

High power Adaptable Laser beams for materials prOcessing HALO

Project overview presentation

HALO is supported by the European Commission through the Seventh Framework Programme (FP7) Project number 314410

www.halo-project.eu

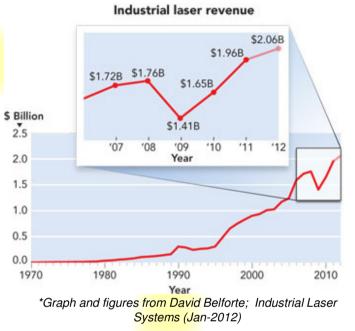
Materials processing with lasers

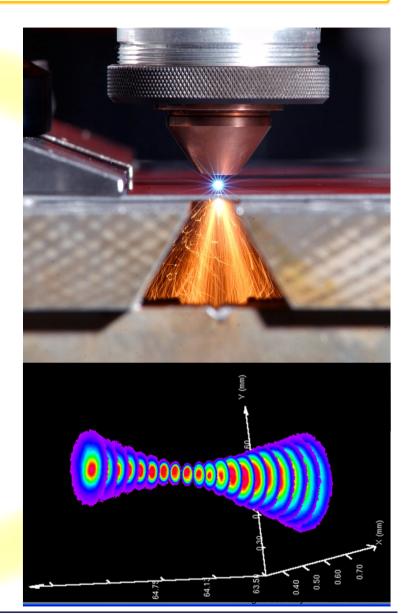
- Laser technology is already well established in manufacturing
- Materials processing with lasers covers many techniques
 - Cutting and bending
 - Welding and joining
 - Marking and engraving
 - Surface patterning and processing
- The next generation of lasers offers key manufacturing technology for the "Factory of the Future"
 - Faster, cheaper, better processes!
- HALO will improve
 - Efficiency, adaptability and sustainability of manufacturing systems
 - Integration into business processes.

Images courtesy of Trumpf Laser GmbH and Fraunhofer ILT

Market size

- Industrial laser market has shown robust growth for thirty years
 - Double-digit annual growth
 - Strong rebound from global crash in 2008/9
- Europe
 - Makes up almost one third of the world market (2012)
 - Industrial lasers ~1.5 M€*
 - Industrial laser systems (integrated tools based on lasers) ~5.5 M€*
 - Is a power base for laser system manufacture and development
- HALO will help to maintain Europe's leading role in industrial laser technology.




Image courtesy of Trumpf Laser GmbH

Technology advances

- The next generation of materials processing lasers will have adaptable beams to optimise efficiency
- HALO will investigate:
 - Adaptable beam profiles
 - Gau<mark>ssian</mark>
 - Top hat
 - Ring modes
 - Modelling of laser cutting processes
 - Beam & pulse propagation
 - Absorption
 - Ablation
 - Novel cutting processes
 - Brittle materials
 - Sheet metal cutting
 - Liquid jet cutting.

Consortium

Components *Coordinator*

• G&H (Torquay)

\lambda Gooch & Housego

Industrial end users

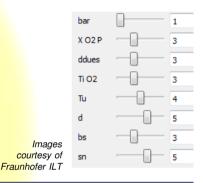
- Synova
- Laser Expertise
- Trumpf Laser
- Trumpf Werkzeugmaschinen

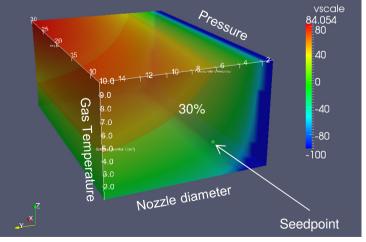
Laser technology development

- ORC Southampton
- Fraunhofer ILT
- Lulea University

LULEÅ UNIVERSITY OF TECHNOLOGY WORLD-CLASS RESEARCH AND EDUCATION

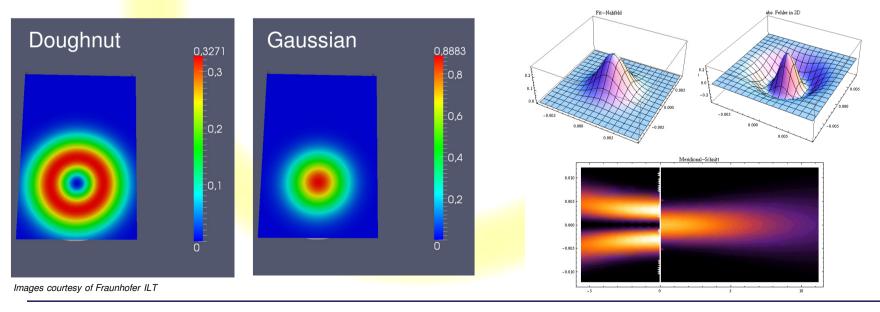
Admin & management


Vivid Components



Meta-modelling

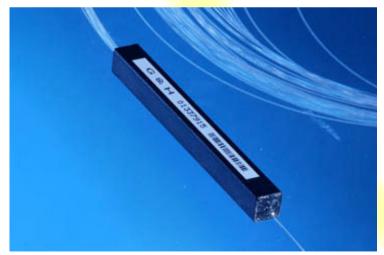
- Mathematical model of complex multi-dimension relationships
 - "Pure" mathematical functions
 - Often without any physical meaning
- Links many parameters and criteria quickly and efficiently
 - Fast visual exploration
 - Multi-criterion optimisation
 - Sensitivity analysis
 - Machine integration/ control/ set-up
 - Direct comparison with experimental data.
- → Parameters = Model Input
- →Explorable quantitative 8-dimensional Cutting Process Map
- \rightarrow Design Tool Metamodel \rightarrow Solution in Design Space.



Beam forming

- Beam shape has a large influence on cutting efficiency
- Optimum shape depends on precise process details
 - Dozens of variables
 - Highly sensitive optimisation
 - Non-intuitive!
- HALO will
 - Develop adaptable lasers to optimise beam shape to the process
 - Identify ideal beam parameters for real processes through meta-models.

HALO project presentation


www.halo-project.eu

Novel passive components

- Optical isolators
 - Novel designs to permit the unusual beam polarisations used in HALO
 - Comprehensive modelling to understand thermal and optical effects resulting from novel beam shapes
 - Materials for use in high power operation will be investigated

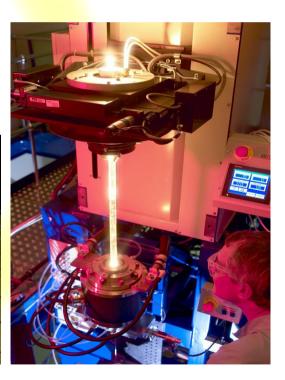
Fused fibre devices

- Novel hollow core fibre tapers will provide ring-shaped pump beam for selecting desired LG mode
- Customised MM pump combiners will be built for high power thulium pump sources.

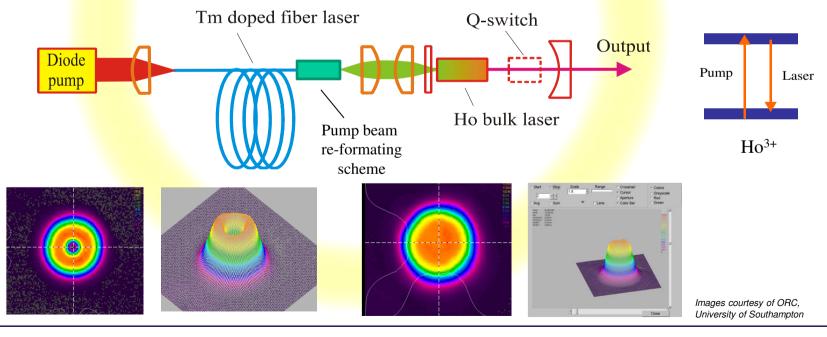
Images courtesy of Gooch and Housego (Torquay) Ltd.

Novel acousto-optic components

- Acousto-optic Q-switches
 - Exceptionally low insertion loss
 - Very good power handling
- RF signal ON
 - Induces a temporary diffraction grating
 - Deflects a proportion of the laser beam
 - Increased cavity losses prevents lasing
- RF signal OFF
 - Cavity losses decrease rapidly
 - Intense laser pulse evolves
- HALO advances
 - Fibre-coupled polarisation insensitive AO Q-switches
 - First of their kind polarisation selecting and control AO devices
 - Preservation of Laguerre Gaussian "doughnut modes."



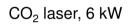
- Holmium-doped hybrid (fibre laser-pumped) solid-state laser
 - Generation of high average power laser output at ~2 μm
 - Adaptable output beam profile (doughnut shape to a quasi-top hat)
- Novel technique for direct generation of required beam profile
 - Components located within the laser resonator
 - Architecture compatible with high power operation
 - Continuous-wave (CW)
 - High peak power pulsed modes.

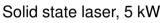


Images courtesy of ORC, University of Southampton

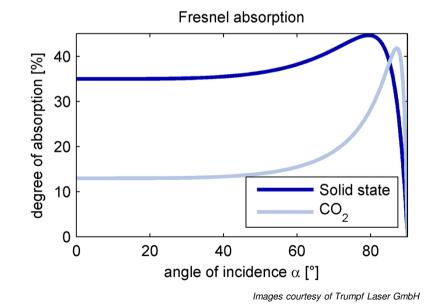
Adaptable beam 2 µm laser-2

- Hybrid laser development comprises three stages:
 - High-power cladding-pumped Tm fibre laser pump source
 - Low-loss fibre-based pump beam shaping and delivery scheme
 - High-power Ho:YAG laser at ~2.1 μm
 - Adjustable near-field and far-field intensity profile
 - Doughnut or top hat
- Hybrid laser will be evaluated in various laser processing trials.

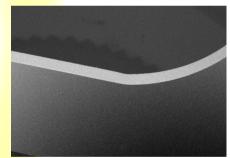

Demo-sheet metal cutting


TRUMPF

- Currently CO₂ lasers offer state-of-the-art edge quality
 - E.g. 12 mm stainless steel

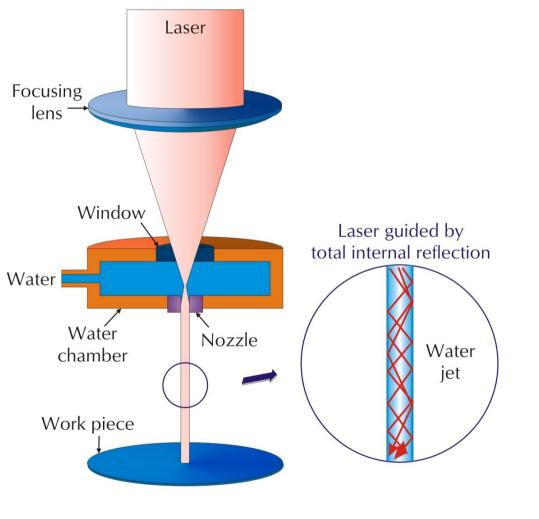


- In principle solid state lasers offer a much more efficient process
 - 3x higher absorption
- HALO objectives
 - Improve cutting with solid state lasers
 - Increase cutting quality and productivity
 - Use of extra-cavity beam converters
 - Quality criteria
 - roughness of edges
 - dross length.


Demo-brittle materials cutting

- HALO will investigate the cutting of brittle materials
 using ultra-short pulsed lasers
 - Glass
 - Ceramics
 - Sapphire
- Effect of spatial and temporal beam shaping
- Understanding laser-material interactions
 - Absorption and ablation mechanics
 - Thermal behaviour
- HALO objectives
 - Reduce material damage
 - Roughness, micro-cracks and chipping
 - Improved bending strength
 - Increase process efficiency, quality and throughput
 - Ablation rate and cutting speed
 - Edge sharpness kerf width.

Images courtesy of Trumpf Laser GmbH



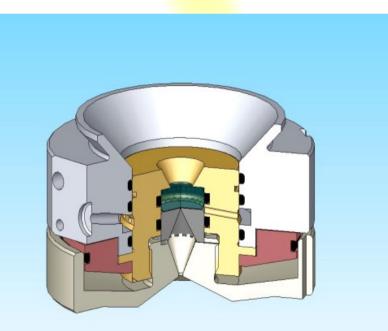
Page 14

Demo-Water jet cutting 1

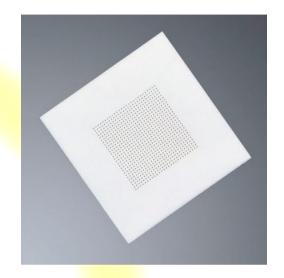
Laser micro-jet cutting

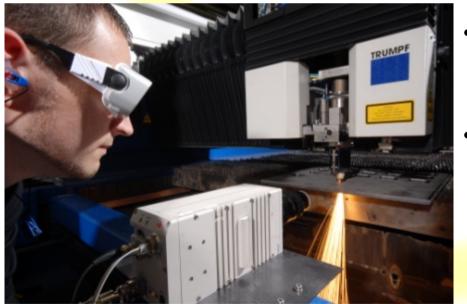
- Utilizing the difference in the refractive indices of air and water, the technology behind Laser MicroJet[®] creates a laser beam that is completely reflected at the air-water interface
- The laser beam is entirely contained within the water jet as a parallel beam, similar in principle to an optical fibre
- This allows improved cutting with reduced heat damage, contamination and deformation.

Images courtesy of Synova SA


Demo-Water jet cutting 2

- HALO will demonstrate:
 - Cutting of delicate materials including glass and sapphire
 - End user trials in an industrial environment
 - Brittle materials
 - Sheet metal
- HALO targets:
 - Cut precision <15 μm
 - 20% bending strength increase for glass cutting
 - Cut precision from reduced nozzle diameter <15 μm.


SYNOVA



HALO summary

- HALO will develop technology for adjustable lasers for materials processing
 - Active and passive components
 - Novel adaptable beam solid-state lasers
 - Adaptable beam optics
 - Simulation of adjustable beam laser cutting
 - Process optimisation

- HALO hardware and processes will offer measureable efficiency and quality improvements
- Validation and demonstration for key cutting applications
 - Brittle material
 - Sheet metal
 - Liquid-jet.

HALO project presentation

Images courtesy of Trumpf Laser GmbH

- HALO will establish a group of interested parties to:
 - Guide HALO research
 - Develop new exploitation routes
 - Identify novel applications
- Target organisations:
 - End users
 - Research organisations
 - Universities
 - Industrial companies.

Image courtesy of Fraunhofer ILT

Project info

- HALO is funded under the European Commission's Seventh Framework Programme
 - Programme acronym FP7-ICT
 - <u>http://cordis.europa.eu/fp7/ict/home_en.html</u>
- Area: Smart Factories
 - Energy-aware, agile manufacturing and customisation (FoF-ICT-2011.7.1)
- Project Reference 314410
- Project cost 5.71 M€
- Project funding 3.86 M€
- Start date 01-Sep-2012
- End date 31-Aug-2015
- Duration 36 months.

Thanks for your attention!

For further information, please contact:

tdurrant@goochandhousego.com

Te<mark>chnica</mark>l

bruce@vividcomponents.co.uk

Admin & HIG

