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1 Introduction  

1.1 Objectives of Task TR9.15 and scope of this deliverable 
In the PROMISE DoW [Pro06] document (version 5.0, page 89), Task TR9.15 (“Data Quality 
Analysis and Visualization”) was described as follows: “Methods for automated data collection, 
i.e. sensors, RFID etc., are subject to system-inherent errors, e.g. imprecision of sensors, noise of 
data transmission channel, etc. If not dealt with properly, data errors are propagated from 
PEIDs, through the Middleware, and finally to the PDKM and DSS, where they derogate the 
quality of decision support. This task thus studies the data quality issues and analyzes the 
influence of data quality on decision making”.  
 
Task TR9.15 comprises:  
 

• Concept of Data  Quality considered for various types of data sources 
• Analysis of the influence of data processing methods (e.g. in Middleware and PDKM) on 

Data Quality 
• Data Quality Visualization 
 

The objective of task TR9.15, and thus of deliverable DR9.15, is to provide descriptions how to 
incorporate data quality information in the data streaming environment of the PROMISE 
middleware as well as how to persistently store data quality characteristics in the PDKM. Besides 
the metamodel extension, the influence of data processing operators used in both Middleware and 
PDKM shall be analyzed. Finally, the visualization of data quality dimensions enables the 
adequate evaluation of imprecise data and measurements.  

1.2 Brief document overview 
The document layout comes as follows: 
 
Section 2 discusses the term “data quality” by comparing different definitions and introducing 
accuracy, confidence and completeness as three important quality dimensions for sensor data. In 
Section 3 this knowledge is used to design a metadata extension to represent data quality 
information in data streams. Here, the efficient DQ transfer plays an important role. Furthermore, 
the metadata extensions are incorporated in the PDKM object model presented in the deliverable 
DR9.2. In Section 4 typical data stream processing operators are analyzed regarding their 
influence on different data quality dimensions. With the help of the proposed functions, the 
quality of streaming sensor data can be tracked from the data sources through various processing 
steps to the respective applications. Approaches for data quality visualization are presented in 
Section 5 enabling the comprehensive information evaluation to prevent from faulty decisions due 
to imprecise data. This deliverable closes with a short summary. 

2 Incorporating Data Quality Information 
The PROMISE architecture provides PEID-equipped sensors to capture data about product 
conditions and usage to guide business decisions as well as production automation processes. A 
challenging issue in this application area is posed by the restricted quality of sensor data due to 
limited sensor precision as well as sensor failures and malfunctions. Moreover, the data quality is 
further decreased by data processing to meet resource constraints in streaming as well as storage 
environments. The issue of how to efficiently provide information about data quality (DQ) to 
applications is still an open research problem.  
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Based on a discussion of data quality definitions and DQ dimensions, this deliverable provides a 
concept to efficiently transfer the DQ information along with the measured sensor data. 
Furthermore, the system object model of the PROMISE PDKM is extended to allow for the 
efficient storage of data quality information. To enable the data quality tracking through complex 
data processing steps, the influence of processing operators on data quality was analyzed. The 
deliverable closes with approaches for data quality visualization supporting effective data 
evaluation. 
 

2.1 System Overview 
This section gives an overview over the application area as well as our proposed solution 
illustrated in Figure 1. The real world environment, for example a manufacturing area, is 
monitored with the help of sensors. The measured sensor data is streamed towards the target 
applications, where the data is processed and actions or decisions are derived. There are two 
modes of data processing. On the one hand, the data is consumed directly from the stream for 
basic data analysis in the automatic process control, e.g. during production processes. On the other 
hand, many business applications require data spanning a wider time interval aggregated in a 
persistent database. Here, complex data mining and knowledge discovery is performed. Both 
application scenarios are supported by the generic and flexible solution presented in this 
deliverable. 
Our solution for data quality transfer and management consists of data quality recording, data 
quality propagation, system object model extensions for persistent data quality storage and data 
quality visualization.  
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Figure 1: Data Quality within the PROMISE Architecture 
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2.2 Data Quality Dimensions 

2.2.1 Different Data Quality Definitions / Classifications 
 
There are multiple definitions of the term „data quality“. According to the application context, 
different perceptions of data quality can be recorded and various data quality dimensions can be 
found. The most general notion is stated as follows: 
 

Data quality describes the suitability of the data for the respective data processing application. 
 
Rahm and Do [Rah00] distinguish data quality problems resulting from a single data source and 
data errors resulting from the integration of multiple sources as shown in Figure 2. Furthermore, 
they classify data quality problems according to the level, where the data errors are settled. Thus, 
there are data errors based on the schema level (uniqueness or naming conflicts) as well as on 
instance level (duplicates, missing values, inconsistencies).  
 
 

 
 

Figure 2: Classification of Data Errors [Rah00] 
 
Wang and Strong go beyond this classification by defining additional data quality dimensions like 
understandability, completeness or reputation of a data source describing not only single data 
values or tuples, but complex data volumes (see Table 1).  
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Table 1: Data Quality Categories [Str97] 

Quality Category Quality Dimensions 
Intrinsic Data Quality believability 

accuracy 
objectivity 
reputation 

Contextual Data Quality value-added 
relevancy 
timeliness 
completeness 
amount of data 

Representational Data Quality interpretability 
understandability 
representational consistency 
representational conciseness 

Accessibility Quality accessibility 
access security 

 
Hence, data quality can be regarded as a set of data quality dimensions, whose collection and 
definitions correspond to the respective application area. In the following, we will focus on 
numerical sensor data and give a set of data quality dimensions considered as of high importance 
for this application field.  
 
The data quality dimensions accuracy and completeness are essential for the evaluation of sensor 
data and thus are described in detail in the following sections. The accuracy describes the 
systematic error due to sensor imprecision. The sampling operator introduces a new statistical 
error represented in the confidence.  

2.2.2 Accuracy  
The DQ dimension accuracy describes the numerical precision of a data item. It is stated in the 
absolute error a(j) of a physical value v(j). The accuracy of a sensor is given by the measurement 
precision class in the manufacturer's technical specification. In the example, the pressure sensor 
p1 has a maximum range of 315bar and a precision class of 1%. Thus the maximum absolute error 
a(j) of this sensor is 3,15bar (1% of 315bar).  

2.2.3 Confidence  
With the help of sampling, the data volume can be reduced significantly. Thus, the sampling 
operator is an important tool in context of data stream processing, providing the possibility the 
meet stringent resource capacities. However, this operator introduces a new statistical error. The 
information loss provoked by sampling the data stream is described by the confidence interval 
according to [Haa97]. Consider a data stream consisting of 10 values 1,1,1,1,1,1,1,1,1,100 with 
the average of 10.9, where every 2nd data item is sampled. If the sample contains the value 100, 
the average will be determined as 20.8. Otherwise the average based on the sample would be 
computed to be 1. It is easy to see, that those two results contain a non negligible deviation 
compared to the true average.  
 
Similar to the error resulting from the sensor's accuracy class, the confidence interval is given as 
an absolute error. The statistical error influences the overall accuracy only if aggregation 
operators are applied later on, as described in the example above. The goal is to handle every 
operator of the data processing independently. Thus the new data quality dimension confidence is 
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introduced. The confidence is described by the parameter ε defining the confidence interval [x - ε; 
x + ε] enclosing the measured value x containing the true value x’ with a given confidence 
probability p. According to [Haa97] ε is defined as 

 
where n and r constitute the sample size and sampling rate, respectively, σ gives the data variance 
and d expresses the confidence probability p as the (1 – p/2)-quantile. 

2.2.4 Completeness  
The completeness addresses the problem of missing values due to sensor failures or malfunctions. 
Multiple strategies exist to deal with missing values in ETL processes and data cleansing [Lee99], 
whereas the estimation or interpolation of missing values is aspired in the majority of the cases. 
The data quality dimension completeness helps to distinguish between measured data items and 
estimated or interpolated ones. 

2.3 Data Quality Recording 
During the data quality recording, DQ information is captured directly from the sensor. Therefore, 
the sensor has to be analyzed in detail as shown in Figure 3. 
 

 

Figure 3: Design of a Sensor 
 
The output of a sensor is a discretized and digitized data stream representing the measured 
physical values. The characteristics of the sensor define the data quality dimensions of the 
outgoing data stream. The metadata models presented in this paper are designed to cope with an 
unlimited number of data quality dimensions. Without loss of generality, we focus on the two 
important DQ dimensions accuracy and completeness. 
 
The accuracy describes the numerical precision of a data value. It is stated in the absolute or 
relative error of a physical value. The accuracy of a sensor is given by the measurement precision 
class in the manufacturer's technical specification.  
 
The sampling rate of the discretization defines the stream rate r (e.g. 100/s, 1/10min), which 
determines the stream length m depending on the time t and thus serves as reference for the stream 
completeness c. 

3 Enhanced Metadata Model 
In this section the metadata model extension for data stream systems will be introduced. We 
present a straightforward approach of so-called naive data quality annotations as a first solution to 
the problems arising from restricted sensor DQ. To overcome the explosion of data volume given 
by this naive approach, we then propose the incorporation of jumping windows in the data stream 
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metamodel. Finally, the DQ calculation and propagation in the presented jumping stream 
windows in described in detail. 

3.1 Naive DQ Annotations 
The naive approach of data quality annotations consists in streaming the data quality information 
for each DQ dimension (gray) with the same stream rate as the measurement stream (white) as 
shown in (see Figure 4). The data item is not only defined by its numerical values, but further 
described by its DQ information. 
 
 

Data ItemData Stream Attribute

rate value

mn+1

accuracy completeness
 

 

Figure 4: Naive DQ Annotations 

 
A sensor data stream D of length m and rate r consists of n+1 Attributes Ai (0 ≤ i ≤ n), where A0 
represents the timestamp t of the sensor data stream. Each timestep tj (0 ≤ j ≤ m) indicates a tuple 
Tj with n measurement values vi(j). For the naive DQ annotations every measurement value vi(j) is 
enhanced with a data quality vector qi(j) enclosing d data quality dimensions (e.g. accuracy ai(j) 
and completeness ci(j).  ). 

 
 

Figure 5 shows an extract of sensor measurement data combined to calculate the residual lifetime 
of a truck's engine. Every 10 days, the residual lifetime is estimated. It is calculated based on 
several sensors (i.a. oil pressure, oil temperature, mileage, number of cold starts) with the given 
data quality dimensions accuracy and completeness. Analogue to the sensor measurements, the 
sensors' data quality information were combined and aggregated to compute the quality of the 
residual lifetime. 
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Figure 5: Lifetime with Naive DQ Annotations 
 
Obviously, this approach significantly increases the data volume, which is multiplied by the 
number of considered DQ dimensions. The additional data volume S to transfer data quality 
results in S = m . n . d. Hence, this approach is not suitable for those applications with stringent 
resource constraints and should only be employed in case that communication costs for data 
transmission are not significant. 

3.2 Jumping DQ Windows 
To reduce the additional data volume to transfer data quality information in a data stream, we 
propose the usage of jumping data quality windows. The concepts of our solution focuses on 
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flexibility, which is achieved through by an unlimited number of supported DQ dimensions, a 
variable window size and adaptable aggregation functions to summarize the window data quality.  
 
During the data transfer in the PROMISE middleware, the result of a subscription to data items of 
a certain sensor node can be understand as a data stream. Therefore, in this section jumping DQ 
windows are introduced in the data stream metamodel. The traditional DSMS metadata model has 
to be extended. As already mentioned, a sensor data stream D consists of n attributes Ai (0 ≤ i ≤ n) 
representing sensor measurements. In the traditional metadata model, each attribute Ai is 
associated with an unrestricted number of data value items vi(j). At this place the model extension 
is inserted. The notion of jumping windows is interposed in the relation between attribute and data 
item as shown in Figure 6: DSMS Metadata Model Extension.  
 
 

Completeness

Window

Data Stream

AttributeAttribute

rate

tbegin size
Data Item

Data Quality
Accuracy

value

value

value

s

m/s
dn+1

 
Figure 6: DSMS Metadata Model Extension 

 
For the jumping window based annotations, the data quality information is not sent together with 
every single data item but window-wise for each DQ dimension. The additional data volume is 
reduced to an acceptable degree by aggregating the data quality for each attribute Ai (0 ≤ i ≤ n) in 
jumping stream windows wi(k)  of the given size si starting at timestamp tbegin = tk. Thereby, the 
aggregation functions can be flexible determined for each DQ dimension corresponding to the 
underlying application. The attribute A0 represents the timestamp, not a sensor measurement and 
thus is not equipped with data quality information. 
 
The definitions in the following hold for each attribute Ai. For the sake of simplicity, we refer to 
the windows wi(k) as windows w(k) of size s, etc. The window w(k)  includes s sensor data items 
v(j) (k ≤ j ≤ k+s-1) as well as the data quality vector q(k) describing d data quality dimensions. 
The vector q(k) represents the aggregated data quality information q(j) (k ≤ j ≤ k+s-1) , which was 
associated with each data item (see section 3.1).  
 
The vector function f incorporates the aggregation functions fl (1 ≤ l ≤ d) for all enclosed data 
quality dimensions. In the following the data quality vector is shown for d = 2, including the 
window accuracy aw(k)  and window completeness cw(k) . 

 
There are several possibilities to calculate the window accuracy aw(k) for a window w(k) of size s 
starting at timestep t(k). The accuracy function fa is not fixed, but rather can be adjusted to the 
application's requirements. At this point, the quality propagation model is configured as generic as 
possible to be adaptable for every possible use case. 
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The window accuracy aw can be defined as the (weighted) average or sum of all value accuracies 
a(j). Moreover, it may be defined as the minimum or maximum of the absolute error in the 
corresponding window. Section 2.2.3 introduces the confidence as data quality dimension 
describing the statistical error resulting from sampling operations. The calculation of ε is defined 
according on Haas [Haa97]. Based on the given function, the window confidence εw(k) for a 
window starting at t(k) with window size s is declared by  

 
The window completeness cw(k) describing the window w(k) is stated as the ratio of originally 
measured, not interpolated values v’(j) (k ≤ j ≤ k+s-1) compared to the window size s. 
 

 
With the knowledge of the window completeness cw(k), each data value in the respective window 
[k ; k+s-1] has the probability cw(k) . 100% to be an originally measured data item and not an 
interpolated one. 
 
Now, we have all information needed to model the quality dimensions accuracy (systematic as 
well as statistical) and completeness for sensor data streams. Every s timesteps, the window DQ 
vector qw(k), consisting of window completeness cw(k), window accuracy aw(k) and window 
confidence interval εw(k) is calculated. 
 
For s = 1, qw(k) corresponds to the quality of a single data item. If s = n, the data quality is not 
calculated and propagated until the complete data has been propagated through the PROMISE 
middleware to the PDKM. Hence, the choice of the window size s presents the trade-off between 
the communication effort and the data quality granularity shown to the user.  
 
The number of data quality dimensions is not fixed but variable for each attribute. Further, the 
window size s can be defined independently for each stream attribute. The additional memory 
space to cover di data quality dimensions for each of n attributes Ai depends on the attributes' 
window size si and the stream length m. 

 
Figure 7 shows the resulting data quality for the residual lifetime of the truck engine. The DQ 
information provided for each data item (see Figure 4) are aggregated in jumping windows of size 
s = 5. Compared to the naive DQ annotation the gained resource saving is clearly visible. 
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Figure 7: Lifetime DQ in Jumping Windows 
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The window-wise calculation of the data quality dimensions may be executed at the embedded 
intelligent device the sensor is connected to or at every other point in the data stream system. 
However, to be as efficient as possible, the DQ aggregation should take place as near to the sensor 
as possible. 

3.3 DQ in the System Object Model 
In this section the metamodel extensions described above shall be integrated in the system object 
model defining the data schema of the PROMISE PDKM. The object model is described in detail 
in the DR 9.2 “Specification of the System Object Model” [DR9.2]. To allow for the incorporation 
of (sensor) data quality information, the section 4.2.2 “Life cycle related information: description 
of life cycle phases and the related field data” will be further analyzed. Figure 8 shows the part of 
the system object model focusing on the handling of field data. 
 
 

 
 

Figure 8: The FIELD_DATA class and its relationships with other model components  
 
The FIELD_DATA class (Figure 8) is a crucial class in the semantic model, in the sense that it 
enables the overall PROMISE system to collect data from the field with the help of e.g. PEID-
equipped sensors. Field data can be of different types (VALID_FD_TYPE class), and is collected 
by means of sources like e.g. sensors (FD_SOURCE class). It might be organized in documents 
(DOCUMENT class) with attached physical files (FILE class). The associations among these 
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classes show the most important existing links; the cardinalities are all zero to many, to take into 
account the most general cases.  
 
 
Important attributes belonging to the FIELD_DATA class are: 
 

• FD_ID: This attribute represents the identifier of each single field data record. The 
cardinality is one and only one. 

• FD_Type: This attribute shows the type of the field data, and directly corresponds to a 
specific object of the VALID_FD_TYPE class, i.e. the string defining the FD_Type must 
be equal to the string defining the ID of an object of the VALID_FD_TYPE class. The 
cardinality is also one and only one.  

• Document_Flag (Boolean): This attribute states if the field data is contained in or 
represented by an attached document.  

• Value: This contains the value of the field data record. The cardinality is zero to one 
depending on the Document_Flag. 

• Accuracy: With cardinality zero to one, this attribute states the accuracy of the field data 
measurement if needed. 

• WHO: This attribute shows who is responsible for the field data measurement, i.e. which is 
the source of the field data, and can be derived e.g. from a corresponding object of the 
FD_SOURCE class linked with the object of the VALID_FD_TYPE class that is 
associated to the present FIELD_DATA object. 

• WHAT: This attribute can for instance explain what the field data stands for, i.e. the 
meaning of the data itself. 

• WHERE: This attribute states the location where the measurement was made, if needed by 
the specific application scenario (the cardinality is zero to one), i.e. the location where the 
product was situated when the present field data was collected. 

• WHEN (Date): This is simply the timestamp indicating when the field data was recorded. 
 
The VALID_FD_TYPE class is intended to model the information concerning the type of a given 
field data object e.g. “Temperature_Sensor_1” or “Average_Temperature_Sensor_2”, its set of 
categories e.g. {”Temperature Measurements”, “Calculated Values”}, its measuring unit, e.g. K, 
W, N, kg, m, etc., and the data type, e.g. integer, double, float, string etc. These pieces of 
information are provided all with cardinality of one and only one or zero to one depending on the 
data type. The VALID_FD_TYPE class is associated to both the PHYSICAL_PRODUCT class 
(representing the physical instance of the product) and to the AS_DESIGNED_PRODUCT class 
(representing the BOL as-designed structure of the product). Both associations have zero to many 
cardinalities, to state that a field data type might be defined on the one hand on the level of a 
product type, and so is also inherited by all derived physical product items, and on the other hand 
for a specific product item (instance) only.  
 
The FD_SOURCE class is used to define the identity of the source of a given valid field data type. 
The Source_ID is the ID of the source of field data; for instance, it can represent the identity of 
the sensor of the PEID being responsible of the measurement of that specific field data, e.g. 
"sensor #5 linked to the on-board computer", which performs measurements over time of the 
temperature at which the product operates.  
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Figure 9: The DATA_QUALITY classes in relation to the FIELD_DATA class 
 
The FD_WINDOW class (Figure 9) represents a jumping data quality window (see section 3.2) 
containing a set of temporally consecutive field data measurements. It constitutes a logical set of 
field data information of a single data source and thus a certain field data type (FD_Type). The 
boundaries of the data quality window (FD_WINDOW) are defined by the starting timestamp and 
the end timestamp or the window size, respectively. 
 
The attributes belonging to the FD_WINDOW class are: 
 

• FD_ID: This attribute represents the identifier of each single field data record. The 
cardinality is one and only one. 

• FD_Type: This attribute shows the type of the field data, and directly corresponds to a 
specific object of the VALID_FD_TYPE class, i.e. the string defining the FD_Type must 
be equal to the string defining the ID of an object of the VALID_FD_TYPE class. The 
cardinality is also one and only one.  
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• Start_WHEN: This attribute defines the starting timestamp of the field data quality 
window. 

• End_WHEN: This attribute defines the end timestamp of the field data quality window. 
While using the end timestamp to determine the field data set contained in FD_WINDOW, 
the window size is defined time-based. Due to fluctuating data rates, the field data sets 
contained in the FD_WINDOWs may be of different size. 

• Window_Size: This attribute gives the length of the FD_WINDOW. It defines the count of 
measurements contained in one FD_WINDOW. During this tuple-based window size 
definition every FD_WINDOW contains the same number of field data items. 

 
As described in section 0 there are multiple data quality dimensions. Further it was stated, that 
accuracy, confidence, completeness build a basic set describing the quality of sensor data. 
However, the system object model extension shall go beyond these three characteristics. To allow 
for a generic metadata modelling, the extensions will support an unlimited number of DQ 
dimensions.  
 
The class DQ_DIMENSION represents one specific data quality dimension. The n:m relation 
between DQ_DIMENSION and FD_WINDOW allows the introduction of an unrestricted number 
of dimensions. Compared to the object-oriented programming, the DQ_DIMENSION provides 
the class-view onto data quality information. 
 
The attributes belonging to the DQ_DIMENSION class are: 
 

• DQ_Dimension_ID: This attribute defines a unique identifier of the respective DQ 
dimension. 

• Name: This attribute gives the name of the DQ dimension, for example accuracy, 
completeness or timeliness. 

• Description: Because there exist different definitions for data quality and data quality 
dimensions this attributes gives a detailed description of the respective dimension.   

• Source_ID: This attribute defines the source (FD_SOURCE) of the field data. 
• Operator_Behavior: This attribute defines the behaviour of data processing operators on 

values of the respective data quality dimensions. During the data processing, the data 
quality can be carried along by retracing the processing operations analogue on the DQ 
information. 

 
The DATA_QUALITY class represents the value of a specific data quality dimension associated 
to a certain FD_WINDOW. It gives the object-wise view onto data quality information.  
 
The attributes belonging to the DATA_QUALITY class are: 
 

• DQ_ID: This attribute defines a unique identifier of the respective DQ value. 
• DQ_Dimension_ID: This attribute gives the reference to the data quality dimension the 

DQ value describes. 
• FD_Window: This attribute gives the reference to the field data set defined by 

WD_WINDOW the DQ value describes.  
• Value: This attribute gives the parameter value of the referenced data quality dimension.  
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4 Data Quality Processing 
In this section the influence on data quality of different basic operators in data stream processing 
is analyzed. Mathematical functions are introduced to compute the effects of different stream 
operators on the DQ dimension completeness, accuracy and confidence. Thereby, we focus on the 
following operators:  
 

• Data reduction 
o Sampling 
o Aggregation 

• Stream combination 
o Join 
o Branching 

• Stream value computation 
o Algebraic operators 
o Threshold control 

 
First, the sampling is analyzed. It provides an efficient data reduction and further is required to 
allow for the join of two data streams. To prevent from aliasing due to sampling, the low-pass 
filtering of data streams is introduced. Then, the aggregation as another tool to reduce the stream 
volume is examined. The join allows for the combination of two distinct data streams, whereas the 
branching enables the re-use of different paths in the model graph. Finally, algebraic operators 
such as addition or square root are analyzed. 

4.1 Sampling operators 
The downsampling reduces the data volume of the stream while randomly skipping a given 
amount of data items. To allow the correct reconstruction of the original signal from the sample, 
aliasing effects have to be prevented. Therefore, the low-pass filter which eliminates high 
frequencies in the signal stream is introduced. At the end of this section, the up-sampling 
(interpolation) as an important premise for stream joining is analyzed. 
 
Downsampling  
 
This data stream operator creates a systematic sample of the incoming data stream. The 
downsampling is a tuple-based operator to reduce the stream size by inserting every k-th tuple of 
the incoming stream into the resulting sample. The parameter k defines the sampling rate rs and 
thus the resulting stream rate r’ based on the former stream rate r. 

 
To guarantee a uniform sampling, the first data tuple sampled from the stream is not simply the 
first in the list, but is chosen randomly as the i-th tuple, where 1 ≤ i ≤ k. Only then, each element 
in the population has a known and equal probability of selection p = 1/k. This makes systematic 
sampling functionally similar to the simple random sampling, while benefiting from the efficient 
sample creation. However, this sampling technique is vulnerable to periodicities in the data 
stream. If periodicity is present and the period is a multiple of k, then a biased sample will result. 
 
Furthermore, one should clearly keep in mind the sampling theorem stating that the sampling rate 
rs must be larger two times the signal's highest frequency fmax [Kie05]. 
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If this condition is not met, aliasing effects occur and prevent the correct reconstruction of the 
signal.  
 
The sampling operator has no direct influence on the completeness of a data stream. If each data 
item is sampled with equal probability p = 1/k, the fraction of original sensed and interpolated 
data values does not change. However, similar to selection or aggregation the sampled values 
build up new windows, where the window completeness cw is the average of the data items' 
former completeness values.  
 
The new window accuracy aw is computed analogue to the window completeness. The average of 
the incoming data accuracies determines the resulting window accuracy aw. The statistical error 
introduced by the information loss during the sampling of this parameter is given in section 2.2.3. 
If the incoming εw are not null due to prior sampling steps, the new window confidence ε’w 
consists in the squared average of the former εw of the tuples composing the corresponding 
window plus the newly introduced statistical error. 

 
Low-Pass Filter  
 
Using a low-pass filter signal inherent high frequencies are eliminated to smooth the signal as 
shown in Figure 10 to avoid aliasing effects during sampling operations. Thus, not only the 
influence of the sampling operator, but as well the affect of the low-pass filter on data quality has 
to be analyzed. The low-pass filter can be described with the help of the Laplace transformation 
[Kie05], which transforms the signal x(t) to its frequency domain X(f). 
 

 
 

Figure 10: Low-pass filtering and sampling 
 
After decomposing the sensor signal represented by the data stream into the spectrum of its 
frequency components, the bands with higher frequency than the threshold given by the requested 
sampling rate are cut off. In the last step the signal is reconstructed based on the remaining 
frequency components.  
 
The low-pass filtering does not affect the level of completeness of the data stream. The number of 
measurement values is not reduced, but the stream rate is constant. Thus, the window 
completeness cw remains constant. The parameters window accuracy aw and window confidence 
εw define the absolute systematic and statistical error of the data stream signal, respectively. 
Hence, the data stream signal x(t) is composed of the true signal xtrue(t) and the absolute error Δx = 
aw + εw. For Δx is not dependent on the time t, it is not affected by the Laplace transformation, but 
remains constant. Thus, the low-pass filter described by the Laplace transformation does not 
affect the window accuracy neither the window confidence.  
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Upsampling 
 
In contrast to the downsampling operator, which reduces the data stream by the factor k, the 
upsampling or interpolation operator interposes a determined data item between each tuple pair 
and thus stretches the stream. The linear interpolation with interpolation rate ri = 2 doubles the 
data stream length. Between every tuple pair < Tj >;< Tj+1 >, a new tuple of the form  

 
is introduced. If < Tj > and < Tj+1 > associate with different windows w(k) and w(k+1), the new 
tuple is defined to belong to the preceding window w(k). The completeness of a window is 
reduced, while it is bloated with interpolated data. After the interpolation, the new window 
completeness c’w(k) consists in 

 
According to the data value v(j), the accuracy and confidence are linearly interpolated for each 
data item based on the tuples' window accuracies aw(k) and aw(k + 1) as well as confidences εw(k) 
and εw(k+1), respectively. Hence, the new window accuracy a’w and window confidence ε’w are 
defined as follows.  

 
 
Example Application: Oil Condition Monitoring 
 
We will refer to the example application of oil condition monitoring to illustrate the influence of 
the processing operators on data quality. During the condition monitoring the oil ageing is 
calculated based on six sensor measurements: pressure, temperature, particle contamination, 
humidity, viscosity and permidity [Die07], which are recorded with different stream rates due to 
distinctive sensor capabilities. To join these sensor streams for complex evaluations, the 
measuring frequencies have to be aligned with the help of up- and downsampling. For example, 
the pressure stream (sensor rate r = 2/min) is downsampled with sampling rate rs = 0.05 as shown 
in Figure 13 a), whereas Figure 13 b) illustrates the interpolation (ri = 2) of the particle 
contamination measurements (sensor rate r = 0.05/min) describing the water saturation of the oil. 
The information loss due to downsampling is represented in the DQ dimension confidence εw. The 
interpolated humidity values are mirrored in the increasing window completeness cw. 

 
Figure 11: Down- and Upsampling 



                        

 

 
Copyright ©  PROMISE Consortium 2004-2008  Page 18 

 

@

4.2 Aggregation 
With the help of an aggregation operator data stream values can be summarized. The basic 
aggregation operators are sum(), average() and count(). Further, complex operators like standard  
deviation or variance can be built up as a composition of those and therefore will not be discussed 
in this paper.  
 
There are two modes to execute the aggregation. On the one hand, the complete data stream can 
be aggregated to one output value. However, this application is rare. The usual practice involves 
grouping. Here, data items are grouped to data sets g ∈ G, which are then aggregated. In this way, 
the data stream is not reduced to one single value, but compressed to |G| data tuples representing 
the groups. A second application scenario is given by moving aggregations. Both applications of 
the aggregation operator are supported by the DQ computation presented in this section. 
 
The grouping can be applied based on any data attribute. However, we only discuss the timestamp 
based grouping in this paper, because grouping respective to another attribute would block the 
pipeline in the data stream processing. The grouping based on the timestamp can be applied to 
build groups a) representing a given time interval (e.g. 10min) or b) consisting of a given number 
of data tuples (e.g. 100 tuples). Thus, the grouping separates the data stream in |G| intervals with 
a) varying lengths li depending on the respective stream rate or b) a fixed length l = |g| equal for 
all intervals. It should be noted, that the timeframe defining the grouping for an aggregation 
operator is completely independent from the window size s for data quality calculation.  
 
During aggregation, a set of data items is summarized to form a new single data value. This data 
value now represents not only a certain point in time, but a time interval. The timestamp has to be 
adjusted to reflect this fact. After an aggregation the data stream tuples have timestamps of the 
form [tbegin; tend], where tend = tbegin + li (1 ≤ i ≤ |G|). For the DQ processing during aggregation 
two steps have to be distinguished. First, the data quality of one aggregate value is calculated 
based on all incoming tuples' DQ information, whereas the underlying function depends on the 
aggregation type as well as the DQ dimension. Then, the resulting aggregates are bundled to form 
new windows of size s. The second step is generic for all DQ dimensions. 
 
The aggregated window completeness is independent of the applied aggregation operator type. 
The completeness of one aggregate value is calculated as the average of all incoming tuples' 
window completeness values cw. In contrast to the completeness calculation, during the 
examination of aggregate accuracy and confidence interval, it has to be distinguished between the 
different aggregation types. 
 
With regard to the computation of the aggregate accuracy and confidence, the aggregation sum() 
can be considered similar to the algebraic addition (see section 4.4). The aggregate accuracy and 
confidence, respectively, consist in the linear/squared summation of all incoming tuples' window 
accuracies/confidences weighted with the linear/squared partial derivative. For the addition of li 
data items the partial derivates with respect to each of these variables are equal to 1. Hence, the 
function for the accuracy and confidence of an aggregate can be reduced to 
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To compute the average, the sum of all data values is divided by the size of the group li. Thus, the 
aggregate accuracy aavg and confidence interval εavg can be easily derived from the aggregate  
accuracy and confidence interval for sum(), respectively. The aggregation count() is not useful in  
data streams comprising numerical, continuous data values and thus will not be regarded at this 
point. 
 
After the data quality vector qi(k) has been calculated for every resulting aggregate value, the new 
windows have to be built up. The window DQ vector consists in the averaged aggregate DQ 
vectors.  

 
Figure 12 shows the aggregation of a sensor data stream in the oil condition monitoring. To 
estimate the expired and thus derive the residual oil lifetime based on the given six sensor data 
streams (see section 4.1) the data stream is cumulated along the timescale. 
 

 
 

Figure 12: Aggregation - cumulative sum 

4.3 Joining and Branching 
In this paper we focus on the timestamp-based joining of two sensor data streams. In [Sch05] a 
temporal join technique is introduced, which uses up- and downsampling (see section 4.1) to find 
one-to-one join partners in streams of different data rates, i.e. bandwidth. 
 

 
Figure 13: Data stream join 

 
After data rate adaptation, each tuple of stream D1 finds a partner with the same timestamp in D2 
as shown in Figure 13: Data stream join. Hence, the join can easily be executed producing a data 
stream with the adapted data rate. During the join operator, data quality dimensions are not 
affected, but copied to the resulting data stream. 
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4.4 Algebraic Operators 
In contrast to traditional data base management systems algebraic operators play an important role 
in data stream applications. Sensor data streams comprise numerical data items, on which 
algebraic algorithms are applied for analysis and data evaluation. 
 
With regard to completeness we distinguish between unary and multi-valued operators. A unary 
operator, for example the square root, is applied to one attribute of a data stream. Here, the 
completeness is not affected. It is constant for all windows w(k). A multi-valued operator 
combines two or more attributes and reports the calculation result in a new attribute. 

 
The basic binary operators are addition, subtraction, multiplication and division, which can be 
combined to complex functions. In this case, the resulting completeness depends on the 
completeness of the input attributes. It is calculated as the average of the preceding completeness 
values. 

 
The window accuracy a’w and confidence ε’w are computed according to the error propagation 
framework used in scientific experiments. In this context a distinction is drawn between statistical 
and systematic errors. Statistical errors are summarized according to the Gaussian error 
propagation [Pap06]. The window confidence intervals εw,i  are summed up squared, weighted 
with the partial derivative with respect to the corresponding attribute. 

 
On the other hand, the calculation of the systematic error is executed as a linear addition. 
However, similar to the Gaussian error propagation the absolute errors are weighted with the 
partial derivative. 

 
During the oil condition monitoring the key performance indicators humidity, viscosity and 
permedity, dependent on pressure and temperature, as well as the particle contamination are 
summed up weighted to estimate in the first step the expired lifetime and thus derive the residual 
oil lifetime. 

 
The equations for the window accuracy aw and confidence εw are thusly derived as follows 

 
where aw,i and εw,i define the former window accuracy and confidence of the attributes humidity, 
viscosity, permidity and contamination, respectively. Figure 14 shows the addition of weighted 
humidity and viscosity. In this example, the attributes provide aligned windows with similar the 
starting point. However, the presented model supports windows shifted against each other or with 
different window sizes, too. 
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Figure 14: Addition of weighted humidity and viscosity 

4.5 Threshold Control 
In many applications for example in controlling systems or predictive maintenance, a data stream 
is monitored to detect exceeded thresholds. Such thresholds may be given as fixed values or 
consist in parameters defined with the help of other sensors included in the system. Thus, not only 
the imprecision of the monitored data stream, but also errors inherent to the threshold have to be 
examined.  
 
If the jumping DQ window is not complete (cw < 1) the evaluation of the value range can not be 
determined with certainty. It is not possible to estimate, whether the missing values exceed or 
remain within the given thresholds. Thus, the degree of incompleteness has to be forwarded to the 
output-stream of the threshold operator. The window completeness remains constant c’w = cw. 
 
During the threshold evaluation based on imprecise data, the accuracy aw and confidence εw both 
of threshold function b and measurement values v have to be taken into account. Due to these 
inherent errors it is not always possible to define a clear threshold exceeding or shortfall. Rather, 
an uncertain interval [b - δ; b + δ] around the threshold b is defined where  

 
to mirror the uncertainty and thus the inaccuracy of the operator output. The threshold operator 
function f: R  {0; 1} where 0 defines the uncritical value range and 1 indicates a threshold 
exceeding, has to be enhanced to identify tuples in the uncertain interval  f’: R  {0; 0:5; 1}1.  
 
Further, the degree of uncertainty in a DQ window is represented by the DQ dimension accuracy. 

 
The window accuracy a’w(k) consists in the average of the value accuracies a’v(j) where k ≤ j ≤ 
k+s-1. The window confidence εw is incorporated into the definition of the uncertain range 
represented by the new window accuracy. Thus, the new window confidence ε’w w is set to 0. 
 
Here, the oil condition monitoring example is picked up again. A threshold to control the residual 
oil lifetime is applied. When the residual lifetime falls under 25% a maintenance notification is 
sent to the responsible service technician. Moreover, an alarm is raised, if the residual oil lifetime 
decreases further below 10%. Figure 15 shows the analysis of the notification threshold. The 
critical range around the threshold function is mirrored in the resulting signal. 
 
 
                                                 
1 The output of the threshold operator is set to 0.5, if the input data lies within the uncertain interval [b - δ; b + δ] 
around the threshold function b. 
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Figure 15: Threshold 
 
The presented stream operators form a base for the processing of data streams. They can be 
combined to build processing environments from simple transfer paths with data reduction to 
complex networks where basic data analysis is executed. 

5 Data Quality Visualization 
The data quality visualization is a point of special interest. The results of data quality processing 
in the quality propagation model have to be appropriately presented to the user to allow for a fast, 
easy and comprehensive data evaluation. In this deliverable, the focus will lie on the visualization 
of different DQ dimensions 
 
The QPM supports the data stream processing while tracking the influences of different process 
steps on the data quality. The model allows for one or more data sinks representing queries on the 
data stream either consumed directly by the target application (for example by showing the 
current system state on a control monitor) or stored in a persistent database for historical analysis. 
In the first case, data quality information is also consumed directly from the stream and visualized 
on the screen. In the second case, the quality information has to be stored in the database and 
represented to the user, when the data is queried later on. In both cases, the data quality has to be 
presented to the user in a understandable, straightforward way to allow for the fast and solid 
evaluation of query results. 
Clearly, the quality has to be visualized in connection with the data described. Thus, the graphical 
representation of the sensor data or derived knowledge, as shown in Figure 16 at the example of a 
state counter, has to be extended to allow for the quality visualization, too. The extensions to 
visualize the data quality are exemplarily shown for a pressure data stream of a hydraulic cylinder.  
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Figure 16: Sensor data visualization in the PDKM 

5.1 Accuracy and Confidence 
The DQ dimensions accuracy and confidence describe absolute errors of the underlying data 
items. Similar to the threshold control, these absolute errors can be used to illustrate the range 
around the measured or computed data items, which include the true value with a given 
confidence possibility (see Section 2.2.3 and 0). Figure 17 shows exemplarily the upper and lower 
bound defining the interval around the measured pressure including the true pressure value.  
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Figure 17: Visualization of accuracy and confidence 

To enable a clear evaluation, zoom mechanisms as already provided for the time-axis can be 
introduced for the y-axis, too.  
 

5.2 Completeness 
The completeness of a data quality window can take values from 0 to 1 representing a 
completeness of 0% up to 100% originally sensed measurement data. Circle or pie charts are 
appropriate diagrams to illustrate such completeness rates. For example, a small pie chart can be 
attached to the measurement graph in timeseries diagram as shown in Figure 18. 
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Figure 18: Visualisation of completeness 
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5.3 Other DQ dimensions 
Section 2.2.1 introduces further data quality dimensions such as timeliness or reputation. Not all 
DQ dimensions listed there can be expressed numerically. For example, reliability or relevancy 
are better formulated verbally. For purpose of clarity, these DQ dimensions have to be structured 
for example in pop-up windows. 

5.4 Quality Classification 
For a better user-support, a quality classification can be introduced defining different levels of 
data quality. Each jumping data quality window is marked with its corresponding data quality 
level. For example, an absolute error of less than 4bar can be estimated as high quality, where the 
user can totally rely on the presented data. Data quality windows providing an absolute error 4bar 
≤  aw + εw ≤  8bar  are defined as of mediocre quality, where the user has to take a closer look to 
unusual measurements and behavoir. Windows with an absolute error beyond 8bar contain data, 
which are no longer useable and have to be excluded from the further processing and data 
analysis. Quality classification cannot only be applied to DQ dimensions representing absolute 
data errors, but to all data quality dimensions.  
 
The classification improves the possibilities for quality visualization. Different colors (e.g. green, 
yellow, red for accuracy and confidance) or saturations (e.g. for completeness) can be applied to 
mark DQ levels of the data stream as shown in Figure 19. Traffic lights are another possibility. 
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Figure 19: Application of quality classification 

The listed visualization modes – especially the graphical ones - support the user during the data 
evaluation. Thus, the fast detection of data with low quality is enabled to diminish faulty business 
decisions. 
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6 Conclusions  
In this deliverable the problem of restricted sensor data quality is discussed. The provision of data 
quality information is an important challenge in smart item environments, where various sensors 
are applied to support business decisions and automation processes. Thus, the discussion of data 
quality and the proposition of approaches for the capturing, propagation, storage and processing 
of data quality information is of high relevance in the context of the PROMISE project.  
 
First, different definitions and classifications of data quality are introduced, comprising various 
data quality dimensions. In the context of sensor data, the deliverable focuses the DQ dimensions 
accuracy, confidence and completeness and gives an approach for their quantitative expression.  
 
Moreover, an efficient way to model data quality in data streams is presented. Jumping data 
quality windows enable the resource saving propagation of data quality information from the 
sensors through the PDKM system up to the target applications.  
 
To meet the resource constraints posed in smart items environments, data processing is essential 
to reduce the transferred data volume. Furthermore, operators retrieved from database querying 
are applied to extract complex knowledge from raw data. The analysis of these operators allowed 
to track their impact on various data quality dimensions. Hence, a comprehensive result 
evaluation is enabled and thus faulty business decisions are decreased. Though we referred to 
accuracy, confidence and completeness as three important DQ dimensions for sensor data streams, 
the proposed DQ metamodel is of generic structure to be easily extended by additional data 
quality dimensions. 
 
Last but not least, different ideas for data quality visualization are presented to enable the 
comprehensive evaluation of data stored in the PDKM to prevent from faulty decisions due to 
imprecise sensor measurements with restricted data quality. 
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