
Copyright © PROMISE Consortium 2004-2008

DELIVERABLE NO DI1.2: PROMISE Standardization Domains

DATE 31. October 2005

WORK PACKAGE NO WP I1: Standardization

VERSION NO. 1.0

ELECTRONIC FILE CODE DI1.2 PROMISE Standardization Domains.doc

CONTRACT NO 507100 PROMISE
A Project of the 6th Framework Programme Information Society
Technologies (IST)

ABSTRACT: This deliverable deals with the definition of standardization domains.
These domains are the Content, Device Interoperation, Middleware
and Backend domain. For each of these domains promising standard
candidates are nominated taking the work of DI1.1 into account.

STATUS OF DELIVERABLE

ACTION BY DATE (dd.mm.yyyy)

SUBMITTED (author(s)) Daniel Barisic 31.10.2005

VU (WP Leader) Guido Stromberg 31.10.2005

APPROVED (QIM) Dimitris Kiritsis 15.11.2005

DI1.2: PROMISE Standardization Domains

Written by:
Guido Stromberg, Infineon Technologies AG
Daniel Barisic, Infineon Technologies AG
Gregor Hackenbroich, SAP Research, Germany
Mario Neugebauer, SAP Research, Germany
Jürgen Anke, SAP Research, Germany
James Brusey, Camebridge University
David Potter, Indyon GmbH
Andreas Edler, InMediasP GmbH
Altug Metin, InMediasP GmbH

Copyright © PROMISE Consortium 2004-2008 Page ii

@

Revision History

Date
(dd.mm.yyyy)

Version Author Comments

31.10.2005 1.0 Daniel Barisic Version submitted

Author(s)’ contact information

Name Organisation E-mail Tel Fax
Guido Stromberg Infineon guido.stromberg@infineon.com +49 89 234 40430 +49 89 234 52227
Daniel Barisic Infineon daniel.barisic@infineon.com +49 89 234 20691 +49 89 234 52227
Gregor Hackenbroich SAP Research gregor.hackenbroich@sap.com +49 351 4457 2303 +49 6227 78-43474
Mario Neugebauer SAP Research mario.neugebauer@sap.com +49 351 4457 2312 +49 6227 78-44321
Jürgen Anke SAP Research juergen.anke@sap.com +49 351 4457 2304 +49 6227 78-44661
James Brusey Cambridge jpb54@cam.ac.uk +44 1223 765605 +44 1223 338076
David Potter Indyon david.potter@indyon.de +44 23 9234 5152 +44 23 9259 2327
Andreas Edler InMediasP edler@inmediasp.de +49 3302 559420 +44 3302 559124
Altug Metin InMediasP metin@inmediasp.de +49 3302 559409 +44 3302 559124

Copyright © PROMISE Consortium 2004-2008 Page 1

@

Table of Contents
1 PURPOSE OF THIS DELIVERABLE ..2

2 INTRODUCTION..2

3 STANDARDIZATION DOMAINS ..4
3.1 CONTENT DOMAIN ..5

3.1.1 Naming Standards..6
3.1.2 Other Content Domain Standards..8

3.2 DEVICE INTEROPERATION DOMAIN ...9
3.3 PROMISE MIDDLEWARE...10
3.4 BACKEND ..12

4 CONCLUSIONS ..14

5 REFERENCES...14

Copyright © PROMISE Consortium 2004-2008 Page 2

@

1 Purpose of this Deliverable

This deliverable aims at exploring the potential areas where standardization may foster the exploi-
tation and commercialization of the PROMISE software and hardware components, and where it
may help to agree on common interfaces between the PROMISE components. We therefore see
existing standards as a helping guideline for implementing the PROMISE architecture and will
strongly favour using existing standards wherever possible.

The areas of standardization are therefore defined by the interfaces that are given by the PROM-
ISE system architecture, as it has been defined by the corresponding deliverables. Thus, there is a
natural choice of relevant standardization domains, so that we in this document already make an
attempt to foresee on each layer of the PROMISE architecture the extent to which standardization
will be useful or even possible, and propose existing standards if applicable. In this delivery we in
particular strive to identify the standardization domains that allow utilizing a tight standard with-
out restricting its area of applications. However, as the fields of applications in PROMISE are
wide, enforcing a particular standard for a particular standardization area may turn out as inappro-
priate in the end.

We believe that the standards mentioned in this document must be considered as suggestions. On
each architectural layer, i.e. in each standardization domain, more than one standard may be pro-
posed. However, for each application domain, one of these standards should be proposed per
standardization domain. The proposed standards will be the ones that are used for the demonstra-
tors until month 18 in the PROMISE project. In the next deliverable due at month 18, these
choices will be reviewed and summarized as suggestions for the following months of develop-
ment.

In the overall PROMISE project, the dealing with standards should follow the following guide-
line. The first approach is to use an existing standard if it is applicable for the respective applica-
tion area. If no such standard is available, the second approach is to extend an existing standard.
The proposed solution that is used in PROMISE should still be standard-compliant and could thus
be used as a reference implementation for future standard-shaping activities. The third approach is
to find an agreement in the overall PROMISE consortium on a best-practice definition. Clearly,
the first and the second approach are favoured over the third. We expect that the third approach to
define the interface between the PROMISE components is concurrently the one that inherits the
highest risk to make component interoperation fail. However, it should be noted that the interface
definition is in the responsibility of the respective research cluster work packages.

This document is organized as follows. In the following section, we will review the PROMISE
system architecture and identify the individual interface layers on which standards could be ap-
plied. These are the so-called standardization domains, and will be detailed on in Sec. 3. In par-
ticular, we will refer to some potential standard candidates for each individual standardization
domain. As explained above, these candidates serve as examples rather than as the final choices.

2 Introduction
In the following, we will identify and assess the utilization of standards in the PROMISE project.
As the project acts in a wide area of application as well as it has a large vertical scope from hard-
ware layers to backend enterprise systems, it is necessary to define suitable standardization do-
mains.

Copyright © PROMISE Consortium 2004-2008 Page 3

@

We have opted to organize these domains vertically. That is, the interfaces between the individual
components of the PROMISE architecture are potential candidates for either adopting an existing
standard or for standardization. Within these standardization domains, the appropriate interfaces
may depend on the specific application, so that on each layer more than one potential candidate
for standardization could be identified. However, for each application domain, one particular in-
terface should be suggested on each architectural layer.

Fig. 1 shows the accepted view on the overall PROMISE architecture. In the sequel, we will
briefly characterize the standardization domains.

The content domain deals with the data that is collected by or stored on the PEID. Its format and
semantics could vary widely for the different application cases, therefore a PROMISE objective
should be to standardise on the protocols and data structure used for accessing data collected by or
stored on the PEID while giving maximum flexibility to the actual data elements required by any
single application..
Standards and formats in the content domain must take account of the following elements:
1. Interfacing with subordinate devices e.g. RFID tags, analogue and digital sensor signals, bar-

code data, diary data (let us call this raw data).
2. Data received from the upper layers of the PROMISE architecture, which should normally be

in the format preferred by PROMISE (XML format and semantics).
3. The need for transformation of raw data into the preferred PROMISE format, and vice versa.

The device interoperation domain deals with the communication of the PEIDs content to the
PROMISE middleware layer. The functional interface for this purpose is the Core Product Em-
bedded Information Device Access Container (Core PAC) introduced in DR4.2. The Core PAC is
not necessarily a physical thing, but a view on a container of PEIDs with universal, predefined
methods how to find PEIDs, how to read information and how to write information to them. An
application independent definition of the Core PAC is one candidate for standardization in this
domain.

In order to allow access to the Core PAC by the PROMISE middleware a suitable device inter-
operability layer has to be agreed upon. The desired device interoperability layer provides mecha-
nisms so that devices can be automatically discovered by the middleware, and it supports the de-
scription of the device’s functionalities. Further, the device interoperability layer provides com-
munication mechanisms which allow it to convey and receive the content to and from the mid-
dleware layer. The definition of the device interoperability layer is the second goal in the device
interoperation domain.

The PROMISE middleware domain deals with the connection of the Core PAC and the backend
applications. The core of the PROMISE middleware is specified in DR6.2. In the description, the
Device Controller is divided in two parts: the Device Handling Layer and the Request Handling
Layer. The interoperability of the devices and the middleware should be ensured with the inter-
faces that are defined in the device interoperation domain. The standardization efforts in this work
package should also deal with the interfaces between the Device Controller, the Enterprise Com-
munication Infrastructure and the Backend Applications. As described in DR6.2 the PROMISE
middleware should be designed following the service oriented paradigm. This implies that certain
standardization or use within the middleware is required as well and has to be considered.

Copyright © PROMISE Consortium 2004-2008 Page 4

@

The backend domain deals with the management of product data over the entire product life cycle.
Therefore on the basis of a Product Data Management System the PROMISE Product Data and
Knowledge Management System (PDKM) will be designed and implemented (see also DR9.1).

As a central component of the PROMISE approach the PDKM system integrates and manages
product-related data from all lifecycle phases to support comprehensive data analysis and to en-
hance operational businesses with obtained insights. The PDKM system provides the structures
for representation and distribution of field data from BOL (production phases), MOL and EOL
and serves for management of engineering knowledge, derived from field data to support BOL
processes (design phases). A major challenge in realizing the PROMISE vision is the consistent
integration of heterogeneous product-related data from various operational sources of the different
lifecycle phases to support comprehensive data analysis. This includes – besides the integration of
PEID data which will carried out by the PROMISE middleware and the PDKM application inter-
face – the integration of data from different applications like PDM systems, field data bases or
ERP systems. These tasks require certain standards that have to be considered.

Fig. 1: PROMISE component architecture

3 Standardization Domains
Let us now take a more detailed look at the standardization domains and point out promising can-
didates for standardization.

Copyright © PROMISE Consortium 2004-2008 Page 5

@

3.1 Content Domain
The Content Domain must support a variety of formats standards and protocols owing to the dif-
ferent data sources that it must include, and different levels of PEID functionality.

A PEID could be any one of the following:
1. simply an RFID device
2. a device using Sindrion technology
3. functionality embedded in the firmware of a microprocessor controller (e.g. domestic appli-

ance)
4. functionality embedded in the software/firmware of a highly sophisticated on-board manage-

ment system (e.g. vehicle)

In the first case, the data formats and protocols for data exchange are mostly covered by the vari-
ous standards included in the EPCglobal “EPC Network” architecture, and PROMISE should fo-
cus on those standards. The EPCglobal standards were described in PROMISE document DI1.1.
The key element of this set of standards, relevant to the content domain, is the EPC numbering
scheme. This scheme provides each tagged object with a globally unique identifier. This scheme
has the advantage that it is compact (requiring only 96 bits) and compatible with other usage
within the EPC Network.

However we must also take care not to exclude any other established formats outside of the EP-
Cglobal standards. Other possible formats and protocols include the DIALOG system proposed
by Helsinki University of Technology and the WWAI mechanism proposed by Stockway. These
standards are examined in more depth in section 3.1.1.

In the other three cases (i.e. other than a simple RFID device), the ideal situation would be to im-
pose a single PROMISE standard, XML-based schema for the storage and access of PEID data.
An approach for this would be to identify any existing, robust data models which already contain
the majority of data elements required for PLM (maybe, for example, SAP data models), then to
perform a gap analysis on them to identify additional data elements that must be added. The final
stage will be to incorporate those additions into the target standard(s).

However we must recognize that not all users may be willing to re-engineer existing “PEID”
functionality, in which case a methodology for mapping between the proprietary formats and the
desired PROMISE standard must be defined. Even where the PEID is being designed from
scratch, it may not be feasible to provide enough memory or processing capability to allow data to
be stored in an XML form. Therefore, we should recognize that the content domain standards
should not dictate format.

Since the Content Domain must cater for bit-oriented encoding schemes on one hand, and XML-
based schemas on the other, transformation of data is unavoidable at some points and with some
kinds of data. Although not strictly a standards issue, the question of responsibility for transforma-
tion of data from one format to another for storage on the PEID needs to addressed.

 In the case of a sophisticated PEID (possibly embedded in an on-board computer or microproces-
sor) it may be possible, even desirable, to make the transformation within the PEID. However
some PEID implementations will require "external" software to make the transformations. Per-
haps this could always be the Middleware, and in some instances the Middleware would be physi-
cally external to the PEID and in others alongside it in a sophisticated on-board system.

Copyright © PROMISE Consortium 2004-2008 Page 6

@

Certain kinds of data, e.g. diary data, trend data, alarm data, imply other requirements such as
standardised date and time stamping, sampling rates etc. We should consider any data format is-
sues to be within the scope of this document. However, sampling rates and event triggers should
be considered only to the extent that they may require additional data elements to define those
rates and triggers.

In the following section, we examine the naming standards that have the potential to be used by
PROMISE for assigning each PEID a unique name (or number).

3.1.1 Naming Standards
There are a number of naming standards that appear to be suitable for PROMISE applications. In
this section, we compare these standards and examine their fit to PROMISE.

3.1.1.1 Electronic Product Code
The electronic product code (or EPC) has been standardised by EPCglobal, a subsidiary of GS1
(previously known as EAN.UCC). An EPC is typically stored on a passive, low capacity RFID
tag. This technology was originally chosen as a way to minimise cost, although EPCglobal have
left open the possibility of using an EPC with a more sophisticated tag that has memory and / or
sensors. A diagram showing the use of an EPC is given in figure 2.

Fig. 2 Overview of EPC Approach

As can be seen from this diagram, the EPC itself consists of 4 components: a coding scheme indi-
cator, a manager identifier, the object class, and a serial number. An EPC can be roughly consid-
ered to be a Universal Product Code (such as that used for barcodes on consumer products) plus a
serial number. The current format uses just 96 bits and thus is quite economical in its use of mem-
ory on a RFID tag.

In a typical EPC Network application, the first stage (1) is to re-format the EPC into an Internet
hostname (or URI). Existing DNS infrastructure (2) using a special lookup type translates this into
a URL. This two level indirection is a feature of this approach and ensures that it is possible to

Copyright © PROMISE Consortium 2004-2008 Page 7

@

change the location of web services associated with an EPC without having to update the RFID
tag. Note also that although the serial number is dropped in the process of reformatting, it can be
reinserted during step 2. A typical EPC Network application (3) might be querying for specific in-
formation (such as identifying the manufacturing batch number), or general information, such as
the location of online product manuals. Results are returned to the client (4) in the form of a re-
cordset as a response to a query.

One factor that may influence the selection of approach is that the EPC numbering scheme usually
requires that users pay EPCglobal for registration of each different product class (the exception
being US DoD suppliers). This is currently more expensive than simply registering a DNS entry
however it has the advantage that a single body manages the numbering scheme and that the pos-
sibility of duplicates is thus reduced.

3.1.1.2 DIALOG System
A diagram summarising the DIALOG system is shown in figure 3.

Fig 3. Overview of the Dialog System approach

The DIALOG system identifier is based on the IETF Universal Resource Identifier (URI) stan-
dard. The DIALOG approach is to write a serial identity number followed by the “@” character
and then a URI. The first stage (1) is to resolve the URI into a URL (i.e. a normal web address).
Although not strictly defined, in most cases this would be a one-to-one mapping. An advantage of
this approach is that it reduces the reliance on DNS. A disadvantage is that it may not be suitable
if the web address of the networked database changes during the life of the product. However this
disadvantage might be overcome by using some more flexible mapping between URI and URL.

3.1.1.3 WWAI
Stockway’s WWAI approach is summarised by in figure 4.

Copyright © PROMISE Consortium 2004-2008 Page 8

@

Fig 4. Overview of Stockway’s WWAI approach

The WWAI approach is partially based on peer to peer networking principles. For a node to join
the WWAI network and provide an information service, it must first obtain certification from a
certificate authority. The basis for ensuring uniqueness of WWAI codes is based on this certifica-
tion and it can roughly be considered equivalent to registration under the EPC Network approach.

In summary, there are a number of competing approaches. Currently the EPC Network approach
seems furthest along in terms of market acceptance and maturity of the standards. Although it is
generally considered more centralised due to its reliance on DNS, some use of DNS is inevitable
in all approaches.

3.1.2 Other Content Domain Standards

Apart from the identity of the PEID, as defined by some form of naming standard discussed in the
previous section, there may also be a need to define new standards or require certain existing stan-
dards for the format and structure of data as it is stored on the PEID and communicated to the up-
per layers.

In principle, the storage could be somewhat independent of how the data is communicated, and in-
ternal storage formats could be left to the PEID designer, but this demands that there is available
function to translate between internal storage and external communications formats. However, as
a minimum, it is critical that the formats used for communication are clearly defined, as this is key
in ensuring interoperability

As long as data stored on a PEID is of interest or value to only a single organisation, then the for-
mat/structure/encoding etc. is of little importance as long as that organisation can retrieve and in-
terpret it. However once there is a desire to make that data accessible across organization bounda-
ries so that any stakeholder can access the data stored on the PEID, then data standards are essen-
tial.

Copyright © PROMISE Consortium 2004-2008 Page 9

@

The beginnings of such a data model are defined already in PROMISE in the form of the Content
Service described in DR4.2 “PEID Core Prototype”. It is not critical to finalise this issue for this
document; there is scope for a wider discussion and opportunity to canvass opinion and input
from other PROMISE partners by leaving this item open at this stage.

3.2 Device Interoperation Domain
As already mentioned, a standardization of the device interoperability layer which allows com-
munication between a Core PAC and the PROMISE middleware is desirable. We first need to as-
sess which requirements are stated for such a layer. A summary of these requirements given in
DR4.2 are:

1. Client-Poll model for invocation
First of all the PROMISE middleware needs to access the functionalities of a Core PAC by
the remote invocation of methods that are provided by the Core PAC. These methods are
called actions. The access method on actions must be open, common to all actions, should
be platform and programming language independent, and preferably standardized

2. Server-Push model for information
Each remote device such as a Core PAC has specific information associated with it. The
sum of all this information is called the state of the remote device, and the variables de-
scribing the state of the remote device are called state variables. Changes of the state
should automatically be communicated by the Core PAC to the parts of the network that
are interested in its state.

3. Server Advertisement
Besides the exchange of information the interoperability layer must allow the PROMISE
middleware to connect to the Core PACs in a seamless and ad-hoc fashion. Therefore a
new Core PAC that enters the network should actively inform the PROMISE middleware
about its presence. To this end, it will spread certain messages in the network which reveal
that a new device has joined and is ready to share its services with clients. This step is
called advertisement. Similarly, methods must be provided to un-register Core PACs from
the network.

4. Client Search
Vice versa, the PROMISE middleware may also need to search for the PEIDs in reach.
This may be the case when the machinery containing the PEIDs is immobile and a mobile
terminal is used e.g. for maintenance purposes. The maintenance terminal may either run
the PROMISE middleware itself fully or partially. Thus, the Device Interoperability Layer
must also define appropriate search mechanisms.

The desired features of the device interoperability layer can be implemented via or are already
provided by numerous existing semantic middlewares. It is more beneficial for the PROMISE
project to use and extend these standards rather than defining new ones. Some of the existing
middleware platforms that are applicable in this area are:

• Corba (Common Object Request Broker Architecture) [CORBA] is a generic architecture
which enables a client application to execute functions and methods on a remote server.
The core of the Corba architecture is the Object Request Broker (ORB), which is respon-

Copyright © PROMISE Consortium 2004-2008 Page 10

@

sible for client-server communication. The ORB is also able to communicate between dif-
ferent systems and hardware architectures.

• Java RMI (Remote Method Invocation) [RMI] is similar to Corba but RMI is based on
Java and, therefore, only supports Java-based communication between applications. It al-
lows data and code to be transferred and executed on different platforms.

• Jini (a pseudo-acronym for Jini Is Not Initials) [JINI] is an extension of RMI that provides
functionalities for seeking and supporting services. Jini also supports code download and,
as a consequence, the integration of drivers at runtime.

• JXTA (is short for Juxtapose, meaning side by side) [JXTA] was developed on an initia-
tive of Sun Microsystems and attempts to simplify the structure and operation of Peer-to-
Peer (P2P) networks. It specifies mechanisms to find its participants and allows communi-
cation via XML-RPC.

• UPnP (Universal Plug and Play) [UPNP] was developed by the UPnP forum
(www.upnp.org) and allows almost self-configuring, service based, peer-to-peer connec-
tivity between networked devices using the Extensible Markup Language (XML) to de-
scribe services and to process communication. For client-server communication, the Sim-
ple Object Access Protocol (SOAP) [SOAP] is used. The eventing of state changes is done
via the General Event Notification Architecture (GENA) [GENA].

For the demonstrators developed due to month 12, UPnP has been defined as the dedicated device
interoperability layer. It has been chosen as it is an open, platform and programming language in-
dependent middleware architecture which provides all mechanisms needed in the PROMISE con-
text. As UPnP poses no restrictions on the concrete implementation, neither on the hardware nor
on the software side, the different partners are able to realize their UPnP interface fitting for their
field of operations. UPnP is a promising candidate for the standard device interoperability layer
and will therefore be assessed in the following months by reviewing its applicability in the
PROMISE demonstrators.

In addition to the specification of a device interoperability layer the Core PAC has defined in
DR4.2. Based on the variety of application cases and the different requirements that arise in their
respective we believe that a key achievement of PROMISE is not the restriction of the cases but
the provision of uniform access methods on product-related information regardless of the specific
application in order to abstract the process of information retrieval and storage from the data
processing tasks. To this end the Core PAC defines the access methods and information that is
common to all PEIDs which can be used by the PROMISE middleware and backend layers. The
concrete implementation of a Core PAC can be done specifically for each application case and
therefore take its features and restrictions into account. A first definition of the Core PAC’s prop-
erties can be found in Sec. 4.2 of DR4.2.

In the following months a UPnP based implementation of the Core PAC will be adopted in the
PROMISE demonstrators and will be extended or amended to the arising needs. The resulting
Core PAC specification could become the standardized interface for the PROMISE middleware to
access general PEID information.

3.3 Promise Middleware
The standardization in the PROMISE middleware domain has several different aspects. One as-
pect is that the access to the devices should comply to a standard that allows unified communica-
tion with general semantics that exceed pure standards for formatting (as XML does). This will
assure a standardized semantically correct communication between the Device Handling Layer of
the Device Controller and the PROMISE Core PAC. Also, the access to the Request Handling
Layer from the Enterprise Communication Infrastructure that is placed above should be standard

Copyright © PROMISE Consortium 2004-2008 Page 11

@

compliant in order to make Enterprise Communication Infrastructure and the PEIDs exchange-
able. The standardization activities according to the PROMISE middleware should also address
the handling of the data and the transformation into PLM applications, at least as far as it is possi-
ble due to the distributed character of the transformations and the possibly coupled data for corre-
lation.

In the following part of the section the general requirements of the PROMISE middleware will be
explained shortly with the related standards to use or modify.

Request and Subscription/Cancellation Handling: From the upper layers subscriptions to In-
foItems can be made. This means that certain data/events will be forwarded (and possibly pre-
processed) to the subscriber. The mechanisms are explained in detail in Deliverable DR6.2 (Sec-
tion 5.3).

Standard Candidates: Java Message Service (JMS) can be used for the handling of the messages
to/from the Device Controller. It provides mechanisms for reliable and flexible message exchange
based on standardized interfaces. JMS can be a candidate for standard use. In work package R6 it
will be examined if it is appropriate to wrap the PROMISE middleware as a web service in order
to have standardized access to the functionalities. For the description of the interface the Web
Service Description Language (WSDL) is a candidate for standard use. Therewith, a unified de-
scription of the interface can be provided and the service can be consumed independently from the
platform. So far, the development in work package R6 intends to provide an interface for sub-
scription and cancellation of InfoItems. An InfoItem contains data that could be pre-processed to a
certain degree by middleware-internal services. The Business Process Execution Language
(BPEL) could be one candidate for the specification of the cooperation of services from outside of
the middleware. Therewith, the standard would be used for the external orchestration that partly
might be available from outside. Certain parts of the interface are domain specific for product
lifecycle management applications. Based on the standards for message formats and data transport
these domain specific issues could be standardized as well. Further examinations are required to
determine the differences of the PLM Services proposal and the interface description of the
PROMISE middleware. Subsequently, domain specific issues for standardization are to identify
and have to be incorporated in the standardization process. This includes message formats and
schemas that apply to the PLM domain.

Service Download and Execution: In work package R6 download of code containing additional
services is planned. Service download is required since the pre-processing of the data would be
possible in a flexible way. The steps of pre-processing (in the middleware to filter out redundant
data) should not only be fixed at design time of the middleware. Rather, the results gathered in the
backend by complete analysis of operating data allow the conclusion to make the pre-processing
more effective. This is reflected in additional services that should be available for download to the
middleware at runtime (see also DR6.2 and DR6.1). The code and the execution environment
should be standard compliant such that the code development and the subsequent execution is eas-
ily possible. In the first instance it should be possible to download code from the middleware to
the PEID in order to push the data processing to the edge of the network. Subsequently, the ser-
vice download from the backend or external independent software providers is examined. This
would significantly enrich the functionality of the middleware and possibly disburden the superior
backend systems.

Standard Candidates: Standards that should provide a platform for execution or service discovery
are Universal Plug & Play (UPnP), Open Services Gateway Initiative (OSGi) and Jini. The aim of

Copyright © PROMISE Consortium 2004-2008 Page 12

@

OSGi is to provide a standardized platform for execution of different services (written in Java)
that can coexist within one execution environment. So far, it is widely used already and seen as a
quasi standard for execution of distributed services. Hence, OSGi is one strong candidate for stan-
dard use in order to provide a unified execution environment for services. Jini and UPnP cover the
service discovery process. These protocols enable to automatically find and register services on a
standards base. Since the development in work package R4 and R6 is based on UPnP for the
communication between the devices and the middleware it is a candidate for standard use in the
project. Nevertheless, Jini provides similar mechanisms for service discovery and binding. The
development in work package R6 will further explore whether Jini is important within the project
context.

Service Repository and Execution: The Service Repository hosts services that can collaborate in
order to provide InfoItems to the application. Certain InfoItems might require a specific interac-
tion of services orchestrated by the service manager and running on a unified execution platform.

Standard Candidates: Similarly to the requirements for service download and execution a stan-
dardized platform and mechanisms for service discovery and execution are required. Again,
OSGi, UPnP and Jini are standard candidates that are to examine in detail. Also, Universal De-
scription, Discovery and Integration (UDDI) can serve for storage and management of the ser-
vices in the repository. Since UDDI requires a unified service description WSDL is another can-
didate for the standards use. Additionally, the developments in the PLM Services standard driven
by the OMG should be monitored and shaping by the PROMISE consortium should be consid-
ered. It is to be studied how a distributed infrastructure for data gathering could impact the stan-
dard proposal (distributed PLM services). Furthermore, implications for further standardization
should be identified. Relevant extensions of the PLM Services standard, due to the results in
PROMISE, should incorporate with the standardization efforts.

3.4 Backend

At present there is no indication of demand to develop new international standards within the
Backend domain. However, there are some standards that have to be considered or even agreed
within PROMISE. Furthermore standards for an exchange format for field data may be aimed in
order to ease some of the integration aspects.

For the integration of PDKM and other systems that manage product data the new OMG (Object
Management Group) standard PLM Services [OMG] is of high relevance for PROMISE. The
standard PLM Services is available as an international standard since 15.04.2005. It is the first in-
ternational standard for the exchange of product lifecycle data via Web-Services. The standard de-
fines a STEP AP214 compliant data model and all the necessary functionality to realize use cases
for Collaborative Engineering. The Information Model of the proposed PLM Service is based on
the STEP PDM Schema and extended by relevant subsets of STEP ISO 10303-214:2000, espe-
cially the Configuration Management modelling parts according to CC8. It defines a platform- in-
dependent model (technology independent) and a platform-specific model that is bounded to
WSDL, XML and SOAP. The standard enables the standardized access to product data and basic
mechanisms for manipulation of product data.
Though, aspects according to distributed services that are prevalent in PROMISE are not reflected
in the standardization effort so far. For example, issues that concern the pre-processing of meas-
urements or distributed recording of operating data should be regarded. One possibility for exten-

Copyright © PROMISE Consortium 2004-2008 Page 13

@

sion is to expand the client-server-infrastructure in the PLM Services standard by the introduction
of middleware that can perform intermediate (pre-) processing.

The consideration of PLM Services in the PDKM concepts and architecture ensures the integra-
tion of systems that manage product data and thus the access to product data from different
sources via PDKM in order to perform required analyses.

A file-based exchange of field data (product data from MOL and EOL phases) may require a
standard for an adequate file format – at least a PROMISE-internal standard. This will enable the
PDKM import functions to assign field data objects to their corresponding objects in the product
lifecycle models. Moreover it needs to be analysed whether the extension of the PLM Services
standard with field data aspects should be aimed for.

Product Lifecycle Support (PLCS) can be regarded as another relevant standard for the backend
domain. It is a standard that also bases on ISO 10303 (STEP); furthermore it is an Application
Protocol (AP 239) of STEP. PLCS was born as an initiative supported by both industry and na-
tional governments with the aim to accelerate development of new standards for product support
information. PLCS, in fact, should be able to describe products needing support and the work re-
quired to sustain and maintain such products in operational conditions. As it was built around
STEP, it is easy to integrate PLCS data and applications within complex and heterogeneous soft-
ware systems, reaching a high degree of interoperability. PLCS, indeed, shares the same common
interface of other STEP-based software for product design and development, for maintenance
management, for manufacturing scheduling etc.
PLCS seeks to provide a mechanism to maintain the information needed to support complex
products and systems in line with the changing product over its complete life cycle from concept
through design and manufacture to operation and disposal. This includes among other things:

• Identification and composition of a product design from a support viewpoint (as an exten-
sion of the STEP PDM Modules);

• Definition of documents and their applicability to products and support activities (as an
extension of the STEP PDM Modules);

• Identification and composition of realized products;
• Configuration management activities, over the complete life cycle;
• Properties, states and behavior of products
• Activities required to sustain product function;
• Resources needed to perform such activities;
• Planning and scheduling of such activities;
• Capture of feedback on the performance of such activities, including the resources used;
• Capture of feedback on the usage and condition of a realized product;
• Definition of the support environment in terms of support equipment, people, organiza-

tions, skills, experience and facilities
• Definition of classes of product, activities, states, people, organizations and resources.

For specifying or recording required support activities through product lifecycle, a set of Assured
Product and Support Information (ASPI) is defined. Lifecycle data for a specific product are com-
posed by both ASPI and their related information, such as feedback on product history, activities
and resources used.
In PLCS products are described by means of a specific Application Module: Product Structure
(AM 1134). It references other AMs to define product subcomponents, their relationships, their
assembly structure and many type of breakdown by which a product can be affected. Activities

Copyright © PROMISE Consortium 2004-2008 Page 14

@

are defined within AM 1047 and examples of activities are works done by people or organiza-
tions, usage of products, planned maintenance, etc. It’s notable how PLCS distinguishes between
future planned activities and activities that have already taken place or recently started (defined in
AM 1259, Activity as Realized). Resources are required to perform a task, can be quantified,
specified and are distinguished between required resources (AM 1267) and resource item
(AM 1266). These resources are used by activities involving products and can represent, for ex-
ample, people of support, instrumentation, software, tools for repairing products and so on.
Both products, activities and resources are characterized in terms of location, properties and
state attributes (known as conditions).
PLCS addresses different objectives of the PROMISE project and could play an important role for
standardization activities.

4 Conclusions
Summarizing it can be stated that in all standardization domains appropriate standards have been
nominated that can be introduced into the PROMISE architecture and will contribute to its suc-
cess. Nevertheless, the standards presented in this deliverable are proposals reflecting the current
project state and need to be reviewed in the following month in order to assess their applicability
and their acceptance among the PROMISE partners. In particular the question whether to define
standards for the data stored on the PEID has to be discussed to come to a mutual agreement. Fur-
thermore the integration of PLM services and a possible shaping influence of this uprising stan-
dard are notable issues that need to be addressed in the future.

5 References
[UPNP] Contributing Members of the UPnP Forum, “UPnP Device Architecture 1.0”, June 2003
[GENA] J. Cohen, S. Aggarwal, Y. Y. Goland, “General Event Notification Architecture Base:
Client to Arbiter”, http://www.upnp.org/download/draft-cohen-gena-client-01.txt
[SOAP] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Hen-
rik Frystyk Nielsen, Satish Thatte und Dave Winer, SimpleObject Access Protocol (SOAP) 1.1.
World Wide Web Consortium (W3C), http://www.w3.org/TR/2000/NOTE-SOAP-20000508
[CORBA]O. M. Group. Minimum corba specification. http://www.omg.org/, August 2002.
[RMI]I. Sun Microsystems. Java Remote Method Invocation (Java RMI),
http://java.sun.com/products/jdk/rmi/, April 2004.
[JINI] Sun Microsystems, Inc. Jini. http://www.jini.org, March 2002.
[JXTA]P. JXTA. JXTA. http://www.jxta.org, March 2002.
[OMG] Object Management Group, http://www.omg.org
[OASIS] Oasis Consortium, Organization for the Advancement of Structured Information Stan-
dards, www.oasis-open.org
[POLIMI] J. Cassina, G. Chiari, S. Terzi, Holonic Product Traceability: Open Issues And A Pre-
liminary Survey, Politecnico di Milano, Department of Economics, Industrial and Management
Engineering, Italy; University of Nancy I, CRAN Laboratories, France; 2004
[PLCS] J. Dunford, Product Life Cycle Support (PLCS), Eurostep Open Day, Stockholm, 16 Sept
2002

