
Copyright © PROMISE Consortium 2004-2008

DELIVERABLE NO DR6.4: Test & Evaluation Document

DATE 20. March 2006

WORK PACKAGE NO WP 6: Fully Functional Device Controller

VERSION NO. 0.1

ELECTRONIC FILE CODE dr6.4.test & evaluation document.doc

CONTRACT NO 507100 PROMISE
A Project of the 6th Framework Programme Information Society
Technologies (IST)

ABSTRACT:

STATUS OF DELIVERABLE

ACTION BY DATE (dd.mm.yyyy)

SUBMITTED (author(s)) Celal Dikici 02.05.2006

VU (WP Leader) Gregor Hackenbroich 15.05.2006

APPROVED (QIM) D. Kiritsis 15.05.2006

Fully Functional Device Controller

Written by:
PROMISE WP R6 Members

Copyright © PROMISE Consortium 2004-2008 Page ii

@

Revision History

Date
(dd.mm.yyyy)

Version Author Comments

10.01.2006 0.1 Celal Dikici Document setup and initial outline structure

15.02.2006 0.2 Celal Dikici Put some content

02.05.2006 0.3 Celal Dikici Finalized Version for Review (QIM)

04.05.2006 0.4 David Potter Expand Scope and Objectives, sharpen Introduction and
initiate Overall Summary. Add table of Abbreviations.

04.05.2006 0.5 Kary Främling Finalised HUT part

08.05.2006 0.6 Jürgen Anke Finalized SAP part

09.05.2006 0.7 Bjorn Forss Finalized Stockway part

12.05.2006 0.9 Celal Dikici Finalized DR6.4 (send to partners for latest comments)

12.05.2006 0.91 Kary Främling Made HUT figure captions shorter according to review
recommendation

15.05.2006 1.0 Celal Dikici Filnalized & ready for approval by QIM

Author(s)’ contact information

Name Organisation E-mail Tel Fax
Gregor Hackenbroich SAP Research gregor.hackenbroich@sap.com +49 351 4457-2311 +49 6227 78-43474
Jürgen Anke SAP Research juergen.anke@sap.com +49 351 4457-2304 +49 6227 78-44661
Celal Dikici BIBA dik@biba.uni-bremen.de +49 421 218-5582 +49 421 218-5610
David Potter INDYON david.potter@indyon.de +44 23 9234 5152 +44 23 9259 2327
Kary Främling HUT Kary.Framling@hut.fi
Bjorn Forss Stockway bjorn.forss@stockway.com

Copyright © PROMISE Consortium 2004-2008 Page 1

@

Table of Contents

ABSTRACT ...4

1 SCOPE AND OBJECTIVES OF THIS DOCUMENT...4

2 INTRODUCTION..4

3 TEST PLANNING ...6

4 SYSTEM TEST PLAN FOR PROMISE R6..8
4.1 SYSTEM TEST PROJECT MANAGEMENT ...9

4.1.1 Define Test Human Factors ...9
4.1.2 Define General Test Schedule..9
4.1.3 Define Evaluation Criteria ..9

4.2 DESIGN / BUILD SYSTEM TEST ..9
4.2.1 Define System / Module Tests ..10
4.2.2 Define Integration Tests...10

4.3 DESIGN / BUILD DETAILED TEST PROCEDURES ...10
4.4 BUILD TEST ENVIRONMENT ..10

4.4.1 Hardware...10
4.4.2 Software ...10
4.4.3 Test Data..10

4.5 EXECUTE SYSTEM TEST ..10
4.6 EVALUATION...10
4.7 SYSTEM UPDATE / ERROR FIXING ...11
4.8 FINAL TEST REPORT..11

5 TEST EXECUTION FOR EACH TESTING PARTNER..12
5.1 TEST CASES FOR MODULES OF SAP ..12

5.1.1 Guidelines and comments for testing at SAP. ..12
5.1.2 Test environment at SAP..12
5.1.3 Functional Test cases for modules of SAP...14

5.1.3.1 Testcase001_SAP_CONTENT_I OK..14
5.1.3.2 Testcase002_SAP_CONTENT_II OK / NOK...15
5.1.3.3 Testcase003_SAP_CONTENT_III OK ...16
5.1.3.4 Testcase004_SAP_CONTENT_IV OK /NOK ..17
5.1.3.5 Testcase005_SAP_METADATA_I OK ..18
5.1.3.6 Testcase006_SAP_METADATA_II NOK..19
5.1.3.7 Testcase007_SAP_METADATA_II NOK..20

5.1.4 Non-functional test cases at SAP ...21
5.1.4.1 Testcase009_SAP_Scalability_Pretest OK / NOK ..21
5.1.4.2 Testcase010_SAP_Scalability_I OK / NOK..22
5.1.4.3 Testcase011_SAP_Scalability_II OK / NOK ..23
5.1.4.4 Testcase012_SAP_Scalability_III OK / NOK ..24

5.1.5 Summary for parts of SAP..24
5.2 FUNCTIONAL TEST CASES FOR MODULES OF HUT...25

5.2.1 Guidelines and comments for testing ...25
5.2.2 Test environment..25
5.2.3 Description of DIALOG software architecture..26
5.2.4 Test data...29
5.2.5 Test cases ...33

5.2.5.1 Testcase001_HUT_BasicMessaging OK..33
5.2.5.2 Testcase002_HUT_TTL_Buffering OK ..34
5.2.5.3 Testcase003_HUT_FieldData OK ...36

5.2.6 Summary for parts of HUT ..36
5.3 FUNCTIONAL TEST CASES FOR MODULES OF STOCKWAY...37

5.3.1 Guidelines and comments for testing ...37
5.3.2 Test Environment - Stockway...37
5.3.3 Test Data..39
5.3.4 Test cases for Modules of Stockway...41

Copyright © PROMISE Consortium 2004-2008 Page 2

@

5.3.4.1 Testcase001_STW_DC_read OK / NOK...42
5.3.4.2 Testcase002_STW_DC_read_callBack OK / NOK...43
5.3.4.3 Testcase003_STW_DC_write OK / NOK ...44
5.3.4.4 Testcase004_STW_DC_retrieveResult OK / NOK ...45
5.3.4.5 Testcase005_STW_DC_cancelRequest OK / NOK...46
5.3.4.6 Testcase006_STW_DC_subsrcibe OK / NOK ..47
5.3.4.7 Testcase007_STW_DC_getInfoItemList OK / NOK...48
5.3.4.8 Testcase008_STW_DC_getInfoItemListExt OK / NOK ...49
5.3.4.9 Testcase009_STW_DC_getDeviceList OK / NOK ...50
5.3.4.10 Testcase010_STW_DC_addEventListener OK / NOK..51
5.3.4.11 Testcase011_STW_DC_createGroup OK / NOK..52
5.3.4.12 Testcase012_STW_DC_deleteGroup OK / NOK..53
5.3.4.13 Testcase013_STW_DC_addObjectToGroup OK / NOK...54
5.3.4.14 Testcase014_STW_DC_removeObject OK / NOK...55
5.3.4.15 Testcase015_STW_DC_listGroups OK / NOK...56
5.3.4.16 Testcase016_STW_DC_listObjects OK / NOK ..57
5.3.4.17 Testcase017_STW_resultCallback_WS OK / NOK ..58
5.3.4.18 Testcase018_STW_WWAI_PEID_dataRequest OK / NOK ...59

5.3.5 Summary for parts of HUT ..59
6 OVERALL SUMMARY..60

APPENDIX A – TEST CASE FORM TEMPLATE...61
TESTCASE001_FNCT_NAME OK / NOK ...61

APPENDIX B – FUNCTIONAL TEST CASES FOR MODULES OF SAP (UPDATED)62
B.1 TESTCASE111TESTCASE001_CONTENT_I OK...62
B.2 TESTCASE111TESTCA2_CONTENT_II OK...63
B.3 TESTCASE113TESTCASE001_CONTENT_III OK..64
B.4 TESTCASE114TESTCASE001_CONTENT_IV OK..65
B.5 TESTCASE115TESTCASE001_CONTENT_V OK...66
B.6 TESTCASE116TESTCASE001_CONTENT_VI OK /NOK ...67
B.7 TESTCASE117TESTCASE001_CONTENT_VII NOK..68
B.8 TESTCASE111TESTCA8_CONTENT_VIII OK...69
B.9 TESTCASE121TESTCASE001_METADATA_I OK...70
B.10 TESTCASE122TESTCASE001_METADATA_II OK/NOK..71
B.11 TESTCASE123TESTCASE001_METADATA_III OK ..72
B.12 TESTCASE131TESTCASE001_MISCELLANEOUS_I NOK ...73

NON-FUNCTIONAL TEST CASES ...74
B.13 TESTCASE201TESTCASE001_SCALABILITY_PRETEST...74
B.14 TESTCASE202TESTCASE001_SCALABILITY_I ...75
B.15 TESTCASE203TESTCASE001_SCALABILITY_II..76
B.16 TESTCASE204TESTCASE001_SCALABILITY_III...77

Copyright © PROMISE Consortium 2004-2008 Page 3

@

Abbreviations:

DC Device Controller component of the PROMISE Middleware
DHL Device Handling Layer
GUI Graphical User Interface
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IOCI Inter-organizational Communication Infrastructure
JVM Java Virtual Machine
PEID Product Embedded Information Device
P2P Peer to Peer
RHL Request Handling Layer
RMI Remote Method Invocation
SOAP Simple Object Access Protocol
TTL Time to Live
UPnP Universal Plug and Play (UPnP™)
URI Uniform Resource Identifier
URL Uniform Resource Locator
WP PROMISE Project Work Package
WWAI World Wide Article Information protocol

Copyright © PROMISE Consortium 2004-2008 Page 4

@

Abstract
In this deliverable we present the current state of our testing & evaluation activities for the
PROMISE middleware. We present a comprehensive testing strategy as theoretical foundation,
followed by the definition of test cases and their results. Identified problems will be subsequently
addressed to improve the quality of our implementation.

1 Scope and Objectives of this Document
The purpose of this document is to describe the approach used for testing the results of tasks
TR6.2 and TR6.3 which are described in the deliverables DR6.2 and DR6.3. This document is the
main deliverable of task TR6.4.

The system test intends to prove that the functionality developed by the technical partners is as
specified. This will be achieved by defining, reviewing and executing test cases. The results will
be compared against pre-specified expected results to evaluate if the test was successful.

There are a number of differences between what has been specified in the task definitions of
TR6.2 through TR6.4 and what has been developed and tested thus far. It is important to explain
this situation and how these gaps will be addressed in future tasks in WP R6.

One, there is still work in progress to define the architecture for plug-in modules (buffers,
aggregators and filters) foreseen in TR6.3; we propose to complete this by M24 in conjunction
with task TR6.5. Consequently there is no implementation of these plug-in modules available for
testing at this time.

Two, task TR6.4 envisaged “Deployment and test in demonstrators”. This has not been possible
since to date there has been no actual demonstrator development. Therefore this test objective
must be deferred until later in line with Application Cluster plans for demonstrator development.

Three, task TR6.4 also envisaged “Performance evaluation and Usability study”. Although the
tests reported in this document contain an element of performance testing, it has not been feasible
to carry out any usability tests at this stage.

On the other hand, the reported tests do include an element of testing of the emerging IOCI
middleware component which redresses the balance to some extent.

The tests described in this deliverable represent Unit Testing. At present there is no defined plan
for Integration Testing, but this can be addressed in the future plans for overall testing.

The gaps in architecture, implementation and testing that have been described above will be
addressed together with the on-going effort planned for tasks TR6.5 through TR6.7. Since the
latter task definitions do not currently include any provision for testing, here will be an
opportunity to consolidate the plan.

In summary, the testing reported in this deliverable provides a sound basis for the unit testing and
eventually integration testing of the PROMISE Middleware.

2 Introduction
It is well known that in any typical software project nearly 50% of time and over 50% of costs are
consumed by testing. It is tempting to assume that because testing is a common requirement that
an easy to use template exists that needs only to be filled with the test results. In reality testing is
always a challenge. There is no one-fits-all solution; every software project needs a testing
process with its own specific test definitions.

Copyright © PROMISE Consortium 2004-2008 Page 5

@

Even though the testing can be discussed and considered from various technical points of view,
the view from economic and human psychology criteria greater impact. Sometimes the capability
and the attitude towards testing has a greater impact on the success of the testing than simple
technical points.

The first step is to understand what is meant by the term “testing”. This can be interpreted like
“testing is a process that shall show that there are no errors” or “testing is a process that increases
the trust in the software” but these definitions have a negative feel to them.

Let us consider that testing, which is a time and cost consuming process, should increase the value
of the software, where “value” means quality and/or reliability. Increasing the value involves
finding and eliminating errors. Therefore an application should not be tested to show that it works
correctly, but we should begin with the assumption that the implementation contains errors (which
is a valid assumption for the majority of all software).

A more appropriate definition is “testing is a process to execute an application to find errors”.
Assuming the opposite may lead to a selection of test criteria which reduce the probability of
finding errors.

The current situation in WP R6 is that technology Partners SAP and HUT have begun to develop
their solution based on the specification. A PROMISE total system does not yet exist so tests
investigating the interdependencies and interaction with other parts of PROMISE solution can not
be made at this stage.

Taking both the points in the introduction and the current situation in WP R6 into account, the
best method for testing the implementation is the method called Black-Box testing. Black-Box
testing is also called data driven testing or Input/Output-testing. The tester treats the application as
a Black box which means, the tester is not interested in the internal behaviour or structure of the
program. His objective is to find the circumstances where the application works against the
interface specification and where it does not. The test values are derived from the specification
without knowledge of the internal implementation.

To find all errors with this method it is necessary that a complete input test must be executed.
Complete means to give infinite test case values with possible and not possible values. (e.g.
specification: integer given value real). This shows clearly that a complete input test is not
possible. That results in two conclusions:

1. A program cannot be tested in a way where the freedom from error cannot be guaranteed
2. Fundamental point of view is the economics of testing

Therefore the intention should be to maximize the effect of testing. This requires analysing the
implementation and suggesting reasonable assumptions about the programming. This approach is
taken from White Box testing. In White Box testing an investigation on the intended structure of
the program will be made and the tester defines test data with knowledge of the implementation in
mind.

Another important point is that a complete PROMISE system does not yet exist (as mentioned
above). This means that testing the interrelations and interactions with other PROMISE
components is not yet possible. Where a test of the whole System/Application is not possible,
each component can be tested. This is the so called Module test (or Unit testing).

It can be assumed that in WP R6 the testing will be executed in a way that

Copyright © PROMISE Consortium 2004-2008 Page 6

@

1. the modules are taken as standalone,
2. the specification will be used for creating test cases, while
3. keeping in mind the internal structure of the implementation for boundaries for test cases.

3 Test Planning
The test plan prescribes the scope, approach, resources, and schedule of the testing activities. It
identifies the items to be tested, the features to be tested, the testing tasks to be performed and the
personnel responsible for each task.
Previous deliverables in WP R6 are used as a base. The “IEEE Std. 829-1998 IEEE Standard for
Software Test Documentation” as additional source is also considered.

Approach
The proposed common approach for system testing process is as follows:

Figure 1: Testing process1

a. Organise Project involves creating a System Test Plan, Schedule & Test Approach, and

requesting/assigning resources.

b. Design/Build System Test involves identifying Test Cycles, Test Cases, Entrance & Exit
Criteria, Expected Results, etc. In general, test conditions/expected results will be
identified by the Test Team. The Test Team will then identify Test Cases and the Data
required. The Test data are derived from the specification documents DR6.2 and DR6.3.

The main test types can be summarised as follows. All system test plans and conditions
will be developed from the functional specification and the requirements definition.

c. Design/Build Test Procedures includes setting up procedures such as Error Management

systems and Status reporting.

d. Build Test Environment includes requesting/building hardware, software and data set-
ups.

1 Adapted from Sample Software system test plan for a new application: http://members.tripod.com/~bazman/

Copyright © PROMISE Consortium 2004-2008 Page 7

@

e. Execute System Test

The main thrust of the approach is to intensively test the modules thus raising
approximately 80% of errors in this period. When all errors (which potentially impact
overall processing) are fixed, an additional set of test cases can processed to ensure the
system works in an integrated manner. This will be the final test of the system as a single
application which will not be handled in R6. An integration test will be required at some
stage in the whole project.

f. Evaluate and Fix Errors

g. Final Test Report summarizes the overall results achieved within these testing tasks.

Copyright © PROMISE Consortium 2004-2008 Page 8

@

4 System Test plan for PROMISE R6
This section is based on the former section, in which a generic Testing and Test Types are
presented. The goal of this section is to tailor the generic description and make it suitable for the
test work package of PROMISE project.
In the previous deliverable DR 6.3 we mentioned a possible testing process as seen in Figure 1
again but revised.

1. System Test
Project

Management

1.1 Define Test Human Factors
- Test Team (Testing)
- Develop. Team (Error Fixing)
- Middle Box Team (Test Control)
- Business Team (Approval)

1.2 Define General Test
Schedule (Gantt Chart)

1.3 Define Evaluation
Criteria

1.4 Test Control
- Define Reporting Procedure
- Define Error Fixing Procedure

2. Design / Build System Test

3. Design / Build
Detailed Test
Procedures (for each
functional module)

4. Build Test
Environment

2.1 Define
System /
Module Tests

2.2 Define
Integration
Tests

2.3 Define
other tests (if
necessary)

5. Execute System Test

4.1 Request/
Build
Hardware

4.2 Request/
Build Software

4.3 Setup Test
Data

6. Evaluation

7. System Update (Error
Fixing)

Accept?No

8. Final Test Report

Yes

Figure 2: Testing Process (modified from DR 6.3)

Copyright © PROMISE Consortium 2004-2008 Page 9

@

4.1 System Test Project Management

4.1.1 Define Test Human Factors

• Test Team - responsible for testing the system modules according to the predefined tabular
Test Forms (see Appendix A) and filling the test forms.
(SAP, HUT, Stockway)

• Development Team - responsible for fixing errors and updating system (and then
delivering the next release system for further test).
(SAP, HUT, Stockway)

• Middle Box Team – made up by Test Team Leaders and Development Team Leaders,
responsible for co-ordinating the work between Test Team and Development Team. Their
main tasks include:

o Evaluate test results based on the Test Forms completed by Test Team;
o Analyse, categorise and prioritise the errors (bugs);
o Make mid-term Test Report;
o Evaluate bug fix results based on the Test Forms
o Make mid-term Bug fix Report;
o Control and monitor the work of both Test Team and Development Team.

(BIBA, Indyon)
• Business Team – test and evaluate the system from their business view, and finally

approve.
(BIBA, Indyon)

4.1.2 Define General Test Schedule
This section contains a table manage the whole user test process, reflecting all of the system
function modules which are defined in Design Specification Documents (DR 6.2 & DR 6.3).

Task Due date: April 2006,
Build Test Environment 11.
Define test cases 12.
Generating test data 20.
Executing tests 27.
Review / Evaluation Concurrently 13. – 27.
Error Fixing Concurrently, 13. – 28.
Final Report 26. – 30.

4.1.3 Define Evaluation Criteria
The tests are approved when the passed the testing criteria, namely if the real result is the same as
expected.

4.2 Design / Build System Test
This step involves identifying tabular Test Forms for each functional module, which include Test
Cases, Entrance & Exit Criteria, Expected Results, etc. Required Test Data should also be defined
in this phase. (see Appendix A).

Copyright © PROMISE Consortium 2004-2008 Page 10

@

4.2.1 Define System / Module Tests
This is the process of testing individual code modules before they are integrated with other
modules. The goal of module testing is to identify and fix as many errors as possible before
modules are combined into larger software units such as programs, classes, and subsystems.

4.2.2 Define Integration Tests
This test proves that all areas of the system interface with each other correctly and that there are
no gaps in the data flow. Final Integration Test proves that system works as integrated unit when
all the fixes are complete. These tests can not be handled within the actual phase of the PROMISE
project due a missing of a whole PROMISE software product. Therefore after all PROMISE
modules of all work packages are implemented a new task for overall PROMISE Testing has to be
performed.

4.3 Design / Build Detailed Test Procedures
Design/build detailed test procedures need to be carried out for each functional module. It is based
on the test forms defined in the Appendix A – Test case form00 below reflecting the test
procedures for each functional module.

4.4 Build Test Environment
The test environment for each Functional Module consists of identifying necessary hardware,
software and test data to be used for executing tests, i.e. applying the test forms as described
above.

4.4.1 Hardware
The hardware needs to be tailored to meet the requirements of the software systems applied.

Server Hardware
The PC to be used as server should fulfil the requirements listed in the specific section.

Client Hardware
The PC to be used as client should fulfil the requirements listed in the specific section.

4.4.2 Software
The software necessary to run the PROMISE Modules is given here.

4.4.3 Test Data
The test data to be used can be derived from the specification.

4.5 Execute System Test
Based on the outputs of Sections above the tests will be executed. The corresponding Test Forms
are to be completed.

4.6 Evaluation
According to the output of Section 4.5 – completed Test Forms, activate the Reporting Procedure
and Error Fixing Procedure. Figure 3 shows a general approach on testing and evaluation.

Copyright © PROMISE Consortium 2004-2008 Page 11

@

R
6

S
of

tw
ar

e

Figure 3: General approach of testing and evaluation

4.7 System Update / Error Fixing
The reported errors are communicated to the developer team. The developer team has the
responsibility to fix the reported error and inform the evaluation team. After fixing the problem
the components affected by the problem are to be re-tested.

4.8 Final Test Report
The final test report will be initiated when all the test are finished and accepted by the approval
team. Synchronous this will normally flow into the pilot release of the software, which can now
be deployed to a pilot system. In PROMISE a deployment is not planned yet. The implemented
modules will be used in the demonstrators developed in the Application clusters (A1 – A11). This
deliverable will then be reconsidered for additional tests and evaluation of the whole PROMISE
solution.

Copyright © PROMISE Consortium 2004-2008 Page 12

@

5 Test execution for each testing Partner

5.1 Test cases for Modules of SAP
The aim of this section is to verify the correct implementation of the WP R6 modules at SAP
based on the following test cases. The test cases are based on the specification made in DR 6.2
and DR 6.3.

5.1.1 Guidelines and comments for testing at SAP.

System / Application to be tested PROMISE R6 Device Controller Implementation of

SAP.
System version N/A

Test risks Changes on implementation or test system during the

test phase
Pre-conditions Internal pre-test are made

Components and functions / units which
are not tested

Service Repository

Components and functions / units which
are tested

Existing implementation at the test date installed on
internal systems at SAP, specifically the Request
Handling Layer, and the Device Handling Layer.

Test data (Test values) Test data is derived from the specification
Testing user
Remarks Without errors, the test case will marked OK

With errors, the testcase marked with NOK (also in the
section title to see easily with one view which tests are
passed or not.

5.1.2 Test environment at SAP

Hardware
The hardware needs to be tailored to meet the requirements of the software systems applied.

Server Hardware
The PC to be used as server should fulfill the following requirements:

RHL
Pentium 4, 3.2GHz, 2GB HD, 2GB RAM

DHL
40MB HD, 64MB RAM

Software
The software necessary to run the PROMISE Modules is given by the following table:

Copyright © PROMISE Consortium 2004-2008 Page 13

@

RHL

Operating System Windows X (any Windows version)
Server SAP Web AS (J2EE 1.3 compliant

application server)

DHL

Operating System Windows X (any Windows version)
Service Platform Oscar (OSGi Container)

DB Derby

Copyright © PROMISE Consortium 2004-2008 Page 14

@

5.1.3 Functional Test cases for modules of SAP

5.1.3.1 Testcase001_SAP_CONTENT_I OK
Positive test / Module test
Core function: READ
Pre-requisites: none
 Test ID 4.1
 ### Test activity ###
 1.1 Read infoItemY on deviceX where deviceX is connected and infoItemY exists on deviceX
 1.2 Read infoItemY on deviceX where deviceX is connected and infoItemY doesn’t exist on deviceX (i.e. not checked

against metadata)
 1.3 Read infoItemY on deviceX where deviceX is not connected
 ### Expected result ###
 1.1 result String with current value of infoItemY on deviceX
 1.2 result String with error message that infoItemY does not exist on deviceX
 1.3 result String with requestId to retrieve result later
 ### Realised Result (Textual) ###
 1.1 result String with current value of infoItemY on deviceX
 1.2 result String with error message that Read can’t be invoked on infoItemY on deviceX
 1.3 result String with requestId to retrieve result later
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: 4: Erroneous/imprecise error message
 1.3 OK
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 4 (not critical)
 Remarks For 1.2 test requests against metadata information (i.e. correct targeted/infoItemId pairs) and only

accept valid requests
 Validation Succeeded
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 12.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 15

@

5.1.3.2 Testcase002_SAP_CONTENT_II OK / NOK

Positive test / Module test
Core function: WRITE
Pre-requisites: none
 Test ID 4.2
 ### Test activity ###
 1.1 write infoItemY on deviceX where deviceX is connected and infoItemY exists on deviceX
 1.2 write infoItemY on deviceX where deviceX is connected and infoItemY doesn’t exist on deviceX
 1.3 write infoItemY on deviceX where deviceX is not connected
 ### Expected result ###
 1.1 result String confirming new value of infoItemY on deviceX
 1.2 result String with error message that infoItemY does not exist on deviceX
 1.3 result String with requestId to retrieve result later
 ### Realised Result (Textual) ###
 1.1 result String confirming new value of infoItemY on deviceX
 1.2 new infoItem key is added on device, and value is written
 1.3 result String with requestId to retrieve result later
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: 2-3 new infoItemId created on write
 1.3 OK
 ### Overall assessment of the Test ###
 Overall Test Result NOK
 Error Class 3 (strong)
 Remarks TBD in DHL: Return error message if infoItem is not available on device
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 12.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 16

@

5.1.3.3 Testcase003_SAP_CONTENT_III OK

Positive test / Module test
Core function: PROCESS REQUESTS
Pre-requisites: devi ceX not connected, requests are buffered for deviceX
 Test ID 4.3
 ### Test activity ###
 1.1 Connect deviceX
 1.2 RHL: retrieve(requestId)
 1.3
 ### Expected result ###
 1.1 Buffered requests for deviceX are sent to DHL and processed
 1.2 Resultstring for request with requestId
 1.3
 ### Realised Result (Textual) ###
 1.1 Requests are processed at DHL, results are sent to RHL
 1.2 Resultstring for request with requestId
 1.3
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK
 1.3
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class
 Remarks
 Validation Succeeded
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 12.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 17

@

5.1.3.4 Testcase004_SAP_CONTENT_IV OK /NOK

Positive test / Module test
Core function: RETRIEVE RESULTS
Pre-requisites: none
 Test ID 4.4.
 ### Test activity ###
 1.1 Retrieve result for request to deviceX where deviceX has connected after request has been issued
 1.2 Retrieve result for request to deviceX where deviceX has not connected after request has been issued
 1.3 Retrieve result for invalid requestId (i.e. requestId that has not been assigned to a request)
 ### Expected result ###
 1.1 Result String with result or error message if request couldn’t be processed
 1.2 Message stating that request has not yet been processed
 1.3 Message informing about invalid requestId
 ### Realised Result (Textual) ###
 1.1 Result String with result or error message if request couldn’t be processed
 1.2 Message stating that request has not yet been processed
 1.3 Message stating that request has not yet been processed
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK
 1.3 NOK Error Class 4: not distinguishing between pending requests and non-existing requests
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 4 (not critical)
 Remarks For 1.3 Check against buffered requests in order to inform about invalid requestIds
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 18.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 18

@

5.1.3.5 Testcase005_SAP_METADATA_I OK

Positive test / Module test
Core function: REGISTRATION
Pre-requisites: none
 Test ID 4.5.
 ### Test activity ###
 1.1 Start a device that has already been registered with the Device Manager
 1.2 Start a device that has already been registered with the Device Manager and allow to connect
 1.3 Start a device that has already been registered with the Device Manager and refuse connection
 ### Expected result ###
 1.1 Device gets connected if connectable==true in registry
 1.2 Device gets connected; registry entry with connectable==true; metadata (available infoItems) is set
 1.3 Connection refused; registry entry with connectable==false;
 ### Realised Result (Textual) ###
 1.1 Device gets connected if connectable==true in registry;
 1.2 Device gets connected; registry entry with connectable==true; metadata (available infoItems) is set
 1.3 Connection refused; registry entry with connectable==false;
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK
 1.3 OK
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class
 Remarks
 Validation Succeeded
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 12.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 19

@

5.1.3.6 Testcase006_SAP_METADATA_II NOK

Positive test / Module test
Core function: METADATA UPDATE
Pre-requisites: none
 Test ID 4.6
 ### Test activity ###
 1.1 Add an infoItem to a device
 1.2
 1.3
 ### Expected result ###
 1.1 InfoItem item becomes available on device and infoItemId is added to metadata storage
 1.2
 1.3
 ### Realised Result (Textual) ###
 1.1 InfoItem item becomes available on device
 1.2
 1.3
 ### Realised Result ###
 ok? Error description
 1.1 NOK New Metadata information is not yet propagated to RHL
 1.2
 1.3
 ### Overall assessment of the Test ###
 Overall Test Result NOK
 Error Class 2 (strong)
 Remarks Propagation of metadata update to RHL can not be done neatly with the current DHL

implementation, but a provisional solution will be relatively easy.
 Validation Failed
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 18.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 20

@

5.1.3.7 Testcase007_SAP_METADATA_II NOK

Positive test / Module test
Core function: METADATA RETRIEVAL
Pre-requisites: none
 Test ID 4.7
 ### Test activity ###
 1.1 Get list of devices
 1.2 Get list of infoItems for a deviceX
 1.3
 ### Expected result ###
 1.1 List of devices registered with device registry
 1.2 List of infoItems available on deviceX
 1.3
 ### Realised Result (Textual) ###
 1.1 List of devices registered with device registry
 1.2 List of infoItems available on deviceX
 1.3
 ### Realised Result ###
 ok? Error description
 1.1 OK Error Class:
 1.2 OK
 1.3
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class
 Remarks
 Validation Succeeded
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 18.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 21

@

5.1.4 Non-functional test cases at SAP

5.1.4.1 Testcase009_SAP_Scalability_Pretest OK / NOK

Positive test / Module test
Core function: Scalability Pretest
Pre-requisites: none
 Test ID 5.0
 ### Test activity ###
 1.1 Raise quantity of UPnP devices. Find maximum number of detected devices.
 1.2
 1.3
 ### Expected result ###
 1.1 -
 1.2 -
 1.3 -
 ### Realised Result (Textual) ###
 1.1 TBD
 1.2 -
 1.3 -
 ### Realised Result ###
 ok? Error description
 1.1
 1.2 -
 1.3 -
 ### Overall assessment of the Test ###
 Overall Test Result
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks
 Validation Succeeded / Succeeded with limitation / Not succeeded
 ### Organisational Data ###
 Tester Bernhard Wolf
 Test date 18.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 22

@

5.1.4.2 Testcase010_SAP_Scalability_I OK / NOK

Positive test / Module test
Core function: Scalability I
Pre-requisites: none
 Test ID 5.1
 ### Test activity ###
 1.1 Create 10 UPnP devices. Send one request to every device. Log performance.
 1.2 Create 100 UPnP devices. Send one request to every device. Log performance.
 1.3 Raise number of UPnP devices. Send one request to every device. Log performance. Find limitation.
 ### Expected result ###
 1.1 -
 1.2 -
 1.3 -
 ### Realised Result (Textual) ###
 1.1 TBD
 1.2 TBD
 1.3 TBD
 ### Realised Result ###
 ok? Error description
 1.1
 1.2
 1.3
 ### Overall assessment of the Test ###
 Overall Test Result
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks
 Validation Succeeded / Succeeded with limitation / Not succeeded
 ### Organisational Data ###
 Tester Bernhard Wolf
 Test date 18.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 23

@

5.1.4.3 Testcase011_SAP_Scalability_II OK / NOK

Positive test / Module test
Core function: Scalability II
Pre-requisites: none
 Test ID 5.2
 ### Test activity ###
 1.1 Create 10 requests for one UPnP device. Log performance.
 1.2 Create 100 requests for one UPnP device. Log performance.
 1.3 Create 1000 requests for one UPnP device. Log performance.
 ### Expected result ###
 1.1 -
 1.2 -
 1.3 -
 ### Realised Result (Textual) ###
 1.1 TBD
 1.2 TBD
 1.3 TBD
 ### Realised Result ###
 ok? Error description
 1.1
 1.2
 1.3
 ### Overall assessment of the Test ###
 Overall Test Result
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks
 Validation Succeeded / Succeeded with limitation / Not succeeded
 ### Organisational Data ###
 Tester Bernhard Wolf
 Test date 18.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 24

@

5.1.4.4 Testcase012_SAP_Scalability_III OK / NOK

Positive test / Module test
Core function: Scalability III
Pre-requisites: none
 Test ID 5.3
 ### Test activity ###
 1.1 Create multiple requests for multiple UPnP devices. Log performance.
 1.2 Variation possible.
 1.3
 ### Expected result ###
 1.1 -
 1.2 -
 1.3 -
 ### Realised Result (Textual) ###
 1.1 TBD
 1.2 -
 1.3 -
 ### Realised Result ###
 ok? Error description
 1.1
 1.2 -
 1.3 -
 ### Overall assessment of the Test ###
 Overall Test Result
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks
 Validation Succeeded / Succeeded with limitation / Not succeeded
 ### Organisational Data ###
 Tester Bernhard Wolf
 Test date 18.04.2006

5.1.5 Summary for parts of SAP
With the tests listed above (and their update in “Appendix B – Functional Test cases for modules
of SAP (Updated)”) we have evaluated the conformance of the developed components and their
integration with the specification. A number of errors and missing features have been identified,
part of which could already be fixed before a second test was run. As indicated in the test
document, there is still a number of shortcomings which must be corrected, and exception
handling must be improved. Also, the subscription feature still lacks a valid implementation,
which will be provided in the next weeks. As a next step a set of scalability tests will be carried
out to evaluate the components' performance depending on the quantity of devices and requests to
be handled.

Copyright © PROMISE Consortium 2004-2008 Page 25

@

5.2 Functional Test cases for modules of HUT
The aim of this section is to verify the correct implementation of the WP R6 modules based on the
following test cases. The test cases are based on the interface specification made in DR 6.3,
section 5. The UPnP-based interfaces defined in section 4 are not included in the HUT
implementation.

5.2.1 Guidelines and comments for testing

System / Application to be tested PROMISE R6 Device Controller Implementation of

HUT.
System version N/A

Test risks Changes on implementation or test system during the

test phase
Pre-conditions Internal pre-tests are made

Components and functions / units which
are not tested

Components and functions / units which
are tested

Existing implementation at the test date.

Test data (Test values) Test data is derived from the specification
Testing user Kary Främling, Lorenzo Marra
Remarks Without errors, the test case will marked OK

With errors, the testcase marked with NOK (also in the
section title to see easily with one view which tests
were successful and which ones were not.

5.2.2 Test environment
This section explains the requirements for the test environment. The first subsection explains
hardware-related requirements and the second explains software-related requirements. In the third
subsection, the DIALOG system developed at HUT is described, together with a description of
how it has been used as a base for implementing the Web Service interface defined in PROMISE
DR6.3, section 5. The fourth subsection describes what tests are performed, what test data has
been used and how the test environment has been implemented.

The purpose of this section is to describe the test environment and the tests performed in a way
that makes it possible to repeat and verify the tests for any third-party organisation.

Hardware
The hardware requirements are:

1. Availability of Java Virtual Machine (JVM) for the hardware platform used and
2. IP network connectivity.

Server Hardware
Because the implemented PROMISE interface is a Web Service interface, it puts some
requirements on the available memory and hard disk space. In addition to the space needed to run

Copyright © PROMISE Consortium 2004-2008 Page 26

@

a Java Servlet container (e.g. Apache Tomcat), there also needs to be space available for the Web
Service libraries (e.g. about 15 Mbytes for the Apache Axis libraries).

Client Hardware
For the moment there is no need to run a Java Servlet container on the “client” side. However, the
Web Service libraries are needed also on the client side for performing necessary Java to Web
Service conversions.

Software
The software necessary to run the PROMISE Modules is given by the following table:

Operating System Any operating system that supports Java Virtual Machines
Java Virtual Machine Version 1.5.0 has been used in the tests. It is recommended to

use this version or more recent ones, even though older Java
versions might also be possible.

Java Servlet Container Jakarta Tomcat version 5.5 from the Apache Software
Foundation has been used in the tests reported here. In
principle, any compatible Java Servlet Container should be
usable.

Web Service (SOAP,
WSDL)
implementation

The Axis implementation, version 1.3, has been used in the
tests reported here. In principle, any Web Service
implementation could be used, except for one class that is
Axis-specific and is used for retrieving the installation
directory of the Web Service.

Application software The DIALOG software plus corresponding implementation of
the Web Service interface defined in PROMISE DR6.3,
section 5.

Database No database is needed for the tests performed here. On a more
general level, any JDBC-compliant database can be used,
even though only some of the most common ones are tested
and explicitly supported.

5.2.3 Description of DIALOG software architecture
The background and the main design principles of the DIALOG architecture are described in
many scientific articles and various PROMISE deliverables, e.g. section 6.2 of DR6.3. From the
communication point of view, DIALOG is essentially a peer-to-peer (P2P) architecture. As for
other P2P systems, all DIALOG nodes are equal, i.e. they can both send and receive messages.
Therefore any node in the network can for instance both ask for information and provide
information for the items that it has information about, as shown in Figure 4. Other major design
principles adopted from P2P are low installation overhead, equality between parties and
scalability.

Copyright © PROMISE Consortium 2004-2008 Page 27

@

Figure 4. P2P communication between DIALOG nodes. Any node can both send and receive
messages. JDBC: Java Database Connectivity.

The main components or objects of a DIALOG node and their functionality are illustrated in
Figure 5. The only external function (or method) of a DIALOG node is the “receive” function that
takes a message object of type DialogMessage as its only parameter and returns an object of the
same type. Three “receiver” types that contain this function exist for the moment, which support
different messaging protocols, i.e. SOAP (SoapReceiveImpl), RMI (RMIReceiveImpl) and HTML
<FORM> messaging (DialogHTMLProductAgent) used by standard CGI- or servlet-type web
applications. Which messaging protocol is used depends on how the DIALOG node is started.
Any number of messaging protocols can be running concurrently as long as they can be separated
by port number, path names or other standard URL components.

The “ReceiveImpl” object is created at startup. It also has a “receive” function that is called by the
“receiver” object when a message is received. If the received message is synchronous (i.e. time-
to-live, TTL, is zero), then the message is passed to all “agent” objects that have registered for
receiving messages indicated by the “type” field of the message. If the received message is
asynchronous, it is buffered in the “receive” buffer and given to the appropriate agent(s) by a
thread. Agents can also be described by the notion of “plug-in”, i.e. a software component that can
be used for extending the functionality of the “core” system at any time. Agent objects are
therefore a way of implementing the “plug-in” functionality mentioned in the R6 section of the
PROMISE Description of Work. For simplicity, we will use the “agent” concept for the rest of
this text.

Every agent has a reference to the “SendImpl” object, whose function “send” is called with a
DialogMessage object as parameter. The “send” method also returns a DialogMessage object that
either contains the requested information (e.g. for a successful synchronous “read” request) or
some other status information about the sending of the message. If the message to send is
synchronous, it is sent directly to the appropriate “sender” object for delivery and the result is
returned if successful. If the message to send is asynchronous, it is buffered and sent by a sending

DIALOG
node

Data
base

DIALOG
node

DIALOG
node

Data
base

Data
base

DIALOG
message

DIALOG
message JDBC

JDBC

JDBC

Copyright © PROMISE Consortium 2004-2008 Page 28

@

thread using the appropriate “sender” object. The “sender” object to use is determined either from
the type of the message (configurable) or the protocol part of the destination URI/URL.

Figure 5. Illustration as UML object diagram of main internal components of a DIALOG
node and their functionality.

The implementation of the PROMISE DR6.3 interface has been done by adding a new “receiver”
type called “PromiseDCinterface” that converts incoming messages into appropriate
DialogMessage objects and forwards them to the “ReceiveImpl” object, where the actual
treatment is taken care of by the appropriate agent depending on the message type. A
corresponding “sender” called “PromiseDCSender” takes care of sending messages using the
PROMISE DR6.3 interface when the message type indicates it (as configured in the file
“sendermappings.txt”).

These receiver and sender mappings make it possible to use the basic DIALOG messaging,
buffering and other functions but they do no processing of the information. All processing (or
“business logic”) is performed by the agent objects. By default, agents are initialized with
references to the DServer, ReceiveImpl and SendImpl objects and a reference to a JDBC database
object if a database is configured. This allows them to easily implement basic functionality, but it
does not prevent them from implementing any kind of advanced functionality, such as accessing
the file system, using own databases or calling web applications.

A DIALOG agent consists of one or a set of Java classes. In practice, most agents consist of one
single class that is a subclass of the abstract class “fi.hut.dialog.agents.DialogAgent”. Agent
classes usually implement both the server-side logic and a GUI that can be used in “client”

Copyright © PROMISE Consortium 2004-2008 Page 29

@

applications. This approach has the advantage of combining all the application-specific processing
into one single component (i.e. the DIALOG agent) that is independent of the rest of the system. It
is also possible to separate “client” and “server” logic if that is desired but the size of a typical
DIALOG agent is only 10-20 kbytes (this is the case for the test agents used here) so a separation
is usually not interesting in practice. The “client” functionality could also be something different
than a GUI, e.g. a component that is UPnP-enabled and implements the CorePAC interface
defined in PROMISE DR4.2.

5.2.4 Test data
Three different types of tests are conducted here:

1. Basic messaging: messages with zero TTL are sent by a “test GUI” to the Web Service,
which transforms the function parameters into a DIALOG message that is forwarded to the
appropriate agent. The agent responds by a new DialogMessage object that is transformed
into a PromiseMWresult object and given back to the caller as a return value.

2. Time-to-live functionality and message buffering: messages are sent from “test GUI”
with zero, greater than zero and -1 TTL values and check they are buffered for the
requested duration.

3. Inter-organisational communication with “real-life” agent implementation: developed
for and executed with MTS (for PROMISE demonstrator A7). The agent functionality
consists of a GUI part (installed at MTS) that allows the user to select a text file to transfer
and send it to the receiving Web Service (installed at HUT) through the “write” function.

For the “basic messaging” tests, the following functions in section 5.1 “Request Handling” of
DR6.3 have been implemented for the moment:

• “read”
• “write”
• “retrieveResult”
• “cancelRequest”
• “subscribe”

As there is no “business logic” associated with these functions, they return a PromiseMWresult
object with a “result” value that is a text string containing the parameters and parameter values of
the call. This is sufficient for test purposes because it shows that the message has reached the
receiving agent, been processed by it and that an appropriate return value has been returned.
Figure 6 shows a screenshot of the GUI developed for “basic messaging” and “time-to-live” tests.
In Figure 6, “http://localhost:8080/promisemw/services/promise” is the URL where the Web
Service is installed, in this case on the local computer, i.e. same computer as the “client”
application. The “Result of request” field shows the return value from a “read” operation. The
field “Request ID” shows the request ID returned, which for this test is set to the constant value
“Some ID”. Finally, the “Status” area at the bottom is for showing messages that are in the “send”
buffer and that have not been sent yet. In TTL testing, this status area is also used for verifying the
correct functionality.

Copyright © PROMISE Consortium 2004-2008 Page 30

@

Figure 6. GUI developed for “basic messaging” and “time-to-live” tests.

The functions defined in section 5.2 “Metadata” and 5.3 “Group Management” of DR6.3 exist in
the WSDL interface implementation but no functionality has been implemented for them yet.
Therefore only a messaging-level test is possible for the moment. Still, successful results from the
tests performed on the functions defined in section 5.1 “Request Handling” of DR6.3 is sufficient
to show that the basic messaging-level is operational also for the functions in section 5.2 because
all functions are implemented in a similar way.

For the moment, the value of the “Target ID” parameter is used as the “message type” in the
DIALOG implementation. DIALOG agents can register to listen for different types of messages.
The test agent for cases one and two registers for listening to messages of type “PromiseDC”,
which is an arbitrarily decided text string. It is therefore essential to use “PromiseDC” as the value
of “Target ID” in order to route it to the right agent. This mapping from PROMISE “Target ID” to
DIALOG message type may be specific only for the test cases presented here. The actual semantic
interpretation of the PROMISE “Target ID” may be application-specific in the future.

Copyright © PROMISE Consortium 2004-2008 Page 31

@

In addition to these “internal” tests performed at HUT, an inter-organisational test was set up for
the PROMISE A7 demonstrator with the company MTS. The tested functionality was
asynchronous sending (i.e. TTL>0) of a text file containing boiler field data by using the “write”
function. The goals of this test were to implement some real functionality by an agent and verify
that communication works in a multi-organisational setting. This agent registers as listening to
messages of type “PromiseDC_MTS”. In Figure 7,
“http://dialog.hut.fi/promisemw/services/promise” is the URL where the Web Service is installed.
This URL is on a remote computer behind a firewall that limits the network traffic, so the server
has been configured to use the standard HTTP port 80 instead of port 8080 used in Figure 6.

Figure 7. GUI developed for inter-organisational test with MTS.

The MTS agent at “dialog.hut.fi” is configured to store the received file into a browser-accessible
directory so that the success of the file transfer can be verified directly. Figure 8 shows the
contents of this directory after clicking on the “Write” button of the window shown in Figure 7.
The file “MTS_test_file.txt” is the one that was transmitted in Figure 7. The other two files are 1)
a Zip file that contains the “client” application downloaded and used by MTS and 2) the file
transmitted from MTS. This directory was also used for testing with MTS, who downloaded the
“client” application shown in Figure 7 from this directory. The file transmitted from MTS is also
stored into the same directory. The “pending” result of the request is because this is an
asynchronous request with TTL set to one minute. This means that the message is buffered until it
can be sent successfully or until TTL expires, but the “client” application regains control
immediately.

Copyright © PROMISE Consortium 2004-2008 Page 32

@

Figure 8. Uploaded files are directly stored into a browser-accessible location, where the the
transmitted file can be accessed.

Copyright © PROMISE Consortium 2004-2008 Page 33

@

5.2.5 Test cases

5.2.5.1 Testcase001_HUT_BasicMessaging OK

Positive test / Module test
Core function: Basic Messaging
Pre-requisites: none
 Test ID
 ### Test activity ###
 1.1 Call “read” function, return text that shows the parameters and their values
 1.2 Call “write” function, return text that shows the parameters and their values
 1.3 Call “retrieveResult” function, return text that shows the parameters and their values
 1.4 Call “cancelRequest” function, return text that shows the parameters and their values
 1.5 Call “subscribe” function, return text that shows the parameters and their values
 ### Expected result ###
 1.1 The “result” field of the returned “PromiseMWResult” should contain text that shows the call parameters and their

values
 1.2 The “result” field of the returned “PromiseMWResult” should contain text that shows the call parameters and their

values
 1.3 The “result” field of the returned “PromiseMWResult” should contain text that shows the call parameters and their

values
 1.4 “true”, shown by a text displayed in the test GUI
 1.5 The “result” field of the returned “PromiseMWResult” should contain text that shows the call parameters and their

values
 ### Realised Result (Textual) ###
 1.1 Test GUI “result” field shows correct list of parameters and parameter values as defined in DR6.3, section 5
 1.2 Test GUI “result” field shows correct list of parameters and parameter values as defined in DR6.3, section 5
 1.3 Test GUI “result” field shows correct list of parameters and parameter values as defined in DR6.3, section 5
 1.4 Test GUI “result” field shows correct list of parameters and parameter values as defined in DR6.3, section 5
 1.5 Test GUI “result” field shows correct list of parameters and parameter values as defined in DR6.3, section 5
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK
 1.3 OK
 1.4 OK
 1.5 OK
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class
 Remarks
 Validation Succeeded
 ### Organisational Data ###
 Tester Kary Främling, HUT
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 34

@

5.2.5.2 Testcase002_HUT_TTL_Buffering OK

Positive test / Module test
Core function: Time-to-live functionality (buffering)
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1
Call one of the implemented functions with TTL=0, using an inexistent Web Service address or without having
started the Web Service. Check that message is not buffered into “send” buffer, which means that the command
window will not show any send attempts and that the size of the buffer file does not change

 1.2 Call one of the implemented functions with TTL > 0, using an inexistent Web Service address or without having
started the Web Service. Check that message is buffered into “send” buffer, which means that the command
window shows send attempts and that the size of the buffer file changes. Check that send attempts stop after TTL
time has elapsed and that buffer file size decreases.

 1.3 Call one of the implemented functions with TTL = -1 (“keep forever”) , using an inexistent Web Service address or
without having started the Web Service. Check that message is buffered into “send” buffer, which means that the
command window will show send attempts and that the size of the buffer file changes. The “forever” functionality
is obviously not possible to test but a “long” time can be considered sufficient – in this case 10 minutes was used.
This can be considered “sufficient” because there is no reason why the message would disappear from the buffer
once it has been inserted there due to how the buffering functionality is implemented.

 1.4 Call one of the implemented functions with 0 TTL, but without registering the PromiseAgent agent at the receiver
node, which means that the message cannot be received. Check that message is not buffered into “receive” buffer,
which means that the command window will not show any send attempts and that the size of the buffer file does not
change.

 1.5 Call one of the implemented functions with TTL > 0, but without registering the PromiseAgent agent at the receiver
node, which means that the message cannot be received. Check that message is buffered into “receive” buffer,
which means that the command window will show send attempts and that the size of the buffer file changes. Check
that send attempts stop after TTL time has elapsed and that buffer file size decreases.

 1.6 Call one of the implemented functions with TTL = -1 (“keep forever”), but without registering the PromiseAgent
agent at the receiver node, which means that the message cannot be received. Check that message is buffered into
“receive” buffer, which means that the command window will show send attempts and that the size of the buffer file
changes. The “forever” functionality is obviously not possible to test but a “long” time can be considered sufficient
– in this case 10 minutes was used. This can be considered “sufficient” because there is no reason why the message
would disappear from the buffer once it has been inserted there due to how the buffering functionality is
implemented.

 ### Expected result ###
 1.1 Size of “send” buffer does not change, no send attempts show in command window.
 1.2 Command window shows attempts to send for given TTL, size of “send” buffer increases during sending attempts.
 1.3 Command window shows attempts to send “forever” (10 minutes will be considered sufficient), , size of “send”

buffer increases.
 1.4 Size of “receive” buffer does not change, no send attempts show in command window
 1.5 Command window shows attempts to send for given TTL, size of “receive” buffer increases during sending

attempts.
 1.6 Command window shows attempts to send “forever” (10 minutes will be considered sufficient), size of “receive”

buffer increases.
 ### Realised Result (Textual) ###
 1.1 Works OK, result is shown directly both in case of success and in case of error
 1.2 Status “pending” is shown and send attempts are shown for the time indicated by TTL. For some reason the buffer

sizes do not become smaller after TTL has expired but the output shown in the buffer status area and in the
command window are sufficient to show that this functionality works.

 1.3 Status “pending” is shown and send attempts go on forever. If the “server” is started at the indicated URL, then the
sending succeeds and the message is removed from the buffer.

 1.4 Works OK, error is returned immediately and message is not buffered
 1.5 The command window shows that the “receive” thread tries to hand to message to the agent/plug-in for the

indicated time and then the message disappears
 1.6 The command window shows that the “receive” thread tries to hand to message to the agent/plug-in “forever”.

When stopping the Web Service, adding the agent/plug-in to the list of agents and then re-starting, the message
disappears from the buffer.

 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK
 1.3 OK

Copyright © PROMISE Consortium 2004-2008 Page 35

@

 1.4 OK
 1.5 OK
 1.6 OK
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class
 Remarks
 Validation Succeeded
 ### Organisational Data ###
 Tester Kary Främling, HUT
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 36

@

5.2.5.3 Testcase003_HUT_FieldData OK

Positive test / Module test

Core function: Sending boiler field data as text file from MTS to HUT web server by calling “write”
function
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1 Installing Web Service on “dialog.hut.fi”, configuring it to port 80, configuring the directory where files should be
stored and testing the installation

 1.2 Downloading test “client” application to MTS, installing it and transmitting text file with field data to
“dialog.hut.fi”

 ### Expected result ###
 1.1 Web Service responds to port 80, stores files into configured location
 1.2 Transmitted text file is stored into configured directory
 ### Realised Result (Textual) ###
 1.1 As expected
 1.2 As expected.
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class
 Remarks
 Validation Succeeded
 ### Organisational Data ###
 Tester Kary Främling, Lorenzo Marra
 Test date 04.04.2006

5.2.6 Summary for parts of HUT
The main purpose of the tests performed by HUT was to study how easily PROMISE Web
Service interfaces can be implemented by using HUT's DIALOG system as the base platform.
This was done with relatively little effort and with good test results, including tests performed in a
multi-organisational setting. Because the PROMISE-specific part of the implementation counts
for less than 1% of the entire source code, these results illustrate that PROMISE Web Service
interfaces can be successfully integrated into existing implementations without too much effort.

Copyright © PROMISE Consortium 2004-2008 Page 37

@

5.3 Functional Test cases for modules of Stockway
The aim of this section is to verify the correct implementation of the WP R6 modules based on the
following test cases. The test cases are based on the specification made in DR 6.2 and DR 6.3.

5.3.1 Guidelines and comments for testing

System / Application to be tested PROMISE R6 Device Controller Interfacing Module

Implementation of Stockway.
System version N/A

Test risks Changes on implementation or test system during the

test phase.

Data security rules which complicates and makes the
Stockway / SAP joint tests impossible to execute as
planned.

Pre-conditions Internal pre-test are made

Components and functions / units which
are not tested

Device Controller
• Stockway has not implemented the actual DC

functionality so the DC is not tested.
IOCI against specifications

• As IOCI specification work starts M18.

Components and functions / units which
are tested

The following is tested by Stockway:
• Trackway system and WWAI concept as

communication infrastructure of PEID data in
Promise context.

• Trackway to DC integration module
Test data (Test values) Test data is derived from the specification
Testing user
Remarks Without errors, the test case will marked OK

With errors, the testcase marked with NOK (also in the
section title to see easily with one view which tests are
passed or not.

5.3.2 Test Environment - Stockway
The test environment set up by Stockway is for performing two basic types of tests. The first type
of tests is for testing the WWAI concept and the Trackway software as communication
infrastructure for Promise PEID data. The second is for testing interoperability between the
Promise module made for Stockway´s Trackway software and the SAP Device Controller
implementation. The goal with the second test is to prove the correctness of both SAP and
Stockway implementations.

Hardware
Different PCs are involved in the tests. All software components tested in these tests are server
software components. Here we describe the PCs that will function as servers in the tests. Server

Copyright © PROMISE Consortium 2004-2008 Page 38

@

PC 1 will perform most testing activity. Server PC 2 will function as a remote WWAI node for
tests of WWAI communication over the Internet. Server PC 3 will be provided by SAP and
function as Device Controller implementation. Trackway Promise modules will request the Web
Services provided by the DC.

Requirements
Any modern PC can run the Trackway based parts of the Promise system. Recommended
minimum is:

Processor Intel Pentium – 1 GHz
System Memory 512 MB

Server PC 1
Server PC 1 will be the mostly used PC in the tests. It is the main PC for running test applications
on. Server PC 1 will physically be located in Stockway’s office in Reading, UK.

Processor Intel Pentium Mobile - 2 GHz
System Memory 2 GB

Server PC 2
Server PC 2 operates a WWAI node that Server PC 1 will do simulated PEID data requests to.
Server PC 2 is physically located in Stockway’s office in Espoo, Finland.

Processor Intel Xeon - 3 GHz
System Memory 1 GB

Server PC 3
To be defined by SAP.

Software
The software necessary to run the PROMISE Modules for Trackway is given by the following
table:

Requirements

Operating System* Any with Java 1.5 support – Windows XP

recommended*
Java SDK Version 1.5
Trackway Software Version 4
Database System Any SQL database system - Trackway

embedded MySQL recommended**
* Installation of Promise modules for Trackway is simplest in Windows XP environment.
** Installation of the Trackway system is simplest if using the embedded database.

Server PC 1
Software environment for Server PC 1:

Operating System Windows XP
Database System MySQL (4.0.16)

Copyright © PROMISE Consortium 2004-2008 Page 39

@

Java Environment Java SDK 1.5.0_05

Server PC 2
Software environment for Server PC 2:

Operating System Linux
Database System MySQL (4.1.12)
Java Environment Java SDK 1.5.0_04

Network
Server PC 1 and Server PC 2 are both connected with broadband Internet connections. Transfer
speed between the two systems varies, but is efficient enough for the tests. Ping times between the
two systems have been monitored on different occasions and are quite stable around 50 ms.

5.3.3 Test Data
For WWAI and Trackway performance tests, the test data is WWAI object data with some
attributes. The WWAI object is a representation of an identifiable item in the WWAI network.
The WWAI object represents in the Promise context the PEID or other identifiable object. The
object will have 10 randomly created attributes with randomly created data. These attributes
represents info items on the PEID.

WWAI Object (PEID data)
ID
Attribute 1
Attribute 2
Attribute 3
Attribute 4
Attribute 5
Attribute 6
Attribute 7
Attribute 8
Attribute 9
Attribute 10

ID number
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
Data 7
Data 8
Data 9
Data 10

For the tests of the web service interface, different test data is used. The id used in these tests is
defined by the user during the tests. We do not define any coding schemas that are used for id
generation for PEIDs so any binary string should be accepted as id for a PEID.

Using the dummy DC implementation from Stockway, requests for info items and info item
values are answered randomly. Also, it is randomly decided if a request is answered right away or
in a random amount of time (between 0 to 30 seconds). All info item values are regarded as text
strings. No data validation is done on the correctness of the data values. We do not need to show
that the data make sense as PEID data, as all data is randomly generated.

The format of the xml messages is according to specifications in DR6.3, chapter 5.

Copyright © PROMISE Consortium 2004-2008 Page 40

@

Figure 9 Test GUI for DC requests. Values for Info Items are updated based on values read
from the DC. Corresponding WWAI data is created in the Trackway system.

Copyright © PROMISE Consortium 2004-2008 Page 41

@

Figure 10 PEID WWAI data shown in the Trackway system using a Trackway development
GUI.

5.3.4 Test cases for Modules of Stockway

The integration tests planned between Stockway’s system and the SAP device controller could not
be performed as planned before this deliverable. We have problems with configuring firewalls to
let the Web Service calls through on both Stockway and SAP side.

Also time restrictions made it impossible to perform the tests from Stockway’s side. (Only 0.4
man months was planned for Stockway to do tests at this stage and the work with the IOCI
(DR6.6) is scheduled to start in June. All tests between the Trackway IOCI implementation and
the DC would have been carried out ahead of schedule.)

These tests are planned to be carried out in later during R6 work and before the actual IOCI work
will start.

Copyright © PROMISE Consortium 2004-2008 Page 42

@

5.3.4.1 Testcase001_STW_DC_read OK / NOK

Positive test / Module test
Core function: Reads an info item value from the DC though the DC Web Service interface and updates the value for the info
item in the Trackway System. The DC gives immediate response with the value.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1
User selects the PEID info item using the test GUI developed by Stockway. The GUI calls the Trackway DC
integration module which calls a local dummy DC Web Service, implemented by Stockway. Trackway DC
integration module handles the response from the DC.

 1.2 User selects the PEID info item using the test GUI developed by Stockway. The GUI calls the Trackway DC
integration module which calls the DC Web Service implemented by SAP. Trackway DC integration module
handles the response from the DC.

 ### Expected result ###
 1.1 Updated value for the PEID info item in WWAI representation in the Trackway system.
 1.2 Updated value for the PEID info item in WWAI representation in the Trackway system.
 ### Realised Result (Textual) ###
 1.1 The info item values are read correctly from the DC and present in the Trackway system.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 43

@

5.3.4.2 Testcase002_STW_DC_read_callBack OK / NOK

Positive test / Module test
Core function: Reads an info item value from the DC though the DC Web Service interface. The DC will return with the result
later using the Web Service call-back functionality.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1
User selects the PEID info item using the test GUI developed by Stockway. The GUI calls the Trackway DC
integration module which calls a local dummy DC Web Service implemented by Stockway. Trackway DC
integration module handles the response from the DC.

 1.2 User selects the PEID info item using the test GUI developed by Stockway. The GUI calls the Trackway DC
integration module which calls the DC Web Service implemented by SAP. Trackway DC integration module
handles the response from the DC.

 ### Expected result ###
 1.1 The DC accepts the request and will return with the result when available.
 1.2 The DC accepts the request and will return with the result when available.
 ### Realised Result (Textual) ###
 1.1 The info item values are update correctly from the DC using the call-back service and present in the Trackway

system.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 44

@

5.3.4.3 Testcase003_STW_DC_write OK / NOK

Positive test / Module test
Core function: Writes an info item value to the DC though the DC Web Service interface and updates the value for the info item
in the Trackway System.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1
User selects the PEID info item to write and gives the new value using the test GUI developed by Stockway. The
GUI calls the Trackway DC integration module which calls a local dummy DC Web Service implemented by
Stockway. Trackway DC integration module handles the response from the DC.

 1.2 User selects the PEID info item to write and gives the new value using the test GUI developed by Stockway. The
GUI calls the Trackway DC integration module which calls the DC Web Service implemented by SAP. Trackway
DC integration module handles the response from the DC.

 ### Expected result ###
 1.1 Updated value for the PEID info item WWAI representation in the Trackway system and updated value for the info

item in the DC implementation.
 1.2 Updated value for the PEID info item WWAI representation in the Trackway system and updated value for the info

item in the DC implementation.
 ### Realised Result (Textual) ###
 1.1 The info item value is written correctly to the DC and new value present in the Trackway system.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 45

@

5.3.4.4 Testcase004_STW_DC_retrieveResult OK / NOK

Positive test / Module test
Core function: Retrieves a result for a request from the DC and updates the values correspondingly in the Trackway System.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1
User gives a request id using the test GUI developed by Stockway. The GUI calls the Trackway DC integration
module which calls a local dummy DC Web Service implemented by Stockway. Trackway DC integration module
handles the response from the DC.

 1.2 User gives a request id using the test GUI developed by Stockway. The GUI calls the Trackway DC integration
module which calls a local DC Web Service implemented by SAP. Trackway DC integration module handles the
response from the DC.

 ### Expected result ###
 1.1 If the request can be answered, the values are updated accordingly for the PEID info item WWAI representation in

the Trackway system. If it cannot be answered, no values are changed.
 1.2 If the request can be answered, the values are updated accordingly for the PEID info item WWAI representation in

the Trackway system. If it cannot be answered, no values are changed.
 ### Realised Result (Textual) ###
 1.1 The info item values are read correctly from the DC and present in the Trackway system.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 46

@

5.3.4.5 Testcase005_STW_DC_cancelRequest OK / NOK

Positive test / Module test
Core function: Cancels a previously made request. Requests a cancellation from the DC.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1
User gives the request id of the request to cancel using the test GUI developed by Stockway. The GUI calls the
Trackway DC integration module which calls a local dummy DC Web Service implemented by Stockway.
Trackway DC integration module handles the response from the DC.

 1.2 User gives the request id of the request to cancel using the test GUI developed by Stockway. The GUI calls the
Trackway DC integration module which calls a local DC Web Service implemented by SAP. Trackway DC
integration module handles the response from the DC.

 ### Expected result ###
 1.1 The local dummy DC accepts the cancellation of the request.
 1.2 The SAP DC accepts the cancellation of the request.
 ### Realised Result (Textual) ###
 1.1 The request cancellation was delivered to DC.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 47

@

5.3.4.6 Testcase006_STW_DC_subsrcibe OK / NOK

Positive test / Module test
Core function: Does a subscription to an info item on a PEID using the DC. Requests a subscription from the DC.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1
User selects the PEID info item to request a subscription for using the test GUI developed by Stockway. The GUI
calls the Trackway DC integration module which calls a local dummy DC Web Service implemented by Stockway.
Trackway DC integration module handles the response from the DC.

 1.2 User selects the PEID info item to request a subscription for using the test GUI developed by Stockway. The GUI
calls the Trackway DC integration module which calls the DC Web Service implemented by SAP. Trackway DC
integration module handles the response from the DC.

 ### Expected result ###
 1.1 The local dummy DC accepts the subscription request.
 1.2 The SAP DC accepts the subscription request.
 ### Realised Result (Textual) ###
 1.1 The subscription request was delivered to the DC.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 48

@

5.3.4.7 Testcase007_STW_DC_getInfoItemList OK / NOK

Positive test / Module test
Core function: List all info items for a PEID. Creates the corresponding PEID information in the Trackway system.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1
User gives a PEID id to request info items for using the test GUI developed by Stockway. The GUI calls the
Trackway DC integration module which calls a local dummy DC Web Service implemented by Stockway.
Trackway DC integration module handles the response from the DC.

 1.2 User gives a PEID id to request info items for using the test GUI developed by Stockway The GUI calls the
Trackway DC integration module which calls the DC Web Service implemented by SAP. Trackway DC integration
module handles the response from the DC.

 ### Expected result ###
 1.1 Trackway DC integration module creates a WWAI representation in the Trackway system of the PEID. The info

items are listed in a table in the test GUI.
 1.2 Trackway DC integration module creates a WWAI representation in the Trackway system of the PEID. The info

items are listed in a table in the test GUI.
 ### Realised Result (Textual) ###
 1.1 The Info Items for the object where read from the DC and the corresponding Trackway representation was created.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 49

@

5.3.4.8 Testcase008_STW_DC_getInfoItemListExt OK / NOK

Positive test / Module test
Core function: List all info items for a PEID. Creates the corresponding PEID information in the Trackway system.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1
User gives a PEID id to request info items for using the test GUI developed by Stockway. The GUI calls the
Trackway DC integration module which calls a local dummy DC Web Service implemented by Stockway.
Trackway DC integration module handles the response from the DC.

 1.2 User gives a PEID id to request info items for using the test GUI developed by Stockway The GUI calls the
Trackway DC integration module which calls the DC Web Service implemented by SAP. Trackway DC integration
module handles the response from the DC.

 ### Expected result ###
 1.1 Trackway DC integration module creates a WWAI representation in the Trackway system of the PEID. The info

items are listed in a table in the test GUI.
 1.2 Trackway DC integration module creates a WWAI representation in the Trackway system of the PEID. The info

items are listed in a table in the test GUI.
 ### Realised Result (Textual) ###
 1.1 The Info Items for the object where read from the DC and the corresponding Trackway representation was created.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 50

@

5.3.4.9 Testcase009_STW_DC_getDeviceList OK / NOK

Positive test / Module test
Core function: Requests the DC to list all PEIDs known to the DC.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1
User selects to view PEID ids using the test GUI developed by Stockway. The GUI calls the Trackway DC
integration module which calls a local dummy DC Web Service implemented by Stockway. Trackway DC
integration module handles the response from the DC.

 1.2 User selects to view PEID ids using the test GUI developed by Stockway. The GUI calls the Trackway DC
integration module which calls the DC Web Service implemented by SAP. Trackway DC integration module
handles the response from the DC.

 ### Expected result ###
 1.1 A list of all PEID ids is shown to the user.
 1.2 A list of all PEID ids is shown to the user.
 ### Realised Result (Textual) ###
 1.1 The request was delivered to the DC and the list of devices registered in the Trackway system.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 51

@

5.3.4.10 Testcase010_STW_DC_addEventListener OK / NOK

Positive test / Module test
Core function: Create an event listener for an event type. Does an event listener request to the DC.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1
The user gives the event type identifier using the test GUI developed by Stockway. The GUI calls the Trackway DC
integration module which calls a local dummy DC Web Service implemented by Stockway. Trackway DC
integration module handles the response from the DC.

 1.2 The user gives the event type identifier using the test GUI developed by Stockway. The GUI calls the Trackway DC
integration module which calls the DC Web Service implemented by SAP. Trackway DC integration module
handles the response from the DC.

 ### Expected result ###
 1.1 The local dummy DC accepts the listener request.
 1.2 The SAP DC accepts the listener request.
 ### Realised Result (Textual) ###
 1.1 The event listener request was delivered to the DC.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 52

@

5.3.4.11 Testcase011_STW_DC_createGroup OK / NOK

Positive test / Module test
Core function: Request the DC to create a group.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1 A test component calls the Trackway DC integration module which calls a local dummy DC Web Service
implemented by Stockway. Trackway DC integration module handles the response from the DC.

 1.2 A test component calls the Trackway DC integration module which calls the DC Web Service implemented by
SAP. Trackway DC integration module handles the response from the DC.

 ### Expected result ###
 1.1 The request is accepted by the DC. A representation of the group is created in the Trackway system.
 1.2 The request is accepted by the DC. A representation of the group is created in the DC and in the Trackway system.
 ### Realised Result (Textual) ###
 1.1 The group creation request was delivered to the DC and the corresponding group was created in the Trackway

system.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 53

@

5.3.4.12 Testcase012_STW_DC_deleteGroup OK / NOK

Positive test / Module test
Core function: Request the DC to delete a group.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1 A test component calls the Trackway DC integration module which calls a local dummy DC Web Service
implemented by Stockway. Trackway DC integration module handles the response from the DC.

 1.2 A test component calls the Trackway DC integration module which calls the DC Web Service implemented by
SAP. Trackway DC integration module handles the response from the DC.

 ### Expected result ###
 1.1 The request is accepted by the DC. The representation of the group is removed in the Trackway system.
 1.2 The request is accepted by the DC. The representation of the group is removed in the DC and in the Trackway

system.
 ### Realised Result (Textual) ###
 1.1 The group delete request was delivered to the DC and the corresponding group was removed in the Trackway

system.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 54

@

5.3.4.13 Testcase013_STW_DC_addObjectToGroup OK / NOK

Positive test / Module test
Core function: Adds and object to a group.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1 A test component calls the Trackway DC integration module which calls a local dummy DC Web Service
implemented by Stockway. Trackway DC integration module handles the response from the DC.

 1.2 A test component calls the Trackway DC integration module which calls the DC Web Service implemented by
SAP. Trackway DC integration module handles the response from the DC.

 ### Expected result ###
 1.1 The request is accepted by the DC. The object is added to the group in the Trackway system.
 1.2 The request is accepted by the DC. The object is added to the group in the DC and in the Trackway system.
 ### Realised Result (Textual) ###
 1.1 The addition request was delivered to the DC and the corresponding object was put in the group in the Trackway

system.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 55

@

5.3.4.14 Testcase014_STW_DC_removeObject OK / NOK

Positive test / Module test
Core function: Remove an object from a group.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1 A test component calls the Trackway DC integration module which calls a local dummy DC Web Service
implemented by Stockway. Trackway DC integration module handles the response from the DC.

 1.2 A test component calls the Trackway DC integration module which calls the DC Web Service implemented by
SAP. Trackway DC integration module handles the response from the DC.

 ### Expected result ###
 1.1 The request is accepted by the DC. The object is removed from the group in the Trackway system.
 1.2 The request is accepted by the DC. The object is removed from the group in the DC and in the Trackway system.
 ### Realised Result (Textual) ###
 1.1 The removal request was delivered to the DC and the corresponding object was removed from the group in the

Trackway system.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 56

@

5.3.4.15 Testcase015_STW_DC_listGroups OK / NOK

Positive test / Module test
Core function: List all groups in the DC.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1 A test component calls the Trackway DC integration module which calls a local dummy DC Web Service
implemented by Stockway. Trackway DC integration module handles the response from the DC.

 1.2 A test component calls the Trackway DC integration module which calls the DC Web Service implemented by
SAP. Trackway DC integration module handles the response from the DC.

 ### Expected result ###
 1.1 A list of all groups of the DC is shown to the user.
 1.2 A list of all groups of the DC is shown to the user.
 ### Realised Result (Textual) ###
 1.1 The request was delivered to the DC and the list of groups registered in the Trackway system.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 57

@

5.3.4.16 Testcase016_STW_DC_listObjects OK / NOK

Positive test / Module test
Core function: Requests a list of all objects in a group in the DC.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1 A test component calls the Trackway DC integration module which calls a local dummy DC Web Service
implemented by Stockway. Trackway DC integration module handles the response from the DC.

 1.2 A test component calls the Trackway DC integration module which calls the DC Web Service implemented by
SAP. Trackway DC integration module handles the response from the DC.

 ### Expected result ###
 1.1 A list of all objects in the group in the DC is shown to the user.
 1.2 A list of all objects in the group in the DC is shown to the user.
 ### Realised Result (Textual) ###
 1.1 The request was delivered to the DC and the list of objects in the group where registered in the Trackway system.
 1.2 Could not be performed (see reason above)
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 NOK Error Class: Not performed (see reason above)
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks The integration part of the test could not be performed (see reason above). The Trackway

representation of the test was successful and therefore the tests are successful.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 58

@

5.3.4.17 Testcase017_STW_resultCallback_WS OK / NOK

Positive test / Module test
Core function: Inform the result of a request using the call-back Web Service. The DC calls the call-back service provided for it.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1 The DC returns with the results for a request that could not be performed directly. The DC calls the call-back web
service on Trackway DC integration module.

 ### Expected result ###
 1.1 The Trackway DC integration module updates the values for the info item the request concerned in the Trackway

system.
 ### Realised Result (Textual) ###
 1.1 The Trackway call-back service reacted correctly to the request and made the corresponding retrieve result request

to the DC. The retrieved Info Item data w
 ### Realised Result ###
 ok? Error description
 1.1 OK
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks
 Validation Succeeded
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 59

@

5.3.4.18 Testcase018_STW_WWAI_PEID_dataRequest OK / NOK

Positive test / Module test
Core function: Test that WWAI communication is efficient enough for PEID data exchange.
Pre-requisites: none
 Test ID
 ### Test activity ###

 1.1 Two Trackway servers run on the same PC. One of the servers runs a test component that does constant requests to
the other server. The time for the requests is measured.

 1.2 Two Trackway servers run two PCs connected to the Internet. One of the servers runs a test component that does
constant requests to the other server. The time for the requests is measured.

 ### Expected result ###
 1.1 All request could be fulfilled and in a feasible time.
 1.2 All request could be fulfilled and in a feasible time.
 ### Realised Result (Textual) ###
 1.1 DEBUG: [*** TEST REUSLTS ***]

Tests repeated 50000
Fastest time:40ms
Slowest time:691ms
Total time:3363626ms
Average time:67ms

The request could be performed in a reasonably amount of time. The slowest request is likely due to system
swapping operations.

 1.2 DEBUG: [*** TEST REUSLTS ***]
Tests repeated 50000
Fastest time:83ms
Slowest time:842ms
Total time:6150402ms
Average time:123ms

The request could be performed in a reasonably amount of time. The slowest request is likely due to network
delays.

 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks
 Validation Succeeded
 ### Organisational Data ###
 Tester Björn Forss, Stockway
 Test date 20.04.2006

5.3.5 Summary for parts of HUT
Even though not all test could be performed as planned, the result from the tests are considered
positive. The tests performed by Stockway shows that Promise PEID data can be represented in
the Trackway software and communicated using the WWAI protocol. This is valuable input to the
coming IOCI related work as the Trackway system will be used as one IOCI implementation.

Copyright © PROMISE Consortium 2004-2008 Page 60

@

6 Overall summary
This deliverable reports on the progress made in establishing a foundation for testing within the
PROMISE project and the initial unit testing of the current state of the art of technology that has
been developed by the partners SAP, HUT and Stockway. In the next periods, this technology will
be developed further, and it is probable that INDYON also will commence some middleware
technology development.

The results of the tests demonstrate that the developed technologies mainly comply with the
current PROMISE specifications. The diversity of the testing which results from the differences in
the scope of implementation between the three partners, is in itself useful as it has already
established a broader base of tests.

These tests will be useful in the future, not only as the foundation for additional tests, but also as
regression tests when extended functionality will be developed according to the plans for tasks
TR6.5 and TR6.6.

The recognition that there are some gaps between what was initially defined in the DoW task
descriptions and what has so far been possible to develop and test, means that the partners in WP
R6 can focus on how to address those omissions in conjunction with the development and further
testing that is also required to fulfil tasks TR6.5 through TR6.7.

The WP R6 partners will take the responsibility of ensuring that the testing foundation that has
been established in this task can be used as the basis for integrated testing of the entire PROMISE
technology infrastructure, involving technology developed in WP R4, R8 and R9. This also means
that it will be necessary to define additional, wider project testing tasks to meet this objective
during the next project planning cycle.

Copyright © PROMISE Consortium 2004-2008 Page 61

@

Appendix A – Test case form Template

Testcase001_Fnct_Name OK / NOK

Positive test / Module test
Core function:
Pre-requisites: none
 Test ID
 ### Test activity ###
 1.1
 1.2
 1.3
 ### Expected result ###
 1.1
 1.2
 1.3
 ### Realised Result (Textual) ###
 1.1
 1.2
 1.3
 ### Realised Result ###
 ok? Error description
 1.1 NOK Error Class:
 1.2 OK
 1.3 OK
 ### Overall assessment of the Test ###
 Overall Test Result NOK
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks
 Validation Succeeded / Succeeded with limitation / Not succeeded
 ### Organisational Data ###
 Tester Name
 Test date 01.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 62

@

Appendix B – Functional Test cases for modules of SAP (Updated)

B.1 Testcase111Testcase001_CONTENT_I OK
Positive test / Module test
Core function: VALID_READ_REQUEST
Pre-requisites: none
 Test ID 1114.1
 ### Test activity ###
 1.1 Read infoItemY on a registered deviceX where deviceX is connected and infoItemY exists on deviceX
 1.2 Read infoItemY on a registered deviceX where deviceX is not connected and infoItemY exists on deviceX

 ### Expected result ###
 1.1 result String with result=<current value of infoItemY on deviceX>
 1.2 result String with result=<empty> and requestId to retrieve result later

 ### Realised Result (Textual) ###
 1.1 result String with result=<current value of infoItemY on deviceX>
 1.2 result String with result=<empty> and requestId to retrieve result later

 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK

 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class
 Remarks
 Validation Succeeded
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 05.05.2006

Copyright © PROMISE Consortium 2004-2008 Page 63

@

B.2 Testcase111Testca2_CONTENT_II OK
Positive test / Module test
Core function: INVALID_READ_REQUEST
Pre-requisites: none
 Test ID 1124.1
 ### Test activity ###
 1.1 Read infoItemY on deviceX where deviceX is not registered (is not listed in metadata)
 1.2 Read infoItemY on deviceX where deviceX is registered but infoItemY doesn’t exist on deviceX (is not listed in

metadata)

 ### Expected result ###
 1.1 result String with result=<empty>, error=<appropriate error message>
 1.2 result String with result=<empty>, error=<appropriate error message>

 ### Realised Result (Textual) ###
 1.1 result String with result=<empty>, error=’The targetId 'deviceX' is not associated with a registered device.’
 1.2 result String with result=<empty>, error=’The infoItem 'infoItemY' is not available at device ‘deviceX’’

 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK

 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class
 Remarks Requests are now checked against metadata before being sent out, so that there is no risk of

invalid requests being handled incorrectly at DHL
 Validation Succeeded
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 05.05.2006

Copyright © PROMISE Consortium 2004-2008 Page 64

@

B.3 Testcase113Testcase001_CONTENT_III OK
Positive test / Module test
Core function: VALID_WRITE_REQUEST
Pre-requisites: none
 Test ID 1134.2
 ### Test activity ###
 1.1 Write infoItemY on a registered deviceX where deviceX is connected and infoItemY exists on deviceX
 1.2 Write infoItemY on a registered deviceX where deviceX is not connected and infoItemY exists in deviceX

 ### Expected result ###
 1.1 result String with result=<current value of infoItemY on deviceX>
 1.2 result String with result=<empty> and requestId to retrieve result later

 ### Realised Result (Textual) ###
 1.1 result String with result=<current value of infoItemY on deviceX>
 1.2 result String with result=<empty> and requestId to retrieve result later

 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK

 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class
 Remarks
 Validation Succeeded
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 05.05.2006

Copyright © PROMISE Consortium 2004-2008 Page 65

@

B.4 Testcase114Testcase001_CONTENT_IV OK
Positive test / Module test
Core function: INVALID_WRITE_REQUEST
Pre-requisites: none
 Test ID 1144.2
 ### Test activity ###
 1.1 Write infoItemY on deviceX where deviceX is not registered (is not listed in metadata)
 1.2 Write infoItemY on deviceX where deviceX is registered but infoItemY doesn’t exist on deviceX (is not listed in

metadata)

 ### Expected result ###
 1.1 result String with result=<empty>, error=<appropriate error message>
 1.2 result String with result=<empty>, error=<appropriate error message>

 ### Realised Result (Textual) ###
 1.1 result String with result=<empty>, error=’The targetId 'deviceX' is not associated with a registered device.’
 1.2 result String with result=<empty>, error=’The infoItem 'infoItemY' is not available at device ‘deviceX’’

 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK

 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class
 Remarks Requests are now checked against metadata before being sent out, so that there is no risk of

invalid requests being handled incorrectly at DHL

 Validation Succeeded
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 05.05.2006

Copyright © PROMISE Consortium 2004-2008 Page 66

@

B.5 Testcase115Testcase001_CONTENT_V OK

Positive test / Module test
Core function: PROCESS REQUESTS
Pre-requisites: devi ceX not connected, requests are buffered for deviceX
 Test ID 1154.3
 ### Test activity ###
 1.1 Connect deviceX
 1.2 RHL: retrieve(requestId)
 1.3
 ### Expected result ###
 1.1 Buffered requests for deviceX are sent to DHL and processed
 1.2 Resultstring for request with requestId
 1.3
 ### Realised Result (Textual) ###
 1.1 Requests are processed at DHL, results are sent to RHL
 1.2 Resultstring for request with requestId
 1.3
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK
 1.3
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class
 Remarks
 Validation Succeeded
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 12.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 67

@

B.6 Testcase116Testcase001_CONTENT_VI OK /NOK
Positive test / Module test
Core function: RETRIEVE RESULTS
Pre-requisites: none
 Test ID 1164.4.
 ### Test activity ###
 1.1 Retrieve result for request to deviceX where deviceX has connected after request has been issued
 1.2 Retrieve result for request to deviceX where deviceX has not connected after request has been issued
 1.3 Retrieve result for invalid requestId (i.e. requestId that has not been assigned to a request)
 ### Expected result ###
 1.1 Result String with result or error message if request couldn’t be processed
 1.2 Message stating that request has not yet been processed
 1.3 Message saying that requested is erroneous, i.e. that there has not been a request issued with this id
 ### Realised Result (Textual) ###
 1.1 Result String with result or error message if request couldn’t be processed
 1.2 Message stating that request has not yet been processed
 1.3 Message stating that request has not yet been processed
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK
 1.3 NOK Error Class 4: not distinguishing between pending requests and non-existing requests
 ### Overall assessment of the Test ###
 Overall Test Result NOK
 Error Class 4 (not critical)
 Remarks For 1.3 Though this situation shouldn’t occur with automatic request processing, requestIds should

be checked against buffered requests in order to inform about invalid requestIds
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 05.05.2006

Copyright © PROMISE Consortium 2004-2008 Page 68

@

B.7 Testcase117Testcase001_CONTENT_VII NOK
Positive test / Module test
Core function: VALID_SUBSCRIBE_REQUEST
Pre-requisites: none
 Test ID 1174.1
 ### Test activity ###

 1.1 Subscribe to infoItemY on a registered deviceX with subscription interval= 1min, where deviceX is connected and
infoItemY exists on deviceX

 1.2 Subscribe to infoItemY on a registered deviceX with subscription interval= 1min, where deviceX is not connected
and infoItemY exists on deviceX

 ### Expected result ###
 1.1 Result String with result=<current value of infoItemY on deviceX>, new results are sent every minute
 1.2 result String with result=<empty> and requestId to retrieve result later

 ### Realised Result (Textual) ###
 1.1 result String with result=<current value of infoItemY on deviceX>, no new results after subscription interval
 1.2 result String with result=<empty> and requestId to retrieve result later

 ### Realised Result ###
 ok? Error description
 1.1 NOK The request processing based on the subscription interval has not yet been properly implemented

as the timing (thread) which is necessary for this task could not be implemented with EJB. A
separate timing/scheduling service (Quartz, licensed under Apache 2.0 license) will be
used for this purpose.

 1.2 NOK

 ### Overall assessment of the Test ###
 Overall Test Result NOK
 Error Class 1 (Very Strong)
 Remarks
 Validation Failed
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 05.05.2006

Copyright © PROMISE Consortium 2004-2008 Page 69

@

B.8 Testcase111Testca8_CONTENT_VIII OK
Positive test / Module test
Core function: INVALID_SUBSCRIBE_REQUEST
Pre-requisites: none
 Test ID 1184.1
 ### Test activity ###

 1.1 Subscribe to infoItemY on deviceX with subscription interval=1min where deviceX is not registered (is not listed in
metadata)

 1.2 Subscribe to infoItemY on deviceX with subscription interval=1min where deviceX is registered but infoItemY
doesn’t exist on deviceX (is not listed in metadata)

 ### Expected result ###
 1.1 result String with result=<empty>, error=<appropriate error message>
 1.2 result String with result=<empty>, error=<appropriate error message>

 ### Realised Result (Textual) ###
 1.1 result String with result=<empty>, error=’The targetId 'deviceX' is not associated with a registered device.’
 1.2 result String with result=<empty>, error=’The infoItem 'infoItemY' is not available at device ‘deviceX’’

 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK

 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class
 Remarks Requests are now checked against metadata before being sent out, so that there is no risk of

invalid requests being handled incorrectly at DHL
 Validation Succeeded
 ### Organisational Data ###
 Tester Katrin Eisenreich
 Test date 05.05.2006

Copyright © PROMISE Consortium 2004-2008 Page 70

@

B.9 Testcase121Testcase001_METADATA_I OK

Positive test / Module test
Core function: REGISTRATION
Pre-requisites: none
 Test ID 1294.5.
 ### Test activity ###
 1.1 Start a device that has already been registered with the Device Manager
 1.2 Start a device that has not yet been registered with the Device Manager and allow to connect
 1.3 Start a device that has not yet been registered with the Device Manager and refuse connection
 ### Expected result ###
 1.1 Device gets connected iff connectable==true in registry
 1.2 Device gets connected; registry entry with connectable=true; metadata is set in DHL
 1.3 Connection refused; registry entry with connectable=false; metadata is not set in DHL
 ### Realised Result (Textual) ###
 1.1 Device gets connected iff connectable==true in registry
 1.2 Device gets connected; registry entry with connectable=true; metadata is set in DHL
 1.3 Connection refused; registry entry with connectable=false; metadata is not set in DHL
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK
 1.3 OK
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class
 Remarks
 Validation Succeeded
 ### Organisational Data ###
 Tester Katrin Eisenereich
 Test date 05.05.2006

Copyright © PROMISE Consortium 2004-2008 Page 71

@

B.10 Testcase122Testcase001_METADATA_II OK/NOK

Positive test / Module test
Core function: METADATA RETRIEVAL
Pre-requisites: none
 Test ID 1224.7
 ### Test activity ###
 1.1 Get list of devices registered with DHL
 1.2 Get list of infoItems for a deviceX which is registered with DHL
 1.3 Get list of infoItems for a deviceX which is not registered with DHL
 ### Expected result ###
 1.1 List of devices registered with device registry
 1.2 List of infoItems available on deviceX
 1.3 Appropriate error message stating that there is no such device
 ### Realised Result (Textual) ###
 1.1 List of devices registered with device registry
 1.2 List of infoItems available on deviceX
 1.3 Throws unhandled Exception
 ### Realised Result ###
 ok? Error description
 1.1 OK Error Class:
 1.2 OK
 1.3 NOK Exception is not handled appropriately
 ### Overall assessment of the Test ###
 Overall Test Result NOK
 Error Class
 Remarks Though 1.3 should not occur since only registered devices should be queried for infoItems, there

should be an appropriate error message at this point.
 Validation Succeeded with limitation
 ### Organisational Data ###
 Tester Katrin Eisenereich
 Test date 05.05.2006

Copyright © PROMISE Consortium 2004-2008 Page 72

@

B.11 Testcase123Testcase001_METADATA_III OK

Positive test / Module test
Core function: METADATA UPDATE
Pre-requisites: none
 Test ID 1234.6
 ### Test activity ###
 1.1 Add an infoItem key to a device
 1.2 Remove an infoItem key from a device
 1.3
 ### Expected result ###
 1.1 InfoItem item gets available on device and infoItemId is added to metadata storage in DHL
 1.2 InfoItem item gets unavailable on device and infoItemId is removed from metadata storage in DHL
 1.3
 ### Realised Result (Textual) ###
 1.1 InfoItem item gets available on device and infoItemId is added to metadata storage in DHL
 1.2 InfoItem item gets unavailable on device and infoItemId is removed from metadata storage in DHL
 1.3
 ### Realised Result ###
 ok? Error description
 1.1 OK
 1.2 OK
 1.3
 ### Overall assessment of the Test ###
 Overall Test Result OK
 Error Class
 Remarks Propagation of metadata updates to DHL is now taken care of. But should be reengineered do to

poor separation of concerns in DHL.
 Validation Succeeded
 ### Organisational Data ###
 Tester Katrin Eisenereich
 Test date 05.05.2006

Copyright © PROMISE Consortium 2004-2008 Page 73

@

B.12 Testcase131Testcase001_MISCELLANEOUS_I NOK

Positive test / Module test
Core function: METADATA RETRIEVAL
Pre-requisites: none
 Test ID 1314.7
 ### Test activity ###
 1.1 Device is available, DHL is started
 1.2
 1.3
 ### Expected result ###
 1.1 Device gets connected to DHL (if it is allowed to connect) and available in the GUI
 1.2
 1.3
 ### Realised Result (Textual) ###
 1.1 Device gets connected, but exception is thrown and device is not displayed in GUI
 1.2
 1.3
 ### Realised Result ###
 ok? Error description
 1.1 NOK Exception at RootDeviceListenerError Class:
 1.2
 1.3
 ### Overall assessment of the Test ###
 Overall Test Result NOK
 Error Class 1 (very strong)
 Remarks DHL needs be checked for error.
 Validation Failed
 ### Organisational Data ###
 Tester Katrin Eisenereich
 Test date 05.05.2006

Copyright © PROMISE Consortium 2004-2008 Page 74

@

Non-functional test cases

B.13 Testcase201Testcase001_Scalability_Pretest

Positive test / Module test
Core function: Scalability Pretest
Pre-requisites: none
 Test ID 2.15.0
 ### Test activity ###
 1.1 Raise quantity of UPnP devices. Find maximum number of detected devices.
 1.2
 1.3
 ### Expected result ###
 1.1 -
 1.2 -
 1.3 -
 ### Realised Result (Textual) ###
 1.1 TBD
 1.2 -
 1.3 -
 ### Realised Result ###
 ok? Error description
 1.1
 1.2 -
 1.3 -
 ### Overall assessment of the Test ###
 Overall Test Result
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks
 Validation Succeeded / Succeeded with limitation / Not succeeded
 ### Organisational Data ###
 Tester Bernhard Wolf
 Test date 18.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 75

@

B.14 Testcase202Testcase001_Scalability_I

Positive test / Module test
Core function: Scalability I
Pre-requisites: none
 Test ID 2.25.1
 ### Test activity ###
 1.1 Create 10 UPnP devices. Send one request to every device. Log performance.
 1.2 Create 100 UPnP devices. Send one request to every device. Log performance.
 1.3 Raise number of UPnP devices. Send one request to every device. Log performance. Find limitation.
 ### Expected result ###
 1.1 -
 1.2 -
 1.3 -
 ### Realised Result (Textual) ###
 1.1 TBD
 1.2 TBD
 1.3 TBD
 ### Realised Result ###
 ok? Error description
 1.1
 1.2
 1.3
 ### Overall assessment of the Test ###
 Overall Test Result
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks
 Validation Succeeded / Succeeded with limitation / Not succeeded
 ### Organisational Data ###
 Tester Bernhard Wolf
 Test date 18.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 76

@

B.15 Testcase203Testcase001_Scalability_II

Positive test / Module test
Core function: Scalability II
Pre-requisites: none
 Test ID 5.2.3
 ### Test activity ###
 1.1 Create 10 requests for one UPnP device. Log performance.
 1.2 Create 100 requests for one UPnP device. Log performance.
 1.3 Create 1000 requests for one UPnP device. Log performance.
 ### Expected result ###
 1.1 -
 1.2 -
 1.3 -
 ### Realised Result (Textual) ###
 1.1 TBD
 1.2 TBD
 1.3 TBD
 ### Realised Result ###
 ok? Error description
 1.1
 1.2
 1.3
 ### Overall assessment of the Test ###
 Overall Test Result
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks
 Validation Succeeded / Succeeded with limitation / Not succeeded
 ### Organisational Data ###
 Tester Bernhard Wolf
 Test date 18.04.2006

Copyright © PROMISE Consortium 2004-2008 Page 77

@

B.16 Testcase204Testcase001_Scalability_III

Positive test / Module test
Core function: Scalability III
Pre-requisites: none
 Test ID 2.45.3
 ### Test activity ###
 1.1 Create multiple requests for multiple UPnP devices. Log performance.
 1.2 Variation possible.
 1.3
 ### Expected result ###
 1.1 -
 1.2 -
 1.3 -
 ### Realised Result (Textual) ###
 1.1 TBD
 1.2 -
 1.3 -
 ### Realised Result ###
 ok? Error description
 1.1
 1.2 -
 1.3 -
 ### Overall assessment of the Test ###
 Overall Test Result
 Error Class 1 (very strong), 2 (strong), 3 (medium), 4 (not critical)
 Remarks
 Validation Succeeded / Succeeded with limitation / Not succeeded
 ### Organisational Data ###
 Tester Bernhard Wolf
 Test date 18.04.2006

