50 can be entered. The Dismantling_Cost property says that
the dismantling cost for a clutch, calculated as (Labour_Cost + Equipment_Cost) x
(Dismantling_Time_of_the_clutch), is € 90 and that acceptable values range from zero up to
€ 180. Finally, the Inventory_Level property gives the value of the inventory level constraint for
the clutch, which is in this example 450 pieces with an acceptable range of zero up to 600 pieces.
All of these classes give a first idea of the pieces of information needed, at a first stage of
development, to face the end of life problem of the A1 scenario.

Figure 44: Properties of the clutch component – some examples

In figure 45, an object of the CONDITION class is reported in order to give an example of how
the condition class can be used in the PDKM system to check if an important condition is satisfied
before doing something with the object in focus of the condition. In this case, an elementary
condition for the component “Clutch” is shown. In particular, the condition on the minimum stock
level requirement is checked, i.e. if the current stock level is below the value decided previously
as the threshold value for the component “Clutch”. If the condition is satisfied, the component,
following what was written above concerning the decision strategy of the A1 scenario, has to be
removed from the car; otherwise, it has to be thrown to the shredder. These two different “exit
points” are shown by the values of the Action_When_Met and Action_When_Not_Met attributes.

Again, this was only an example of how the semantic model can be used to model one aspect of
the A1 scenario. Some other aspects were considered among those cited more or less explicitly in
[5], e.g. the capability of the semantic model of providing the data basis needed by the DSS to
establish the statistics needed to take all the necessary EOL decisions. The modelling capability of
the Semantic Object Model was considered satisfactory also in these cases.

Copyright © PROMISE Consortium 2004-2008 Page 63

@

Figure 45: Conditions on the clutch component – a simple example

6.4 Concluding remarks for section 6
In conclusion of section 6, one more statement should be made. The other application scenarios as
well have been used for verifying the applicability of the developed semantic model, in a more
informal way, however.

7 Concluding remarks
This document presents an object model describing the attributes of the required objects of the
PDKM system, as well as their relations in detail. The object model primarily addresses semantic
issues concerning the comprehensible representation of domain knowledge for communication
between users and applications, but also discusses some technical issues, such as the efficient
storage of data in physical databases, to be considered when bringing the conceptual model
presented here to a real and implemented technical data schema. A major emphasis was given to
semantic issues, modelling “the entities which the business users are familiar with and can easily
communicate about. Entities (…) (are) further described by attributes and relationships to other
entities and business terms used in this context. (…) (Such) a semantic model offers a common
basis for data communication and exchange between applications, between users, as well as
between users and applications” [2].
DR9.6a is explicitly focused on the pieces of information that the application scenarios are
interested in. A certain level of abstraction was required in the modelling process, in order to meet
all their requirements.
Referring to the PDKM components of the PROMISE PDKM architecture, the presented semantic
data model describes the core of the Data Management layer, whose main task is to provide a
global semantic view on product and product life cycle data for all analysis applications. PDKM
components not covered by the semantic model like the System Management tower and the
Metadata Management tower are treated in the development of the technical data model in tasks
TR9.5, TR9.11, and TR9.13.
Moreover this deliverable does not intend to provide the data model that is required by the DSS
e.g. to store algorithms even if the DSS is, according to DR9.1, one of the components of the
PDKM. That part of the data model is developed by WP R8.

Copyright © PROMISE Consortium 2004-2008 Page 64

@

References

PROMISE deliverables and documents (all of them are available in the PROMISE eRoom at
the website https://project.sintef.no/eRoom/indman/PROMISE)

1. PROMISE DoW (Description of Work) document (versions 4 and 5)

2. DR9.1 - Design of PROMISE Information Management System (PDKM)

3. DR2.1 - PROMISE generic models (version 1)

4. DR7.3 - Selection of Tools and an existing PDM System to support PROMISE specific
Knowledge and Information Management Processes

5. DA1.x – DA11.x - Deliverables describing the demonstrators of the eleven application
scenarios

6. DI1.2 - PROMISE Standardization Domains

7. DR9.2 - Specification of the System Object Model

8. DR9.6b - Specification of System Functions (revised)

Industrial Standards (websites of major interest; also some of the figures have been taken from
these sources)

9. STEP

a. http://www.iso.org

b. http://www.tc184-sc4.org

10. STEP NC

a. http://www.step-nc.org

11. PLCS

a. http://www.plcs.org

b. http://www.plcsinc.org/whitepapers/03pdt-eu.pdf

c. http://stepmod.sourceforge.net

12. PLM XML

a. http://www.eds.com

13. MANDATE

a. http://www.tc184-sc4.org

14. ISA-95

a. http://www.isa.org

b. http://www.wbf.org

http://www.plcs.org/
http://www.plcsinc.org/whitepapers/03pdt-eu.pdf
http://stepmod.sourceforge.net/
http://www.eds.com/
http://www.isa.org/

Copyright © PROMISE Consortium 2004-2008 Page 65

@

Papers

15. Sergio Terzi, Jacopo Cassina, Hervé Panetto; “Development of a meta-model to foster
interoperability along the product life cycle traceability”; INTEROP 2004

16. Jacopo Cassina, Sergio Terzi, Hervé Panetto, Marco Taisch; “Development of a holonic
meta-model for life cycle support and product extension”; ICE 2005

17. Jacopo Cassina, Marco Taisch, Sergio Terzi; “Towards an Intelligent Extended Product”;
IFIP2005

UML

18. Grady Booch, Jim Rumbaugh, Ivar Jacobson; “UML User Guide”; Addison-Wesley, 1999

19. James Rumbaugh, Ivar Jacobson, Grady Booch; “The Unified Modelling Language
Reference Manual”; Addison-Wesley, 1999

20. Martin Fowler; “UML distilled”; Addison-Wesley, 2004

21. http://www.uml.org

Copyright © PROMISE Consortium 2004-2008 Page 66

@

Appendix: UML notation
In this appendix, a short guide to the UML notation used above is provided in order to help the
reader not used to systems modelling better to understand the previously described diagrams.

UML (Unified Modelling Language) is a “de-facto” standard providing a family of graphical
notations, all basing on a single meta-model, able to support the description and design of
software projects, in particular those following the object oriented paradigm. The standard is
“relatively open” and it is controlled by the OMG (Object Management Group), a consortium of
companies, which was formed in order to support interoperability between systems, in particular
the object oriented ones (another known OMG standard is CORBA - Common Object Request
Broker Architecture).

UML was born after the fusion of many graphical languages for the description of software
systems, developed from the late eighties to the mid-nineties, and [20] definitively cancelled the
“Babel of languages” formerly under use.

UML can be used in many different ways, namely to build a sketch of a project (both for the
forward and the backward engineering), a detailed project, or finally, as a real programming
language. Throughout this document the standard is used to build a sketch of the overall
PROMISE Information Management System (PDKM), i.e. a representation of a selected portion
of the system directly related to the modelling of product data across the product life cycle (refer
to the first sections for a brief outline of the intentions of the model presented here). This
appendix is not meant to provide a detailed description of the differences among these three ways
of using the language. For the interested reader, the reference is again [20].

Another way of differentiating the usage of the UML standard is to distinguish between the
conceptual perspective and the software perspective (see [20]). In the former, UML is used to
represent the concepts belonging to the domain of interest, thus moving away from the
representation of “real software” elements, aiming on the contrary at the definition of a common
vocabulary for a particular domain. The latter reflects the exactly opposite situation. The semantic
model provided with this deliverable is a conceptual model as described in the introductory
sections of this document.

Since a complete description of the UML syntax is clearly out of scope for this appendix, only the
couple of diagrams really used to describe the object model are reported below.

Class Diagram
The UML class diagram represents the most used graphical notation of the whole standard,
mainly because it is capable of modelling most of the concepts required by the UML user. Its
basic elements are well known and widely used, while some others are not. In the semantic model,
elements from both sets are represented. They are briefly described below.
A class diagram describes the objects belonging to a system as well as the different relationships
among them. It also shows the features of each class, i.e. its properties and operations, as well as
the constraints applicable to the different links between couples of objects.
The operations of a class explain what a class is able to do and how it can do it. They are often
thought to be in a one to one correspondence with the methods of the class, but generally, it is
better to differentiate the meaning of the two terms, since in a software perspective they can differ
one from another. Since the semantic model presented here is focused on objects, their attributes,

Copyright © PROMISE Consortium 2004-2008 Page 67

@

and the relationships among them (compare to the description of task TR9.2 in the DoW [1]),
operations were not explicitly modelled.
Properties of the objects can be of two types: associations and attributes. Actually, they have
exactly the same meaning in the conceptual perspective, though their related notation is very
different. Here, a brief and informal explanation of what they are used for is provided. In a
software perspective however, they are very different also in the meaning: for the interested
reader, please refer to [18], [19], or [20].

Figure 46: A typical class diagram for the management of incoming orders

Following an intuitive explanation, most of the syntax constructs of UML class diagrams used in
the semantic model are outlined in figure 46. Each box represents a class, i.e. a type of objects
belonging to the domain of interest. Here, the domain of interest is the management of incoming
orders in a common company. Thus, the objects are represented by the Order class, the Line class
(an order is composed of one or more lines), the Product class (each line refer to a specific
product type), the Customer class (customers make orders), and the Private Customer and
Company classes (different types of customers).
Each class can have (but this is not mandatory) one or more attributes, which represent a sort of
“atomic” information embedded into the class, i.e. something typical for each instance of the
class. This means that each instance, i.e. each object, created for that class during the existence of
the system “can” have that kind of information associated to it. It is written “can” instead of
“must”, because the effective presence of each attribute into the description of each single object
is dependent to the kind of multiplicity associated to the respective attribute. The multiplicity
states the minimum and the maximum number of attributes of that type that each single object can
have associated to itself. In the figure, each attribute, e.g. quantity, price, credit card number,
address, etc., has one and only one value. In general, there can be from zero to one value, from
zero to many values, from one to many values, etc., respectively indicated with 0..1, 0..*, 1..*, etc.
For each attribute a (data) type can be specified, e.g. “string”, “Boolean”, “integer”, etc.
Two classes can be linked via an association, represented by a line connecting the two classes.
Each association says that among objects of the first class and objects of the second class a static
link exists for some reason (in the conceptual perspective). This means that the specific objects at
the two ends of the association, which are linked together, can differ from one time instant to
another, but the classes are always linked together, also according to the multiplicity eventually

Copyright © PROMISE Consortium 2004-2008 Page 68

@

added to the association (refer to figure 46 again). If useful, the end of an association can be
referenced with a “role” name, which explains the role of the object belonging to that class in the
link with the related objects of the other class, e.g. each customer can make one or more orders.
Associations can be very general (simple lines) or more complicated if pieces of information have
to be added for matters of clarity. E.g. the association between Order and Line is called
composition and says that each single object of the Order class is composed of many objects of
the Line class. This construct is capable of modelling the concepts of a whole and the parts of this
whole. In this case, naturally, the whole is the order and the parts are the lines of the order. Each
part can belong to one and only one whole. If this is not the case, the association is often called
aggregation and the rhombus is painted white instead of black. Since the community of system
modellers does not agree on the effective meaning of the aggregation construct, it is often
preferred to leave it as a simple association. This approach was also followed in the development
of the semantic model, thus, some relationships between couples of classes depicted as
associations are effectively aggregations. Since this, however, is not a crucial point for a class
diagram designed in a conceptual perspective, the problem is not treated further here. For the
interested reader, please refer again to [20].
Finally, the links between the Customer class and both the Private Customer and the Company
classes are called generalizations and state that a customer can be either a private customer or a
company. From a conceptual viewpoint, the generalization construct say that e.g. Company is a
subtype of Customer if and only if each instance of the Company class is also an instance of the
Customer class, or anyway, if all that is valid for a generic object of the Customer class is also
valid for each object of the Company class (which should be true, if the company is modelled as a
particular type of customer).

Figure 47: Use of the association class construct in a UML class diagram

Another important UML construct, which turned out to be useful for the semantic model, is the
association class construct. This modelling element can be used to add attributes, operations, and
other features to an association as indicated in figure 47. From the diagram, one can see that a
person can participate to more than one meeting. Therefore, it may be useful for some reason to
record the time instant when the person joins the meeting and the time instant when the person
leaves the same meeting.

Figure 48: Alternative way to represent the information contained in figure 47

Copyright © PROMISE Consortium 2004-2008 Page 69

@

Another way to represent the same kind of information is outlined in figure 48. The two diagrams
have exactly the same meaning, but the former is more compact.

Object Diagram
The UML Object Diagram represents a snapshot, at a particular point in time, of the objects
composing a given system. This diagram only shows instances of classes and the existing links
among them (at the instance level, not only at the class level), thus, it is often called “Instances
Diagram”. To be more precise, the elements of an Object Diagram are not really instances of the
related classes, but only specifications of instances of those classes. In fact, many attributes,
though mandatory in principle for a certain class, can be omitted if not interesting for the purpose
of the diagram.
In the semantic model, it is used to show self-explaining configurations of the objects. Thus, the
focus is not on giving a complete list of all the attributes for each object represented in the
diagram, but, accordingly to what is written above, on showing the attributes that are really
needed for the explanation of the concept that the diagram was built for. Examples of object
diagrams are given in chapter 6, where the semantic model is applied to some of the PROMISE
application scenarios. The notation is self-explaining. The only major difference to class diagrams
is that in an Object Diagram objects have their own name, which is underlined. Usually, the class,
to which an object belongs, is indicated as well, though none of these pieces of information is
mandatory.

	1 Introduction
	1.1 Work Package objectives
	1.2 Scope of deliverable DR9.6a
	1.3 Overall approach
	1.4 Boundary conditions and limitations
	1.5 Document overview
	1.6 Delta to deliverable DR9.2 “Specification of the System Object Model”

	2 DR9.6a’s connection to other PROMISE deliverables
	2.1 WP R2: PROMISE generic models
	2.2 WP R7: Information and Knowledge Management Methodologies
	2.3 WP R9: Development of PROMISE information management system
	2.4 WPs Ax: Application scenarios 1 to 11

	3 State of the art on product data modelling across product life cycle
	3.1 STEP – ISO 10303
	3.2 STEP NC (ISO 14649)
	3.3 PLCS – ISO 10303-239:2005
	3.4 MANDATE – ISO 15531
	3.5 PLM XML
	3.6 ANSI/ISA-95 (ISO 62264)

	4 General System Object Model (Semantic model of the PDKM)
	4.1 Important notes on the modelling criteria adopted
	4.2 Class Diagram of the Semantic Model: an overview on classes and associations among them
	4.2.1 Product instances across their life cycles: from the identification problem to the representation of the BOL, MOL, and EOL product structures
	4.2.2 Life cycle related information: description of life cycle phases and the related field data

	5 The Technical Data Schema
	5.1 Mapping to mySAP PLM
	5.2 Purely technical information

	6 Mapping the Semantic Object Model to real cases: some examples from the PROMISE application scenarios
	6.1 BOL scenario: the BOMBARDIER case from WP A10
	6.1.1 As-Designed Product Structure
	6.1.2 As-Used Product Structure
	6.1.3 Instantiation
	6.1.4 Field Data
	6.1.5 Maintenance Event
	6.1.6 Storage of Product Knowledge
	6.1.7 Concluding remarks for section 6.1

	6.2 MOL scenario: the MTS case from WP A7
	6.2.1 Predictive Maintenance Management in the MTS scenario: an example

	6.3 EOL scenario: the CRF case from WP A1
	6.3.1 ELV Management in the CRF scenario: the decision strategy and its implementation

	6.4 Concluding remarks for section 6

	7 Concluding remarks
	References
	Appendix: UML notation
	Class Diagram
	Object Diagram

