
Copyright  PROMISE Consortium 2004-2008

DELIVERABLE NO DR12.1: Test Report

DISSEMINATION LEVEL CONFIDENTIAL

DATE 06. December 2007

WORK PACKAGE NO WP R12: Architecture Integration

VERSION NO. 1.0

ELECTRONIC FILE CODE dokument1

CONTRACT NO 507100 PROMISE
A Project of the 6th Framework Programme Information Society
Technologies (IST)

ABSTRACT This document reports on the integration tests and corresponding test
results concerning the integrated PROMSE architecture. According to
tasks DR12.1 to DR12.3, these tests are integration tests which
consider generic test cases.

An overall summary is provided in Sec. 5.

STATUS OF DELIVERABLE

ACTION BY DATE (dd.mm.yyyy)

SUBMITTED (author(s)) Guido Stromberg 06.12.2007

VU (WP Leader) Guido Stromberg 06.12.2007

APPROVED (QIM) Dimitris Kiritsis 07.12.2007

Written by:

List author(s) name, organisation; List author(s) name, organisation;
List author(s) name, organisation

DR12.1: Test Report

Copyright  PROMISE Consortium 2004-2008 Page ii

@

Revision History

Date
(dd.mm.yyyy)

Version Author Comments

24.09.2007 0.1 Guido Stromberg Document Structure and Sec. 1

28.09.2007 0.2 Daniel Barisic Updated Sec. 2

02.11.2007 0.3 Falk Brauer Added Section 3

02.11.2007 0.4 Hong-Hai Do Reviewed and updated Section 3

30.11.2007 0.4 Altug Metin InmediasP input to Sec. 1 and Sec. 4

06.12.2007 1.0 Guido Stromberg Integration of InmediasP input and Sec. 5

Author(s)� contact information

Name Organisation E-mail Tel Fax
Guido Stromberg Infineon Technologies AG Guido.stromberg@infineon.com +49 89 234 40430
Daniel Barisic Infineon Technologies AG
Falk Brauer SAP AG
Hong-Hai Do SAP AG
Altug Metin InmediasP

Copyright  PROMISE Consortium 2004-2008 Page 1

@

Table of Contents
1 PURPOSE OF THE DOCUMENT ..2

2 INTEGRATION TEST PEID � MIDDLEWARE...3
2.1 DESCRIPTION OF TEST SCENARIOS ..3
2.2 COVERAGE OF THE TEST SCENARIOS...4
2.3 TEST RESULTS...5

3 INTEGRATION MIDDLEWARE � PDKM ...6
3.1 DESCRIPTION OF TEST SCENARIOS ..6
3.2 COVERAGE OF THE TEST SCENARIOS...7
3.3 TEST RESULTS...8

4 INTEGRATION DPKM � DSS ..9
4.1 DESCRIPTION OF TEST SCENARIOS ..9
4.2 COVERAGE OF THE TEST SCENARIOS...9
4.3 TEST RESULTS...12

5 OVERALL TEST SUMMARY AND CONCLUSION ...13

Copyright  PROMISE Consortium 2004-2008 Page 2

@

1 Purpose of the document
This document reports on the integration tests and corresponding test results concerning the
integrated PROMSE architecture. According to tasks DR12.1 to DR12.3, these tests are
integration tests which consider generic test cases. Application-specific tests are conducted under
the umbrella of the demonstration cluster in work packages Ax.

The tests target the compatibility of PROMISE components with respect to the following
interfaces:

• Integration PEID � Middleware
The interface between PEID and PROMISE middleware is the CorePAC interface, which
has been specified at month 18 in deliverable DR 4.3: �Specification of the Embedded
Core PEID�. An updated version of the CorePAC interface is expected at month 36
(DR4.5: Assessment and refinement of ECP specification), but has not been considered for
the tests documented in this deliverable. This is not critical, since the CorePAC
specification will only undergo minor changes. The amended specification will
specifically remain backwards-compatible, so that no integration problems need to be
expected.

• Integration Middleware � PDKM
The interface between Middleware and PDKM is the Promise Middleware Interface
(PMI). The version 1.0 of PMI has been specified in DR 6.5: �Interface definition and
design of enterprise communication infrastructure� at M24. All updates of this
specification will be documented in the architectural series. The PMI version 2.0 is now
available (M33) and substantially extends v1.0 with improvements and enhancements
obtained from the first implementation and integration experiences with the PROMISE
demonstrators. All PROMISE demonstrators are currently being realized with PMI v2.0.
In PMI v3.0 additionally elements for subscribing to events like PLM-events, device
management events or system management events will be added. PMI v3.0 will thus
incorporate all enhancements made during the project and be available at M42.

• Integration DPKM � DSS
The DSS system has been developed using a temporary database. In order to enable the
DSS system to access PDKM data, the algorithms had to be re-directed to the PDKM
back-end. This integration task has been tested based on selected data elements.

Copyright  PROMISE Consortium 2004-2008 Page 3

@

2 Integration Test PEID � Middleware
For the integration tests between PEID and middleware, the interoperability between PEID-Middleware
has been tested. The tests verify:

a. The compliance of implemented PEIDs to Core PAC
b. The compliance of middleware to Core PAC

We will now specify test scenarios for this in detail and then outline the results of our tests.

2.1 Description of Test Scenarios
The Core PAC interface has been specified in DR4.2. The Core PAC is a container that allows
information retrieval for multiple PEIDs using three UPnP services (Info, Content, PTinfo
service). The main functionalities that are delivered via the Core PAC are:

• Discovery: A middleware node is able to look up all PEIDs in the network and is informed
when PEIDs join/leave the network.

• Description: A middleware node is able to retrieve a list of application specific content
that is available on the PEID (e.g. sensor measurements).

• Information Retrieval: A middleware node is able to retrieve generic information (ID,
manufacturer, etc.) as well as application specific information form the PEID.

In order to asses the Core PAC compliance of both PEIDs and middleware, the test scenarios and
expected results have been defined as:

• Discovery I:
o Setup: The middleware is running and a new Core PAC for at least one PEID is

started
o Result: The middleware gets aware of the existence and creates an entry in its

internal registry for each PEID in the Core PAC
• Discovery II:

o Setup: A Core PAC for at least one PEID is running and the middleware is started
o Result: The middleware gets aware of the existence and creates an entry in its

internal registry for each PEID in the Core PAC
• Discovery III:

o Setup: A PEID joins a previously discovered Core PAC
o Result: The middleware gets aware of the existence and creates an entry in its

internal registry for the PEID
• Discovery IV:

o Setup: A Core PAC that has been previously discovered by the middleware
becomes unavailable

o Result: The middleware gets aware of the change and removes the entries of each
PEID inside the Core PAC in its internal registry

• Discovery V:
o Setup: A PEID that has been previously discovered by the middleware becomes

unavailable
o Result: The middleware gets aware of the change and removes the entry in its

internal registry
• Description I:

Copyright  PROMISE Consortium 2004-2008 Page 4

@

o Setup: The middleware is aware of a PEID and tries to retrieve the list of available,
application specific content

o Result: Middleware receives a valid list and creates corresponding entries in its
internal registry

• Information Retrieval I:
o Setup: The middleware is aware of a PEID and tries to retrieve generic information

(using the info service)
o Result: Middleware receives a valid response

• Information Retrieval II:
o Setup: The middleware is aware of a PEID and tries to retrieve application specific

information (using the content service)
o Result: Middleware receives a valid response

Using these test cases, we have tested the compliance for three different component setups:

• ECP based solution - SAP Middleware: In this setup the ECP hardware with an attached

switch and temperature sensor is used. A PC is executing a proxy application
(implemented using Infineon�s Java UPnP Stack and Infineon�s CorePAC programming
framework) that supports the Core PAC. ECP and proxy communicate over a proprietary
protocol on top of the TCP/IP protocol suite.

• RFID Reader � SAP Middleware: In this setup a Handheld RFID reader is used. Also a
proxy application is executed on a PC to support the Core PAC interface. The Cyberlink
UPnP Stack (Java) was used to implement this solution

• Pure Software PEID � SAP Middleware: In this setup a Core PAC application (C#) has
been implemented using the Intel® Device Builder for UPnP� Technologies. It
implements 6 PEIDs with all in all 40 information items and is purely software based.

2.2 Coverage of the Test Scenarios
For all mentioned PEID implementations Discovery I-V, Description I, Information Retrieval I-II
has been successfully tested. In all tests the PEIDs have been discovered accordingly and
communication between Middleware and PEIDs could be conducted without error. Thus the
compatibility of the three implemented PEIDs with the Middleware has been validated, and the
general applicability and platform independence of the CorePAC interface has been shown.

As the general compatibility of PEIDs and middleware with the CorePAC interface is achieved, it
is possible to submit a request to the middleware which then fetches information from a PEID and
returns it to the requester. To validate that this is also possible, we have built a distributed PEID-
Middleware setup. This can be seen as a simulation of an application scenario, where the products
are distributed over multiple sites (e.g. cars in service garages).

To this end, a distributed PEID-Middleware setup has been created. It uses the three PEID
implementations mentioned above and the SAP middleware. Following SAP�s approach of the
middleware, the so called Device Handling Layer (DHL) is installed in the local networks which
then directly connect to the PEIDs. In our test setup, the PEIDs and one DHL each are located at
Infineon�s site (Munich), SAP�s site (Dresden) and BIBA�s site (Bremen). The so-called Request
Handling Layer is also part of the middleware and uses the DHLs to fulfil requests. The RHL is
executed in Karlsruhe. We then used a generic Web Services Tool accessible via the internet to
invoke a query on the RHL. As expected, we were able to access and store on-line information of
the distributed PEIDs, thus validating the overall PEID-Middleware setup.

Copyright  PROMISE Consortium 2004-2008 Page 5

@

Figure 1: Distributed PEID-Middleware Setup

2.3 Test Results
In summary, the tests have proven the interoperability and suitability of the solutions that have
been developed in the area of PEID and middleware within PROMISE. The interoperability tests
have further shown that PEIDs with different technologies (hardware and software) are fully
compatible with the PROMISE system, and that the CorePAC interface is capable to support all
different flavours of PEID implementations (software, hardware, or proxy-based distributed). This
validates the choice of interface and its inherent abstractions. Further, the test of a distributed
PEID-Middleware setup has demonstrated that the necessary components to build PROMISE
applications have been implemented correctly, and according to the specifications; further, we
have thereby validated that also more complex scenarios can be executed efficiently under real-
live conditions including network delays typical for large-scale distributed deployments.

Copyright  PROMISE Consortium 2004-2008 Page 6

@

3 Integration Middleware � PDKM
For the integration tests between Middleware and PDKM, the interoperability between SAP�s
Middleware (consists of Request Handling Layer and Device Handling Layer) and PDKM based
on PMI has been tested. The tests verify the compatibility between the PMI implementations. We
will now specify test scenarios for this in detail and then outline the results of our tests.

3.1 Description of Test Scenarios
The PMI v1.0 has been specified in DR 6.5. The PMI specifies an XML-format to describe
requests and responses between PMI-enabled Device Controllers, different Middleware
implementations, and the PDKM. It consists of elements describing communication schemes like
time-to-live (for asynchronous/synchronous requests) or a Web Service call back point if a push
communication is preferred. Additionally requested data and response data can be described.
Main functions that are needed for communication between PDKM and Middleware are:

• PDKM sends request: PDKM creates a PMI Request for placing a subscription for an
info item provided by a PEID.

• Middleware retrieves request: The Middleware retrieves a request, interprets it, places a
subscription, and cares of data delivery to the PDKM.

• Middleware sends response: The Middleware decides that data delivery to the PDKM is
needed, creates a response for the specified Web Service callback address and sends it to
the PDKM.

• PDKM retrieves response: The PDKM receives the response of the Middleware,
interprets it, extracts the data value from the response, and stores the measurement point in
the PDKM.

Listing 1: PMI Subscription Request

In order to assess the compatibility of SAP�s PMI implementation and PDKM�s implementation
the following use cases have been defined and tested:

• PDKM sends request and Middleware retrieves request:

<pmiEnvelope type="readData" version="1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="request.xsd">

<readDataRequest interval="1" ttl="3" wsCallBack=
"https://sapportal.inmediasp.de/irj/servlet/prt/soap/com.sap.portal.prt.soap.XMLMiddleware"
requestTargetType="device">

<targetDevices>
<targetDevice>

<ids>
<id>ECU_9</id>

</ids>
<infoItems>

<infoItem>
<id>FUEL</id>

</infoItem>
</infoItems>

</targetDevice>
</targetDevices>

</readDataRequest>
</pmiEnvelope>

Copyright  PROMISE Consortium 2004-2008 Page 7

@

o Setup: The DHL is running within an intranet. The RHL is reachable from the
internet, the PDKM is able to communicate to the internet (e.g. over a proxy
server) ;

o Communicated data: The request sent to the middleware contains a target PEID, an
info item, and a Web Service callback point. Further information can be seen in
Listing 1.

o Result: The middleware is able to interpret the request and to create a subscription
to the PEID, so that the request can be answered as soon as the PEID is online and
can provide the required data.

• Middleware sends response and PDKM retrieves response:
o Setup: The DHL is running within a intranet. The RHL is able to connect to the

internet (maybe over a proxy server). The PDKM is reachable over internet. A
PEID with subscribed data has connected to the DHL

o Communicated data: The request sent from the middleware contains the subscribed
data, the request id, the targeted PEID and the info item. Further information can
be seen in Listing 2.

o Result: The middleware is able to detect the need of sending data and is able to
send the response to the PDKM. The PDKM is able to interpret the response and to
place the data in the PLM system.

3.2 Coverage of the Test Scenarios
The test use cases described above cover all needed functionality for implementing demonstrators
and real world applications. The network infrastructure set up of the test use cases is not trivial
because the communication has to bridge several firewalls and proxy servers. Additionally the
communication over the internet needs to be secured.

Both use cases have been successfully tested. They assess the compatibility of SAP�s and
InmediasP�s implementation of the PMI and show the proof PMI�s concepts. As SAP and HUT
also evaluated the compatibility of their Middleware by using the other ones request to call their
Middleware, intersystem communication compatibility between these systems is ensured. With
this, we have shown that the PMI specification and subscription concept developed in the
Research Cluster are applicable to real world scenarios.

<pmiEnvelope type="dataResponse" version="1.0">
<dataResult type="read">
<requestId>56</requestId>

<result>
<targetDevices>

<targetDevice>
<id>ECU_9</id>
<infoItems>

<infoItem>
<id>FUEL</id>

<value timestamp="2007-08-29 13:16:35">
100

</value>
</infoItem>

</infoItems>
</targetDevice>

</targetDevices>
</result>

</dataResult>
</pmiEnvelope>

Listing 2: PMI Response Structure

Copyright  PROMISE Consortium 2004-2008 Page 8

@

3.3 Test Results
In summary, the integration tests of Middleware and PDKM have shown the interoperability and
suitability of the communication solutions that have been jointly developed in the Research
workpackages R4, R6, and R9 in PROMISE. The feasibility and viability of the PMIs concepts
have been proven by the tests. This validates the choice of the interface and its inherent
abstractions. In the next steps, different technical configurations of the different components
(PEIDs, Middleware, and PDKM) will be specified for further comprehensive tests for the
integration of the components. Further experiences will be collected from the process of
implementing the PROMISE demonstrators. All enhancements and improvements of PMI will be
incorporated into the version 3 of the PMI and documented in the Architecture Series of WPR12.

Copyright  PROMISE Consortium 2004-2008 Page 9

@

4 Integration DPKM � DSS

4.1 Description of Test Scenarios
The PDKM framework and the DSS system have been developed within different work packages
(R9 and R8), although DSS is considered as a part of the PDKM framework. Due to this
architectural point of view, some integration work is required in order to make these systems work
together.
According to the Description of Work, the PDKM system has been developed based on an
existing PDM system. The chosen system was mySAP PLM which is part of SAP ECC and the
work in R9 was based on this choice. The result of the work in R8 will be integrated into the
PDKM framework.
The development of the DSS system is carried out by using a temporary database but in the final
DSS solution, DSS algorithms access data that is stored in PDKM. The design of the temporary
database was crucial because the intention was to allow the seamless change-over to the PDKM
database when the integration is carried out. During the development period the temporary
database was acting like the PDKM database. In order to reach this goal the tables of the
temporary database had the same layout as the back-end tables of the PDKM system.
As the development of both systems matures and the DSS algorithms and PDKM back-end
structures are finalized, the method for data retrieval in the DSS system should be changed. In this
concrete case, the DSS algorithms which are processing the retrieved data are re-directed so that
they access the PDKM database directly. The re-direction of the DSS algorithms and the correct
retrieval of PDKM data have been tested for selected data fields in the scope of the PDKM-DSS
integration tests.

4.2 Coverage of the Test Scenarios
The goal of the DSS-PDKM integration is to enable the DSS algorithms to access PDKM back-
end data. In order to accomplish this task, the semantic mapping between the PDKM object model
and mySAP PLM objects has been used. The utilisation of the semantic mapping is important
since the developers of DSS algorithms are not experienced PDKM users and it is not indicated
which data object in the DSS system corresponds to which back-end data object in the PDKM
system.

Tabelle 1: Mapping of object model terminology

Semantically
(examples)

SAP Object model (DR9.2) Comment

specific product type Material AS_DESIGNED_PRODUCT
as-designed product
structure

Bill of Material,
BoM

self-association of
AS_DESIGNED_PRODUCT

individual product Equipment with
Serial Number,
shortly
Equipment

PHYSICAL_PRODUCT

as-build/as-used
(shortly �as-used�)
product structure

Installed Base self-association of
PHYSICAL_PRODUCT

product templates Equipment AS_DESIGNED_PRODUCT From SAP-

Copyright  PROMISE Consortium 2004-2008 Page 10

@

Semantically
(examples)

SAP Object model (DR9.2) Comment

Template
(PDKM-term)

system point
of view an
Equipment
Template is an
instance of an
Equipment
semantically
recognizable
as Template.

product template
structure

Installed Base
Template
(PDKM-term)

self-association of
AS_DESIGNED_PRODUCT

analogue to
Equipment
Template

customisable subset
of metadata of
products

Classification PROPERTY

document metadata Document Info
Record

DOCUMENT or (depending
on the context)
DOCUMENT_RESOURCE
with associated
DOCUMENT

document (in
contrary to document
metadata), (physical)
file

Original FILE

field data in the form
of a single value

Measuring
Document

FIELD_DATA

field data in the form
of a document

Document Info
Record
semantically
recognisable as
field data with
associated
Original

FIELD_DATA with
associated DOCUMENT
with associated FILE

type of field data Characteristic VALID_FD_TYPE
a sensor/an info item
of a PEID

Measurement
Point

FD_SOURCE

incident, event Notification EVENT
type of incident,
event

Notification
Type

(no correspondence)

additional (field) data
describing an
incident, event

Item FIELD_DATA

types of possible
additional (field) data
describing an
incident, event

Code VALID_FD_TYPE

classes of types of
possible additional
(field) data

Code Groups (no correspondence)

Copyright  PROMISE Consortium 2004-2008 Page 11

@

Semantically
(examples)

SAP Object model (DR9.2) Comment

describing an
incident, event
knowledge depending on the

context
Notification,
Measuring
Document, or
Document Info
Record with
associated
Original(s)
semantically
recognisable as
Knowledge

depending on the context
FIELD_DATA or EVENT
with eventual associations

Certainly all
product-related
data stored in
the system is
accessible for
the user.
Context-
dependent the
methodical
access to it
might result in
knowledge.

The dependencies of some of the essential PDKM back-end tables are illustrated in the following
table.

Copyright  PROMISE Consortium 2004-2008 Page 12

@

Tabelle 2: PDKM data model (extract)

4.3 Test Results
The configuration of DSS algorithms according to the mapping has been performed and for
selected data elements the database access has been re-directed to the PDKM back-end. As a
result of this, data from the PDKM system could be retrieved and processed in the DSS system.

Copyright  PROMISE Consortium 2004-2008 Page 13

@

5 Overall test summary and conclusion
Integration tests aim at potential weaknesses on two levels: firstly, on the level of interface
specifications (e.g. applicability, generality, feasibility, preciseness); secondly, on the level of
component implementations (correctness).

This report shows that the development of PROMISE components has matured to a grade which
ensures that

• various implementations of each PROMISE components, developed by different partners,
can interact with the adjacent PROMISE layer components, which validates the
preciseness of interface specifications;

• the implementations of PROMISE components fulfil the PROMISE interface

specifications, which validates the feasibility of interface specifications;

• implementations of PROMISE components can be exchanged, and various PROMISE

components can co-exist without interfering, which validates the generality of the
interface specifications;

• implementations of PROMISE components can operate under synthetic real-life

conditions, which validates the applicability of interfaces;

• implementations of PROMISE components are correct regarding the described

synthetic test scenarios.

As all test have been defined thoroughly (prior to their execution) to provide a coverage that is
similar to the requirements of typical applications, further generic integration test are not assumed
to bring about significant insights. Therefore, further tests will be conducted in an application
specific way within the demonstrator developments.

