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1 Introduction 

A sound and integrated security foundation for all levels of the PROMISE architecture will be a 

Critical Success Factor in determining the acceptance of PROMISE technologies in the 

marketplace. If PROMISE-compliant solutions are not secure, then acceptance will be severely 

restricted. Therefore we must approach the subject of security very seriously in order to protect 

the existing technical investment in PROMISE. 

1.1 Dependencies 

None of the PROMISE project demonstrators has any stated security requirement; therefore there 

is no absolute requirement to implement any aspect of security in PROMISE technologies before 

project M42 (May 2008). However, the PROMISE architecture and interface specifications must 

include a comprehensive, integrated, end-to-end security infrastructure by the end of the project. 

1.2 Purpose of document 

The purpose of this document is to establish the foundation elements of the PROMISE End-to-

End Security architecture which will guide the detailed investigation and eventual specification of 

the security features of all layers of the PROMISE architecture. 

The detailed specifications will result from the requirements analysis, design and specification 

which will be the subject of tasks TR13.1 through TR13.3. The results of the latter tasks will be 

accumulated and documented in DR13.1 (End-to-End Security Architecture) and in the reference 

volumes of the PROMISE Architecture Series. 

1.3 Standards 

The PROMISE security architecture should be based on and take advantage of both existing and 

emerging security standards and technologies. It is unlikely that the PROMISE project will 

identify new security requirements leading to the introduction of new or extension of existing 

security standards. However, we will as far as possible seek to exploit both existing and emerging 

security standards and technologies in innovative ways. 
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2 PROMISE Security Context 

In PROMISE, the Internet is the main medium for communication between different information 

systems, no matter if they are Product Data and Knowledge Management (PDKM) systems, 

Decision Support Systems (DSS), Product Embedded Information Devices (PEID) or other. As 

illustrated by Figure 1, all these different information systems can be grouped together under the 

concept of a “node”, whose internal implementation is irrelevant as long as it is capable of 

communicating over the Promise Messaging Interface (PMI).  

 

External network

or system

Barcode

Technologies

RFID

Technologies

DSS

UPnP

ECP

PEID:4

DC DC

 PROMISE

Data Services

PMI

PDKM

DC DC

ERP, WMS or 

other PMI-enabled 

PLM system

PDKM/DSS

 

Figure 1. Illustration of PROMISE connectivity.  

The PROMISE connectivity model is similar to that of the Internet itself. Where the Internet uses 

the HTTP protocol for transmitting HTML-coded information mainly intended for human users, 

PROMISE uses PMI for transmitting XML-coded information mainly intended for automatic 

processing by information systems. It is important to understand these relationships because 

PROMISE indeed proposes an extension to the Internet itself. This also signifies that the security 

architecture of PROMISE has to respond to the same security requirements as existing Internet-

based services. One requirement is that a sufficiently high level of security should be possible to 

achieve when needed. Another requirement is that publicly available information should be 

accessible as easily as possible. An important requirement for the Internet is also that the privacy 

of its users should be respected so some level of anonymity can be required, which is typically in 

conflict with strict security requirements, where authentication of identities is crucial. These 
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different levels of security and their implications for PROMISE are analysed in detail in Section 

3.  

2.1 Handling of security for products with limited embedded computing power or network 

connectivity 

 

 

Figure 2. Use of Device Controller as PMI proxy for enabling PEIDs with limited 

computation power and/or network connectivity to access PROMISE Data Services, i.e. 

services provided by PMI-compliant nodes.  

PROMISE security must be applied in a consistent and integrated way in all levels of the 

PROMISE architecture. If an embedded information device does not have sufficient computation 

capacity for implementing the PMI, then it can join the network through a proxy device. A 

grouping of such devices based on the amount of embedded computing power and network 

connectivity was defined in PROMISE deliverable “DR5.4: Generic PEID roadmap for each 

group”, where the PEID:4 group was defined for devices who can support an embedded PMI 

implementation (or at least a partial PMI implementation). For all other PEID groups, the node 

consists of the PEID itself and a Device Controller (DC) as shown in Figure 2. The most 

universal DC implementation uses the Core PAC (Core Product Embedded Information Device 

Access Container) interface defined using the Universal Plug-and-Play (UPnP) protocol. In that 

case, the security mechanisms provided by UPnP can be applied to the Core PAC interface in the 

same way as the security mechanisms of the Internet can be applied to the PMI.  

In applications where the Core PAC interface is replaced by some proprietary solution, i.e. a 

proprietary DC, the implementation of security is up to the proprietary DC and therefore outside 

the scope of PROMISE. A myriad of such PEIDs exist already, e.g. engine control units in cars 

give access to diagnostics and measurement information using the OBD-II or CAN protocols but 

ERP PDKM/DSS External  

system 

PROMISE Data Services 
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External  
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PEID 

   

   

 

PMI PMI PMI 

PMI PMI PMI 

Core PAC 



                        
 

 

 

Copyright   PROMISE Consortium 2004-2008  Page 10 

 

@

they do not allow modifying control parameters in a way that would endanger the correct 

operation of the car. Another example is television receivers, where parents can prevent their 

children form accessing certain channels and protect these settings with a password. The same 

receivers also have access control for accepting firmware updates. The PROMISE security model 

must take into consideration and support the use of such existing and future security 

implementations. In practice this means that the PMI must have support for passing such 

necessary proprietary security credentials when needed. Because any kind of information can be 

sent using the PMI, the sending of such security credentials (encrypted or not) is already 

supported.  

2.2 Overview of security terminology and technologies 

Security requirements can be roughly grouped together into the following categories: 

1. Encryption of stored data and network traffic: This is necessary in order to avoid that 

sensitive data is accessed by unauthorized parties.  

2. Integrity check of data (stored and transmitted over network): Especially when data is 

transmitted over a network, it may be necessary to verify that none of it has been modified 

during the transmission. This is often used e.g. for verifying that software packages 

downloaded over Internet arrive as they should to their destination. Otherwise viruses or 

spying software could be introduced by some intermediate server during the transmission.  

3. Authentication: In order to restrict access only to trusted parties, it is necessary to 

authenticate the computer and/or the user that attempts to connect over a network before 

providing access to information.  

4. Access control: When a requesting computer and/or user has been authenticated, access 

rules can be defined for what information is accessible and in what ways, e.g. read, write, 

execute, delete etc.  

Examples of corresponding solutions are: 

1. Asymmetric and symmetric encryption. Asymmetric encryption uses one key to encrypt 

information and another to decrypt the information, usually called a public key and a 

private key. The private key is kept secret, while the public key may be widely distributed. 

The keys are related mathematically, but the private key cannot be practically derived 

from the public key. A message encrypted with the public key can be decrypted only with 

the corresponding private key. Examples of widely used asymmetric encryption methods 

are RSA [Kaliski and Staddon, 1998] and the Digital Signature Algorithm (DSA) [NIST, 

2000]. Symmetric encryption uses only one key that is kept secret. Because symmetric 

encryption is less computation-intensive, it is usually used for network transmission. In 

that case, a joint symmetric key is generated by one of the communicating parties and 

transmitted to the other parties using asymmetric encryption.  

2. MD5 (Message-Digest algorithm 5) [Rivest, 1992] is often used for integrity check of e.g. 

un-encrypted software packages distributed as ISO CD-images or Zip files. If the data is 

encrypted, a successful decryption operation signifies that the message has not been 

modified so there is no need for a separate integrity check.  

3. Public Key Infrastructure (PKI) is the most used authentication method for Internet 

services. It is based on the use of certificates according to the X.509 standard [Adams et 

al., 2005]. A certificate specifies e.g. who is the owner of the certificate, what organisation 

certifies the authenticity of the certificate, the asymmetric encryption method used for 

encrypting data with the certificate, a public key and validity dates. The PKI is a 
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hierarchical structure where the uppermost level consists of trusted certificate authorities 

such as VeriSign, Comodo etc., who sell authenticated certificates to other organisations.  

However, authentication may also be performed without using a PKI. In trusted networks, 

it may be cheaper and simpler to store public keys of trusted parties and use them directly 

for performing an authentication check as is done by the Secure Shell (SSH) system 

[Ylönen, 2006], for instance.  

The most traditional authentication method are usernames and passwords, which are 

usually as valid as the ones mentioned above as long as they are stored and transmitted in 

encrypted format. Internet banking applications typically use this technique, where the 

PKI first certifies the bank‟s identity to the user and allows creating an encrypted 

communication channel using Secure Sockets Layer (SSL) [Dierks and Rescorla, 2006] 

encoding with the HTTPS protocol [Rescorla, 2000]. Fingerprints, iris scanning etc. are 

other variants of this authentication category.  

4. Access control is based on authentication; once a computer and/or user has been 

authenticated using one of the methods mentioned above, then access rules can be applied. 

Access rules are stored in different ways depending on the information system. On a Unix 

server, they are mainly stored in the “/etc/passwd” file, a database system usually has a 

user table with corresponding access rules and an ERP system may have its own system. 

In the case of PEIDs, RFID tags exist that are e.g. read-only, write-once, readable and/or 

writable only to authorized parties etc. Other PEIDs such as car engine control units may 

implement other, manufacturer-specific access control systems. This diversity of 

proprietary existing and future access control systems demonstrates that there is no “one-

fits-all” solution. Therefore PROMISE provides means to integrate with these diverse 

solutions when needed, rather than attempting to propose some new system.   

This background information on the PROMISE security context should be sufficient for analysing 

and understanding different security requirements and potential solutions presented in the next 

section.  

3 Analysis of representative use cases with different levels of security 

requirements 

In many projects, security tends to be the system consideration that is handled the last. The reason 

for this could be that implementing security mechanisms even using standard technologies 

requires managing certificates, keys, access rights, firewalls etc., which may require a lot of 

manual work and the involvement of many different people. Many organisations do not even have 

any personnel who would know how to set up secure servers, manage certificates etc. In order to 

also allow such organisations to provide and use PLM-related services, it is important to adjust the 

level of security according to the requirements of the service, rather than always imposing the 

highest possible level of security. Furthermore, not only organisations may need to query and 

update product information during its lifetime as illustrated in Figure 3. At least when the users 

are individuals, extensive security requirements could discourage the use of many services. At the 

same time, privacy issues become relevant. As shown by the still ongoing debate about the use of 

RFID technology, universal identification of individuals is a controversial issue.  
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Information 
queries/updates 

t 

 

Figure 3: The product lifecycle seen from an Internet of Things point of view. Information 

about the “thing” is used and produced during all phases of its lifecycle [Främling and 

Holmström, 2006]. 

In the following sub-sections we will analyse cases where different levels of security are 

appropriate, beginning with no security requirements and finishing with the greatest security 

requirements.  

3.1 No security requirements 

Figure 3 illustrates the Internet of Things but if the “Thing” would be replaced with a computer 

screen and a web browser, it might as well illustrate the current Internet. In the current Internet, 

“query” and “update” operations are mainly performed using the HTTP protocol‟s GET and 

POST actions. In the PROMISE view of the Internet of Things, the PMI is used instead. Because 

PMI also has HTTP as the underlying protocol (augmented with SOAP), it could indeed be 

considered as an extension to HTTP. We will attempt to illustrate the case when no security is 

(and should be) required, both for the case of information queries and information updates.  

Querying for information about product items could signify asking for user manuals, asking for 

online diagnosis of some trouble based on sensor values of the “Thing” (sent as parameters of the 

query) or a microwave oven that asks how long to heat the pizza that was inserted into it. These 

examples may not be relevant business cases as such but they do illustrate useful services where 

managing certificates or passwords would mainly be a burden.  

Updating information could consist in reading a cinema publicity with a unique identifier that 

allows buying a ticket by reading the identifier with a mobile phone, registering for product 

update messages for the car that was just bought (simpler and more dynamic than the current 

system!), tracking of items in a closed environment, i.e. updating an item‟s location (e.g. for 

laboratory equipment). However, updating information usually requires a higher level of security 

than just querying for it.  

The conclusion is that a great number of business scenarios exist where no security is needed and 

where introducing security would make systems more complicated, difficult to use and subject to 
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privacy issues. It is even probable that there are services that people would not use at all if they 

are required to identify themselves (i.e. authenticate themselves) unambiguously straight away.  

3.2 Data encryption and integrity check is necessary 

Encryption and data integrity checks become necessary in all applications where an external spy 

could gain access to confidential stored data or data sent as messages over a network. As pointed 

out in Section 2, data encryption usually also signifies data integrity check so that prevents an 

external party from tampering with the data. Data encryption can be achieved even when only one 

of the communicating parties has security credentials (typically a PKI certificate), as in Internet 

banking applications.  

Some examples of situations when it is sufficient to authenticate only one party through 

certificates or similar are:  

 When authentication is done by username/password or some other credentials as in 

Internet bank applications 

 A serial number of an RFID tag, a vehicle identification number or similar existing 

identification methods can also be used; since encryption is activated in the beginning, 

none of this information is visible to external observers anyway 

Data encryption and integrity check are technically quite simple to set up because existing 

protocols such as HTTPS (supported by all web servers) can be used directly. Even small 

companies might have the necessary know-how for this or can cheaply buy the setting up of it. 

Since each organisation only needs to manage its own certificate (i.e. just have it stored in the 

right place), there is no further maintenance effort needed. Because HTTPS is supported in all 

“client” applications such as web browsers, introducing this level of security doesn‟t introduce 

hardly any overhead. One advantage is also that the identity of the information provider is 

guaranteed, as well as the integrity of the information provided.   

3.3 Authentication of all communicating parties is necessary 

In the previous section, only one communicating party was authenticated by X.509 certificates or 

similar electronic authentication. In Internet banking applications, the authentication of the user is 

performed by usernames, passwords and/or some other means. In machine-to-machine 

communication it is often required that all parties would be electronically authenticated, i.e. that 

all parties want to verify the security credentials (X.509 certificates or similar) of the others 

through a “handshake” operation before proceeding with the communication. HTTPS supports 

this by a technique called “client authentication”.  When using client authentication, the web 

server takes care of that only authenticated parties can connect.  

Despite the existence of client authentication, the technical challenges may increase considerably 

when using this level of security. Some reasons for this are: 

 SSL client authentication is usually configured on the web server level, which implies 

some modification of configuration files by the web master. In small companies with 

skilled web masters, this will not be a problem but in bigger companies and/or with less 

skilled web masters it could be a major problem.  

 The result of the authentication may not be accessible to the actual service (e.g. a PDKM) 

so it may be necessary to do the authentication again if needed e.g. for access control.  

 If someone deletes or copies a certificate, then it could enable unauthorized access to 

information of many parties. Certificates can be revoked but it may be difficult to notice 
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that someone else is using the certificate so significant damage may occur before the 

certificate is revoked. 

 For individual users, creating a certificate is still technically challenging and the user may 

not even want such a certificate to be transferred.  

For Web Services using the Simple Object Access Protocol (SOAP) [W3C, 2007], an alternative 

to “client authentication” is to use the Web Services Security standard [Oasis, 2004]. The WS-

Security standard specifies how to include security credentials in the header of SOAP messages, 

thereby allowing the services themselves to do the authentication. Various software products exist 

(including open-source products) that implement WS-Security. With WS-Security it is also 

relatively easy to encrypt parts of a message. Still, setting up WS-Security is technically even 

more challenging than setting up HTTPS client authentication.  

As a conclusion, this level of security will probably be reserved for inter-organisational 

communication between organisations that have the means to set up the needed authentication 

mechanisms. However, as technology evolves, this level of security could become more feasible 

for other contexts also.  

3.4 User-based access control is necessary 

By the word “user” we will in this section normally assume that it is an individual user, an 

organisation or a computer that has been authenticated by one of the means described in the two 

previous sections. User-based access control is needed if the accessible information or services 

depends on who is trying to access them. As pointed out in Section 2, many systems already have 

in-built access control. Therefore the implementation of a “sufficient” degree of access control is 

rather a question of specification and technology choice of the application owner.  

In current PROMISE application scenarios, access control is provided by mySAP on the PDKM 

level and by various proprietary solutions on the PEID level. On the PEID level, UPnP-based 

solutions that use the PROMISE Core PAC interface have a range of authentication and user 

access tools at their disposal. The conclusion is therefore that there should be no need for 

PROMISE to define specific access control methods or tools because such methods and tools 

already exist and can be used as such in PROMISE applications.  

3.5 Parts of messages need to be encrypted 

Transmitted messages could, at least in principle, contain pieces of data that are intended for 

different recipients. Therefore different parts of the message may be encrypted using different 

keys so that only the final authorized party may access it. In the current PMI specification, this is 

possible by including encrypted infoItem values that only the right recipient knows how to 

decrypt. This is again an application-specific issue that does not affect the PROMISE architecture 

or interfaces as such. There are also other technical solutions to implement partial encryption of 

messages such as using encrypted attachment files or functionality provide by WS-Security 

specification.  

4 Security Management in PROMISE 

The earlier sections have dealt with security on a rather generic level, which should be sufficient 

for dealing with the cases of “no security” and “data encryption without authentication”. In this 

section we will analyse in further detail how the following cases can be handled in a PROMISE 

security system: 
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1. Authentication of users (human and system) 

2. Data Security (Confidentiality and Authenticity) 

PROMISE security must be applied in a consistent and integrated way in all levels of the 

PROMISE architecture. The diagram below shows the architecture layers in their simplest form. 

 

PDKM/DSS

Middleware

Core PEID Access Container

Hardware

 

Figure 4: Illustration of basic components in the PROMISE Architecture. Other 

components are also possible as long as they are “PROMISE-compliant” by implementing 

the PMI or the Core PAC interfaces.  

The diagram shows the three primary component layers of the PROMISE architecture, which 

comprises the following: 

1. The PDKM/DSS: the integrated back-end PROMISE system comprises the PDKM 

database and the Decision Support System which use the PROMISE Messaging Interface 

(PMI) to connect to and make data requests via the PROMISE middleware layer. Any 

back-end system can potentially be enabled using the PMI to connect to the PROMISE 

middleware. 

2. The PROMISE Middleware: the middleware provides communications and discovery 

services on behalf of its users (back-end systems and PEIDs), including device control 

functions for the management of PEID access.  

3. The PEID Layer: comprises product identification devices which may range from very 

simple PEIDs (e.g. barcode and passive RFID tags) to high-function PEIDs such as on-

board computers which may even imbed part of the middleware function. 

The components in each of these architecture layers has a role to play in the end-to-end 

PROMISE security architecture. In a simple view, these roles range from defining and managing 

security policy at the back-end, through managing authentication of users and observing security 

attributes in the middleware, to storage of data with the correct security attributes on the PEID. 

PMI 

Core PAC 

(or proprietary DC) 
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The complexity of these roles and their boundaries must be sufficiently flexible to take account of 

different levels of sophistication in the implementation of components and to allow for proxy 

implementations as necessary. Examples of different roles played by these components are: 

 Back-end systems enabled by the PROMISE Messaging Interface (PMI). These may 

include not only a PROMISE PDKM/DSS but any 3rd-party back-end system enabled by 

the PMI, even distributed PROMISE system management functions (e.g. stand-alone 

PROMISE Metadata Manager, Connection Manager or Device Registry). 

 Interconnected middleware instances which together form a PROMISE Inter System 

Communication (ISC) network. One middleware instance should be able to authenticate 

any neighbouring middleware instance when/if needed. 

 Device Controllers (DCs) which manage the connection between certain levels of PEID 

and the PROMISE middleware 

 Sophisticated PEIDs which can connect directly to the PROMISE middleware (i.e. the 

PEID software or firmware implements at least parts of the PMI). 

 Simple PEIDs (e.g. RFID tags) attached to high-value products. 

We will now analyse the roles of the different components more in detail.  

4.1 Back-end Systems 

In PROMISE, the main backend system is split into four components: core PDKM, PDKM GUIs, 

core DSS business logic and DSS GUIs. These components must not necessarily be running on 

one server. Hence, also the DSS should authenticate towards the PDKM as well as the GUIs 

should authenticate towards the DSS and PDKM respectively. Only permitted GUI instances 

should be able to access the DSS and PDKM content. 

Back-end systems using the PMI, which can include PDKM and DSS instances, must provide 

adequate security checks and controls to ensure only authorised human users may access them and 

that those users‟ authority is controlled according to their user group permissions. 

The mechanisms for such control should be aligned with the appropriate user access controls for 

the operating system type and underlying technology bases such as database, PLM system and 

user interface technologies. PROMISE back-end systems, such as the PDKM, must be able to 

authenticate the origin of requests for data or metadata.  

In order to ensure security and integrity of data in PROMISE, we must have the flexibility to 

define, manage and conform to the attributes of any single data item at all levels of the PROMISE 

architecture. 

A user of PROMISE infrastructure must be confident that the desired security of any single data 

item will be respected whether that data be stored within the PDKM/DSS, in transit or stored long 

or short-term anywhere within the PROMISE Middleware (including Device Controllers), and 

while stored on any PEID.  

The desired security attributes of a single data item may differ according to the level of the 

PROMISE architecture, and the differences may not always be intuitive from a hierarchy 

standpoint. As an example, the on-board odometer value of a vehicle must obviously be writeable 

on-board the vehicle (PEID or On-Board Computer (OBC)). It may be permitted for an authorised 

service agent to re-write the value from an authorised Device Controller or distributed back-end 

system, but perhaps it should not be permitted to alter this value elsewhere in the middleware or 

other back-end system in order to prevent falsification.   
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Security attributes should allow among others: 

 read-only data 

 encrypted data 

4.2 Middleware 

For secure communications links we can consider mechanisms such as HTTPS and similar. For 

authentication of users connecting to the middleware, we can consider local authority definitions 

in .ini files, registries, symmetric/asymmetric key pairs, or more sophisticated controls using 

certificates or other trust-based approaches. 

Any PROMISE Middleware implementation should support the following options: 

 authentication of back-end systems (including PDKM/DSS) that attempt to connect to it 

 authentication of neighbouring middleware instances in an ISC network 

 authentication of Device Controllers (DCs) that attempt to connect to it 

 authentication of PEIDs that have the capability to attempt a direct connection to it 

 the ability to transmit and receive data over secure connections 

The security of data that is being transmitted by the middleware, or being held temporarily in 

intermediate storage (e.g. store-and-forward nodes), must not be compromised. 

4.3 Device Controller 

When dealing with “simple” PEIDs that do not have any significant processing power, the Device 

Controller (DC) will have to operate as the proxy for managing security. 

A PEID may contain secure data, which might for example be encrypted, but might also be 

“clear” data limited to be read only by users with appropriate permissions. The DC must respect 

such security attributes. It may be necessary for the DC to retrieve the metadata structure for a 

PEID from the PEID itself or a Metadata Manager in order to determine the correct attributes. 

Similarly the DC must be responsible for ensuring that data is written to a PEID according to the 

security attributes defined in its corresponding metadata structure. 

It may also be an advantage to be able to limit the scope of authority of certain Device 

Controllers, e.g. maybe certain Device Controllers are only permitted to read and never write data.  

4.4 PEID 

In the case of any PEID with built-in processing capability, the responsibility for compliance with 

authentication and data security attributes may be wholly supported by the PEID itself, or shared 

with a Device Controller according to the level of PEID sophistication. 

PEID identification data may also include simple authentication mechanisms such as check digits 

verifiable by algorithms which apply to distinct product types or serial number ranges. 

When simple PEIDs (e.g. RFID tag) are attached to high-value goods, it may be necessary to have 

a choice of appropriate mechanisms to authenticate the PEID itself in order to identify counterfeit 

PEIDs, and to be able to detect if any PEID has been substituted or tampered with in an 

unauthorised manner.  
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5 Potential attack/security scenarios  

All devices and software systems involved in PROMISE application scenarios typically exchange 

confidential product information with each other. Hence, they are potential subjects to attacks by 

unauthorized parties, who want to gain access to such information or to manipulate the 

information exchange. This is aggravated for Internet-enabled systems such as PROMISE.  

 

The goal of this section is to identify potential attacks, how they could be performed against 

PROMISE systems and how they might be avoided. The main protection goal is to ensure 

confidentiality, integrity, availability of, and finally, access control to confidential PLM-related 

information. In Sections 5.1 to 5.5 we will analyse all potential attack scenarios. In Section 

Error! Reference source not found. we will draw some conclusions on the severity of these 

scenarios and how they could be avoided. 

5.1 Attack scenarios with malicious objects (masquerading) 

A first attack possibility for an adversary is to introduce counterfeit devices or systems in any 

level of the PROMISE architecture. 

1. Malicious PEID is introduced 

An attacker may introduce a malicious device pretending the identity of an existing device. Once 

connected to the PROMISE environment, the device has all possibilities to send and receive data 

like the genuine device, making active eavesdropping possible. In particular, the malicious device 

can affect data stored in the PDKM (new wrong data could be introduced) and thus influence 

decisions made by the DSS. Furthermore, it is also able to receive certain data from above layers, 

such as PEID-specific operational data from the PDKM. Protection against such a device can be 

achieved by means of encryption and authentication of PEIDs. 

Similarly, a malicious PEID can pretend a new identity when connecting to the DC. Doing so, the 

attacker may get some enterprise internal data via automated registration processes, if no secure 

authorization mechanisms are applied. This issue can be solved on the one side by only allowing 

previously registered devices to connect to DC. On the other side, security mechanisms can be 

developed, such as to assign access rights to granted users (PEIDs) and to verify authenticity of 

PEIDs, so that new PEIDs fulfilling security requirements can also connect to the PROMISE 

environment. 

2. Malicious DC is introduced (applicable to distributed Middleware implementations with 

separate DC and RHL components) 

A fake DC introduced by attackers may cause serious problems to PROMISE since may obtain 

and manipulate information from the PEIDs. A malicious DC is not necessarily stationary like in 

typical installation of PROMISE DCs, but it can deliberately move to find new PEIDs and 

collect/manipulate data from PEIDs found its range. Without proper authentication and 

authorization mechanisms, a PEID would not be able to distinguish between a genuine and a 

malicious DC. 

In case that no PEIDs are found or connected, a faked DC may pretend the presence of connected 

devices. On the one side, it can request data from systems from the upper layers, like PDKM and 

DSS. On the other side, it can deliberately introduce wrong information when answering requests 

from such systems. Even in case that some PEIDs are available, a fake DC may hide all or some 

connected devices, raising the impression that they are not reachable. Therefore, requests to such 

devices cannot be served. More severely, such a DC may allow further malicious PEIDs to 

connect to the PROMISE environment. 
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In order to deal with these issues, authentication mechanisms need to be supported by the DC and 

Middleware, in case that they are connected through an unsecure network. A DC should prove its 

authenticity to the RHL in order to prevent malicious requests or responses. Similarly, a DC also 

needs prove its authenticity to the PEIDs so that the PEIDs can deny any requests in case of a 

suspicious DC. 

3. Malicious RHL is introduced (applicable for Middleware implementations with separate 

RHL and DC components) 

In case that a counterfeit RHL is introduced, we observe similar threats as in the case of a 

malicious DHL. In particular, such a RHL can provide PKDM and DSS with wrong information 

or gain illegal access to information in PDKM and DSS. It may pretend and/or manipulate the 

existence of DHLs and PEIDs, allow malicious instances of DHL and PEID to connect to the 

PROMISE environment. As a consequence, the RHL requires therefore the same security 

mechanisms as the DHL. 

Authentication mechanisms between DC and RHL are required before communication between 

them can be established.  A DC has to be able to identify a counterfeit RHL in order to reject any 

requests for data from it. It is also necessary to prevent DCs from sending information about the 

availability of PEIDs. Furtermore, the PDKM should also be able to identify any connected RHL 

in order to prevent sending requests to a malicious RHL. 

4. Malicious PDKM is introduced 

Considering that the PDKM is the central storage and management component for all product 

data, the threats associated with a malicious PDKM are extremely critical to the PROMISE 

application scenarios. A malicious PDKM can communicate with the Middleware and inquire 

data from all PEIDs connected to the PROMISE environment. Furthermore, it can manipulate the 

data obtained and serve the DSS with wrong information. Altering or deleting certain data on a 

PEID or in the PDKM will become critical in terms of ensuring data integrity and correct actions 

proposed by the DSS. 

Using the PMI interface, a counterfeit PDKM can inquire data also from other PDKMs. 

Therefore, it is necessary for other systems in the PROMISE environment, in particular, DSS and 

the Middleware, and other PDKM instances connected through the PMI-network, to prove 

authenticity of any PDKM instance in the network. This requires authentication mechanisms 

between the corresponding systems. 

5. Malicious DSS is introduced 

A malicious DSS with access to the PDKM can have access to all confidential product 

information. Furthermore, it can manipulate decisions performed on the data or deliberately derive 

wrong decisions which can influence the PLM processes supported in the PROMISE 

environment. 

In order to cope with these issues, authentication mechanisms are necessary between DSS and 

PDKM. They should ensure that only DSS which are able to authenticate are allowed to read data 

from the PDKM and to derive business decisions from this data.  

6. PEID is accessed by an adversary (e.g. stolen) 

As PEIDs are attached to products, they can be stolen by attackers. This represents a source for 

serious threats that need to be considered. In particular, a number of activities can be performed 

by an adversary with a stolen PEID. First, all current operational data stored on the PEID is read 

out, if it is not encrypted. If not protected appropriately, the attacker can obtain the 

encryption/decryption mechanism implemented on the PEID and apply them to eavesdrop 

messages to and from this type of this devices. Ultimately, the attacker may replicate the device 

by means of reverse engineering in order to use the copy devices for malicious attacks (as 
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described in 1. In order to deal with these issues, corresponding encryption and protection 

mechanisms are required for PEIDs. Alternatively, PEIDs may be chosen  and installed in such a 

way that it cannot be stolen and/or tempered with easily. 

5.2 Attack scenarios with eavesdropping 

A second attack possibility for an adversary could be the eavesdropping of the communication 

between components of the PROMISE architecture. This is possible at any interface between two 

system components in the PROMISE environment: such as, betwen RFID-Tag and RFID 

Reader (PEID), between PEID and DC, between DC and RHL, between RHL and PDKM, 

between PDKM and DSS, and third-party systems. 

Eavesdropping can be performed either passively or actively: 

 Passive eavesdropping: Passive eavesdropping cannot be detected or avoided. The adversary 

merely needs to be in the range of wireless communication devices or has to attach himself to 

applied network infrastructure.  

  Active eavesdropping: Active attacks are mainly so called man-in-the-middle attacks. These 

attacks also require access to the communication infrastructure, like the passive attempt. In 

contrast to a), the attacker acts as unrecognized intermediate between two communication 

partners. Communication party A and B assume a direct communication to each other, yet the 

attacker is the actual communication partner of A and B. He now can collect, alter, or delete 

arbitrarily information he relays. 

The following eavesdropping scenarios are possible between PROMISE components: 

 Between PEID and DC: It is possible to eavesdrop information which the PEID sends to the 

DC. So it is possible to retain PEID specific information. 

 Between DC and RHL: Requests to and answers from DC as well as information about 

availability of PEIDs could be eavesdropped.  

 Between PMI-enabled RHL: Requests to and answers from RHL could be eavesdropped. 

 Between PDKM and DSS: Requests to and answers from PDKM could be eavesdropped. 

 Between PDKM and PDKM: Requests to and answers from PDKM could be eavesdropped. 

 Between PDKM and Third-Party System: Information from PDKM could be eavesdropped, 

when a user accesses them over a distributed system.  

 Between DSS and Third-Party System: Decisions from DSS could be eavesdropped, so that 

user without access to DSS could get the information as well. 

In order to protect the PROMISE environment against eavesdropping, following solutions can be 

considered: 

 Encryption: Passive listening on communication channels cannot be avoided. Encryption 

mechanisms are thus necessary in order to prevent the communicated information to be 

understood by the adversary. Different security levels may be introduced in order to support 

encrypted transmission of data. In cases, such as, simple PEIDs (tags) without own encryption 

functionality, the components in the upper layers of the PROMISE architectures, e.g., DC, 

RHL, need to provide corresponding protection mechanisms. 

 Authentication: Both the source and destination of each communication should have to verify 

their real identity using corresponding authentication mechanisms to avoid man-in-the-middle 

attacks. This has been discussed for the attack scenarios with malicious objects (masquerade). 
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5.3 Attack scenarios with authorization  

In a distributed environment like PROMISE, authorization is required in order to prevent misuse 

of the systems. Unfortunately, it is also a critical security factor of the whole environment, as 

most attacks, like password probing, phishing, aim at gaining illegal access through security holes 

in authorization. To protect against such attacks, it is essential to define and implement a clear 

model of authorization and access rights.  

For each system and user participating, it is necessary to decide which rights (concerning access 

to functionalities and to data) can be applied. Not every user or system should be allowed to 

request special data or manipulate it. Some instances should even only be allowed to read data in 

the PDKM. Access-levels are required to avoid false instances or components accessing critical 

data. Currently the PDKM already supports sophisticated authorization mechanisms so that the 

threats from this kind of attacks are less critical. 

5.4 Attack scenarios with data loss  

Another attack possibility for an adversary is to manipulate or destroy special components. For 

example a database or a part of it could be destroyed or manipulated in such a way, that the data is 

useless for any other participants. Another example is that a PEID with captured is destroyed or 

stolen. In such cases, it is important for the rest of the PROMISE environment to have the 

possibility to recover the data which was lost or at least to recover to the last save point. Backup 

and recovery functionalities are already supported by the PDKM for its data. However, such 

functionalities may also be required by other systems, in case this kind of attacks can occur with 

them. 

5.5 Denial of Service and Buffer Overflow attack scenarios 

A Denial of Service(DoS)-Attack aims at blocking the whole system so that it cannot be used. In 

an internet environment are such attacks always possible, and thus representing a high security 

threat for PROMISE. With DoS-Attacks, it is possible to obstruct nearly every PEID or software 

component, like Middleware, PDKM, and DSS, in the PROMISE network. Attackers could send 

requests (connection or query requests) to devices in short intervals and block regular requests and 

communication that are required by the business participants in the PROMISE environment. 

Although a DoS attack can be easily detected (by monitoring communication and responses in the 

network), it is difficult to generally secure the systems in a public network from DoS-attacks. 

Using authorization and/or specific network protocols, the systems can establish a private network 

with each other so that the threat of DoS attacks can be reduced. 

In connection with the UPnP-protocol, Buffer Overflow-attacks also represent a large security 

problem to the PROMISE environment. In particular, malware could be introduced into the 

system using Buffer Overflow attacks and the attackers could gain complete control of the device 

(maybe also to the whole network). The UPnP-protocol is used between the PEID and the DHL, 

so these devices need special protection against buffer overflow-attacks. More importantly, each 

program-part should be checked for potential buffer overflows in order to reduce the risk of this 

kind of attacks. 

5.6 Security mechanisms required by PROMISE 

In order to illustrate the required security mechanisms, we take example of the FIAT application 

scenario in PROMISE and discuss in the following the different security scenarios and the 
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utilization of the corresponding mechanisms in order to handle the security issues. The use case 

scenarios are presented in Figure 5 and Figure 6, respectively, and are discussed in the following. 

Tom is employee in repair shop „RS1‟, where car „C‟, which has never been before in RS1, is 

brought to for a normal check. Tom will drive car C into the repair shop to get information about 

special devices of the car. The information is stored on several PEIDs in Car C. Before Tom could 

get the stored information, the DC, which is normally located in the repair shop, has to realize the 

new PEIDs which had been brought into reach of it. 

Due to the fact, that C has never been in RS1 before the DC doesn‟t “recognize” the PEIDs, but of 

course could see some basic facts about them. The new PEIDs have to be logged on with the help 

of Tom. The system will ask Tom, whether the new PEID should be registered. To be sure, that 

Tom has the right to make this decision, he has to login before to authenticate himself. This 

security mechanism is quite important, due to the fact that otherwise everyone could register new 

malicious PEIDs without problem. 

If car A will be brought to the repair shop RS1 again after this first check, the DC will recognize 

the PEIDs in the car as familiar ones. The registration process could be skipped over. Independent 

of this an authentication process must be passed to avoid that malicious devices could intrude into 

the Promise system. 

If Tom wants to get information about the state of the car he will ask the PDKM or DSS-device 

over the computer system of FIAT. It is supposed that the PDKM is stored globally in the fleet 

management of FIAT, which is not based in the repair shop RS1. Tom‟s request is sent over the 

intranet to the fleet management of FIAT, where the PDKM/DSS will manage the request and 

return an answer. The transmission over the intranet should be secured as well. Otherwise 

eavesdropping becomes possible. As mentioned before Tom has to be logged in to execute 

requests and make decisions. Not each employee should have the same rights concerning the data, 

which could be requested and sent. Therefore different access rights should be granted to the 

employees. 

The PDKM forwards the request to the repair shop, in case of requests needing current data. The 

transfer is handled over the intranet. Encryption is needed to secure the transmission between 

different devices. It is conveyable that the encryption is handled as an end-to-end-connection from 

PEID to PDKM/DSS over Middleware, due to the fact that the Middleware does not have to deal 

with the data stored on the PEID. If an end-to-end-connection is used there would be no chance to 

eavesdrop the transmission in between. The encrypted data therefore must be checked against 

falsification. 
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Figure 5. Use case diagram for security issues in Fiat scenario (1) 
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Figure 6. Use case diagram for security issues in Fiat scenario (2) 
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To summarize the discussed security scenarios and necessary security mechanisms, Error! 

Reference source not found. give an overview of the entire PROMISE architecture with its 

components PEID, DHL/RHL (Middleware), PDKM, DSS, as well as the users and other third-

party systems. Furthermore, the figure indicates the necessary security mechanisms that are 

needed in order to make the communication (requests and responses) between the components 

secure: encryption of data and authentication between components. Built on this insights, the next 

section will describe concrete propositions in order to implement the security mechanisms in the 

interfaces between the PROMISE components 
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Figure 7. Necessary security mechanisms in PROMISE architecture  

 

6 Concepts and interfaces for handling security scenarios 

Based on the preceding analysis the major security issue in applications with high security 

requirements is that only granted PEIDs should be allowed to communicate to the PROMISE 

middleware. The introduction of malicious MW will be assumed as less important. This can be 

avoided e.g. by permanent connection of the MW to the PDKM (for instance during installation of 

PROMISE infrastructure). Hence, the following three main challenges for handling of the 

dynamic components (PEIDs) in the PROMISE infrastructure remain: 

 Initialization of the PEID/PDKM key pair 

 Introduction of malicious PEID 

In the following two subsections the two processes for the initialization of the PEID and the 

reconnection to the PEID to the PDKM are explained. Inherent in these descriptions the means to 

avoid attacks from malicious PEIDs or PDKM are contained. We do not deal with details of 

symmetric (e.g. DES, 3DES, AES) or asymmetric (e.g. RSA) encryption. Rather, an idea for 
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securing a PROMISE installation will be presented. For concrete implementations it will be 

required to examine the encryption standards in detail and determine an approach that fits best for 

the PROMISE requirements. 

6.1 Initialization of the PEID/PDKM key pair 

A new product part appearing in the PROMISE system will have a non-initialized PEID attached 

to it. On the one hand this means that the PEID is not yet associated to the particular PROMISE 

security concept. On the other hand, there is no representation of the part in the PDKM. This 

means that the new PEID first must be associated with the actual PROMISE world. Hence, the 

process serves the initialization of a PEID. 

The initialization phase is supported by the prototypical Process GUI which is employed in 

particular in the A2 demonstrator. It is deployed within the PDKM system and closely couples 

with the core PDKM. The aim of the Process GUI is to initialize product parts which are new in 

the PROMISE system. Additionally, the backend of the Process GUI will support the initialization 

regarding the security. 

For the initialization it is assumed that the PROMISE middleware, PDKM and PEID are 

trustworthy. This can be assured since the middleware, PDKM and PEID work in the own 

infrastructure for sure. The idea is to issue a dedicated security key to each PEID. It will serve the 

secure data exchange between the PROMISE infrastructure and trusted PEIDs. 

The initialization of the PEID regarding the security key for later communication with the 

PROMISE infrastructure will proceed as follows: 

1. A trustworthy PEID connects to the PROMISE middleware. 

2. The Process GUI shows the new product part which is to initialize. 

3. The Process GUI initiates the key generation for the specific PEID with an individual, 

possibly non-unique ID. In parallel a unique ID for the PEID in the PDKM is created. 

4. The PDKM invokes the method in the middleware to set the key and the unique ID for the 

new product part. 

5. The middleware forwards the key and ID setting to the PEID. 

As a result the key/ID pair is set in the PEID and in the stored in the PDKM for later access of the 

PEID to the PROMISE infrastructure. 

6.2 Reconnection of the PEID to the PROMISE infrastructure 

After initializing the PEID the associated product will go into its real world life and possibly 

operating data will be recorded. Eventually, the product will enter a service station for 

maintenance or exchange of parts. At this stage, it must be assured that at the one hand only 

initialized PEIDs can connect to the PROMISE infrastructure and that on the other hand only 

authorized PROMISE middleware can access data from the PEID. 

Assuming the situation that a product with an attached PEID enters the service station, the 

following steps will be made to integrate a properly initialized PEID: 

1. PROMISE middleware detects an appearing PEID with its public ID. 

2. PROMISE middleware requests PDKM to generate a challenge message for the appeared 

PEID with the certain public ID. 

3. PDKM creates a challenge message and transmits it to the PEID via the PROMISE 

middleware. 

4. PEID must compute a response and sends it to the PDKM via the middleware. 
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5. The middleware checks the response for correctness and grants access to the infrastructure 

when the response is correct. Otherwise the PDKM instructs the middleware to cancel the 

connection since the connection to a malicious PEID should be avoided. 

6. Attached to the grant-message from the PDKM to the middleware an answer is delivered 

to the PEID. 

7. The PEID checks the answer from the PDKM and holds the connection if the answer 

matches the PEID‟s response. Otherwise the PEID disconnects, assuming a malicious 

middleware trying to connect to the PEID. 

6.3 Connections between the static components 

Beside the connection of the dynamic PEIDs to the PROMISE infrastructure also the static 

components (Device Controller, middleware, PDKM) require a secure interconnection. 

Therewith, it must be avoided to expose internal information (e. g. operating data from a PEID) 

on the way in the PROMISE infrastructure (e. g. from middleware to PDKM). 

PROMISE components which are to be employed in real world scenarios are to install in an 

enterprise infrastructure before usage. During this system integration phase the PROMISE 

infrastructure will be installed and configured. Configuration regarding the security means that the 

trusted components of the infrastructure are to connect to each other. In particular the connection 

between the PROMISE middleware and the PDKM will be secure after installation and 

configuration. 

Different means based on standard technology are available. For example, SSL is a common 

technique to secure communication between partners such that the content is remains hidden for 

external parties. Additionally, a firewall can be used to restrict the access to the PDKM only from 

associated PROMISE middleware components. Concrete means to deploy in a scenario are to 

elaborate during the planning for the integration. It mainly depends on the existing system 

architecture, IT-guidelines and best practices in the organization. Additional concepts or 

interfaces are not required so secure the communication between the middleware and the PDKM. 

If the DSS is deployed separated from the PDKM the communication between them needs to be 

secured as well. Hence, the concept of standard technologies applies in this situation as well. 

6.4 Proposal of Interfaces 

6.4.1 Interfaces for Initialization 

In Figure 8, a message sequence chart for the successful initialization is depicted. Therein, the 

following methods play the key role. 

6.4.2 generateKey in PDKM 

The generateKey method is offered by the PDKM and will be called from the middleware or the 

Process GUI to start the initialization. The generateKey function will accept a public PEID-ID. 

The generated key will be stored in the PDKM as associated key to a PEID and delivered to the 

middleware for initialization of the PEID. 

6.4.3 setKey  

Setting the generated key in the PEID will be supported by the method setKey. It is offered by the 

middleware and the PEID. The method is called with two paramters. One for the public PEID-ID 

and the other for the key which will be associated with the PEID. 



                        
 

 

 

Copyright   PROMISE Consortium 2004-2008  Page 28 

 

@

 

PEID Middleware PDKM

announce via UPnP

generateKey(PEID-ID)
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generateKey(PEID-ID)

storeKey(PEID-ID,key)

generate key for PEID-ID

setKey(PEID-ID,key)

setKey(PEID-ID,key)

 

Figure 8. generateKey and setKey for the security initialization in the PROMISE 

infrastructure 

6.4.4 Interfaces for Reconnection 

Figure 9 shows the operation of the components during reconnection. In the following the 

interfaces serving to secure the connection are described in detail. 

6.4.5 createChallenge 

An appearing PEID will announce itself with the UPnP protocol to the middleware. The 

middleware then has to check whether the PEID is allowed to connect the infrastructure. 

Therefore, the middleware issues the request createChallenge to the PDKM. 

6.4.6 askForChallenge / confirmChallenge 

After requesting the PDKM with createChallenge, the PDKM will present the request to the 

service technician. The service technician then has to accept the request for challenge individually 

for each PEID. Thereby, the service technician can detect malicious PEIDs aiming to receive 

multiple challenges from the PDKM for key extraction. The confirmation from the service 

technician will be fed back into the PDKM and the registration will be continued or cancelled. 

6.4.7 challenge 

The challenge method is called by the PDKM in the middleware and by the middleware in the 

PEID, respectively. A challenge message is transported as a parameter in the method. A PEID 

receiving the challenge will have to generate a matching response. 

6.4.8 response 

After generating the response the PEID forwards the response message to the middleware and 

further to the PDKM. The response message is taken as a parameter in the response message. A 

PDKM receiving a response will first check if it matches with the issued challenge. A successful 

matching response will then initiate a confirmation with an answer message to the middleware. 

6.4.9 confirm 

The answer from the PDKM is sent via the confirm method to the middleware and finally to the 

PEID. A matching answer approaching the PEID will initiate the PEID to hold the connection to 

the middleware. 



                        
 

 

 

Copyright   PROMISE Consortium 2004-2008  Page 29 

 

@

6.4.10 cancelConnection 

If the response received in the PDKM does not match the initial challenge, the PDKM will issue 

cancelConnection which will result in disconnecting the PEID. 
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match
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response(PEID-ID,response-msg)

confirm(PEID-ID,answer)
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check

response/

answer

match
hold connection for access to PEID

 

Figure 9. Operation during reconnection 

 

7 Conclusions 

A comprehensive and effective security architecture is a fundamental requirement for a complete 

PROMISE infrastructure. Without a consistent end-to-end security management concept, the 

acceptance of PROMISE technologies and solutions will be limited. The proposed end-to-end 

security management concept also allows for “no” security in applications where e.g. systematic 

authentication is not needed or desired but where additional security levels can be added later if 

and when needed. This flexibility is important from the point of view of making all kinds of usage 

scenarios possible and to keep implementation and management of security feasible according to 

application requirements.  

This paper has analysed and defined the basics of a PROMISE security architecture that is mainly 

based on existing standard protocols and technologies. The conclusion is that a full end-to-end 

PROMISE security implementation is possible to implement without new standards or protocols. 

As such implementations are realised, new requirements may obviously occur but those 

requirements will most probably not be specific to PROMISE so corresponding solutions are 

likely to be developed by organisations such as IETF, W3C or similar.  
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