

Silicon-based Ultra Compact Cost-efficient System Design for mmWave

Sensors “SUCCESS”

Deliverable

D4.2

Processor FPGA test report

(Confidential, results not published)

By: EVA and IHP

Contributors:

Marcin Zys, Piotr Penkala and Mariusz Twardoch (EVA)

Miroslav Marinkovic and Yaoming Sun (IHP)

Abstract

Synchronous signal processor has been verified in an FPGA boards. All functionalities

have been tested. The digital control of AFE has also be designed and tested.

Keywords

Digital processor, FMCW/CW signal generation, FPGA verification

 2

Table of Contents

1.1. Overview __ 5
1.2. Terminology and Symbol Conventions ________________________________ 6
1.3. References ___ 6
3.1. Installation ___ 8
3.2. PC Application User Guide ___ 8
3.3. Typical Usage of the Application____________________________________ 12
3.4. Scripts Usage __ 13
4.1. Access to AFE __ 18
4.2. Access to PLL __ 18
6.1. CW radar mode __ 20
6.2. FMCW radar mode __ 22
6.3. AFE interface __ 27
6.4. PLL interface___ 29
6.5. Auxiliary DAC interface___ 30
6.6. Auxiliary ADC interface___ 31
6.7. Access to XRAM __ 32
6.8. Access to CW coprocessor registers _________________________________ 33
6.9. Access to FMCW coprocessor registers_______________________________ 34
6.10. One shot CW radar mode _______________________________________ 35
6.11. One shot FMCW radar mode_____________________________________ 38
6.12. CW radar mode with not default configuration_______________________ 43
6.13. FMCW radar mode with not default configuration ____________________ 44
7.1. Digital Control Block Diagram _____________________________________ 46
7.2. Digital Control Pin Description _____________________________________ 47
7.3. SPI Register Map ___ 48
7.4. 1.4 Digital Control Functionality____________________________________ 49
7.5. Test results of the first chip version_________________________________ 51

 3

List of Figures

Figure 1. Block diagram of the Baseband Processor system prototyped in the FPGA 7

Figure 2. User tab ... 8

Figure 3. SFR Operation... 9

Figure 4. Models panel... 9

Figure 5. Radar panel ...10

Figure 6. Info panel ..11

Figure 7. Log panel ..11

Figure 8. Debug tab..12

Figure 9. Application algorithm diagram...19

Figure 10. Debug panel view for CW mode, distance 1400 mm ...37

Figure 11. Debug panel view for CW mode, distance 1000 mm ...37

Figure 12. Debug panel view for FMCW mode, distance 1500 mm...42

Figure 13. Debug panel view for FMCW mode, distance 4500 mm...42

Figure 14. Block diagram of digital control block...46

Figure 15. SPI data transmission format. ...50

Figure 16. Diagram flow of test procedures..52

 4

List of Tables

Table 1. Abbreviations and acronyms ... 6

Table 2. Register map ..15

Table 3. Write to AFE register ...18

Table 4. Read to AFE register..18

Table 5. Write to PLL register..18

Table 6. Calculated distances for CW mode..22

Table 7. Calculated distances for FMCW mode ...26

Table 8. Pin Description of Digital Control ..47

Table 9. SPI Register Map...48

Table 10. Write SPI register ..50

Table 11. Read to SPI register...50

Table 12. Programming the frequency ramp for DAC testing ...51

Table 13. Test results of the first chip version ..52

 5

1. Introduction

1.1. Overview

1.1.1 Purpose of Document

This document presents tests executed to validate FPGA prototype of the Baseband Processor,
which was developed within the SUCCESS project.

The document also contains user manual for PC application used for FPGA tests. The

application is referred further in the document as the SUCCESS PC Application. The digital
control of the AFE is also developed to interface the AFE and processor. It includes an SPI,

frequency counting control, waveform control, clock synchronous etc..

1.1.2 FPGA tests purpose

Tests executed on FPGA aimed in validation of correctness of Baseband Processor operation.

To allow that the Baseband Processor was implemented in FPGA together with a number of

additional modules used to emulate behavior of the other radar blocks (e.g. Analog Front-End,
ADC, DAC, PLL).

1.1.3 SUCCESS PC Application purpose

The SUCCESS PC Application allows communicating with Baseband Processor System. Main

features of the application are as follows:

• read and write coprocessors any of the control register implemented in the Baseband

Processor system

• control the operation of the Baseband Processor

• read the calculated distance

• transfer to the FIFO implemented in the FPGA data samples generated in MATLAB

• visualize data samples and FFT calculation result

1.1.4 AFE digital control test

• To validate the mixed signal operation of AFE and digital control

• To verify the possibility of programming output waveform of the transmitter from a PC

 6

1.2. Terminology and Symbol Conventions

Table 1. Abbreviations and acronyms

Symbol Description

SUCCESS Silicon-based Ultra-Compact Cost-Efficient System Design for mm-Wave Sensors

CW Constant Wave

FMCW Frequency Modulated Constant Wave

ADC Analog-Digital Converter

DAC Digital-Analog Converter

FFT Fast Fourier Transform

OCDS On Chip Debug System

IF-mode Intermediate Frequency mode

no-IF-mode No-Intermediate Frequency mode

1.3. References

• SUCCESS project deliverable D.2.1 “Market analysis report”

• SUCCESS project deliverable D.2.2 “Application scenario description”

• SUCCESS project deliverable D.2.3 “System parameters reference document”

• Baseband Processor design specification

• R8051XC2 IP design specification

• XEM5010 User’s Manual

 7

2. Baseband Processor

Detailed description of the Baseband Processor can be found in the Baseband Processor

design specification.

The diagram below presents block diagram of the system prototyped in the FPGA. The system

integrated, besides the baseband Processor, additional modules emulating other radar blocks,
like Analog Front-End, ADC, DAC or PLL.

Figure 1. Block diagram of the Baseband Processor system prototyped in the FPGA

 8

3. PC Application

3.1. Installation

The PC application is provided as single EXE file, so installation is straightforward –
simple copy main executable into desired place. For running application it is necessary to

install a Opal Kelly XEM5010 board drivers and copy libFrontPanel-pinv.dll file to the
application directory.

3.2. PC Application User Guide

The PC application consists of two panels:

• User – for configuration and using a hardware system

• Debug – for reading samples and FFT for debugging

3.2.1 User panel description

Figure 2. User tab

User panel is divided into several parts:

a) Hardware connection

In the lower right corner are three buttons for connection to hardware FPGA board.

Initialize device – using for board detection and connection.

 9

FPGA Conf – using for FPGA programming from fpga_chip.bit, which is located in the
application directory.

FPGA Conf … - using for FPGA programming from user defined file.

b) SFR Operation panel

Figure 3. SFR Operation

This panel is for accessing registers of the Baseband Processor system. It allows to read
or write any of the register from the register map. Selection of register is possible by

selection the device and the device register from the combo box or through the register
address entry.

c) Models panel

Figure 4. Models panel

In the FPGA are implemented a few models of external devices, it’s possible to use either

these models or external devices. After selection of required configuration Reconnect
button must be pressed.

 10

d) Radar panel

Figure 5. Radar panel

In this panel the following actions can be done:

• start the Baseband Processor with the required operation mode

• stop the Baseband Processor

• read a distance calculated by the Baseband Processor

• set a size of FFT window for FMCW mode and configure FFT window

• transfer to the FPGA FIFO data samples generated in MATLAB

 11

e) Info panel

Figure 6. Info panel

This panel inform about:

• error in FPGA FIFO

• PLL lock state

• CW/FMCW mode

f) Log panel

Figure 7. Log panel

In log window there is written all messages informing about the Baseband Processor

operation, like register accesses, interrupts and script commands.

The application automatically services interrupt from a PLL model and AFE model. In

normal view notification related with PLL and AFE interrupt are not logged. After selecting
Detailed View check box, all notifications, including PLL and AFE models interrupts , are

logged.

Run Script … - this button is used to launch a scripts file containing test/operation

scenario.

 12

Abort Script – breaking the script operation.

Save Log – save information from the log window to text file.

Clear Log – clear the low window.

3.2.2 Debug tab

Figure 8. Debug tab

Debug tab is used to debug the Baseband Processor operation. In this tab samples from

FPGA FIFO can be read back and displayed at the chart. Moreover, calculated raw FFT
result can be read from the FMCW coprocessor and displayed at the FFT spectrum.

3.3. Typical Usage of the Application

3.3.1 FMCW mode

• PLL lock state

• Click Initialize button for board connection

• Click FPGA Conf button to program the FPGA

• Transfer a MATLAB data samples to FPGA (ADC Data: FMCW button)

• Set a FFT window size (FFT Window - size)

• Configure FFT window (FFT Window)

• Configure Baseband Processor mode (set FMCW mode)

• Start the Baseband Processor (Start Radar).

 13

3.3.2 CW mode

• Click Initialize button for board connection

• Click FPGA Conf button to program the FPGA

• Transfer a MATLAB data samples to FPGA (ADC Data: CW button)

• Configure Radar (clear FMCW mode)

• Press Start Radar button.

3.4. Scripts Usage

This application allows to use script file for automation of Baseband Processor tests.

Each instruction in the script should be placed in separate line. Comments are placed in

script using hash (#) character.

3.4.1 Instruction set:

a) Read – read value from selected register

syntax:

Read address

Read address data

Read device register

Read device register data

address – register address

data – expected value

device – device name

register – register name

example:

Read TEST_MODULE DAC_CH0 0xA8

b) Write – write value to the register

syntax:

Write address data

Write device register data

address – register address

data – value of register

device – device name

register – register name

example:

Write DAC SPDAT 0x9123

Write GPIO OUT1 0x03

c) Wait – wait for event or time

syntax:

 14

Wait Radar – wait for interrupt from radar

Wait number – wait for number milliseconds

example:

Wait radar

Wait 1000

d) Test – set the script in test mode

This command inform the application that this script is test and any unexpected or

erroneous behavior should be reported at the end of test.

e) Send_data – write data samples from file to FPGA FIFO

syntax:

Send_data CW file

Send_data FMCW file

 file – data samples file

example:

Send_data CW data_0.9.txt

f) Check Distance – check value of calculated distance

syntax:

Check Distance OFF – turn off checking distance value

Check Distance length tolerance

length – expected distance

tolerance – tolerance of calculated distance

 15

4. FPGA System Register Map

The table below presents a memory map of the FPGA Baseband Processor system that can be

accessed by the PC application.

Table 2. Register map

Register Locati

on

Reset

value

Access Description

Baseband Processor - AFE interface

SPSTA 0x0001 0x00 R/W SPI Status Register

SPCON 0x0002 0x00 R/W SPI Control Register

SPDAT 0x0003 0x00 R/W SPI Data Register

SPSSN 0x0008 0x00 R/W SPI Slave Select Register

Baseband Processor - CW PROC

DELTA_FR_LOW 0x0020 0x00 R/W

DELTA_FR_HIGH 0x0021 0x00 R/W

Frequency difference between 1st and 2nd

measurement

DISCARD_NUM_LOW 0x0022 0x00 R/W

DISCARD_NUM_HIGH

0x0023 0x00 R/W

Number of ADC samples that are to be

discarded after change of measurement

frequency

ANGLE_1_LOW 0x0024 0x00 R

ANGLE_1_MID 0x0025 0x00 R

ANGLE_1_HIGH 0x0026 0x00 R

Sum of angles calculated in measurements

done for 1st frequency

ANGLE_2_LOW 0x0027 0x00 R

ANGLE_2_MID 0x0028 0x00 R

ANGLE_2_HIGH 0x0029 0x00 R

Sum of angles calculated in measurements

done for 2nd frequency

DISTANCE_LOW 0x002A 0x00 R

DISTANCE_MID 0x002B 0x00 R

DISTANCE_HIGH 0x002C 0x00 R

Calculated distance

I_LOW 0x002D 0x00 R

I_HIGH 0x002E 0x00 R

Calculated I part of input signal

Q_LOW 0x002F 0x00 R

Q_HIGH 0x0030 0x00 R

Calculated Q part of input signal

I_DC_LOW 0x0032 0x00 R/W

I_DC_HIGH 0x0033 0x00 R/W

DC offset used for calibration of I part of input
signal

I_AMP_LOW 0x0034 0x00 R/W

I_AMP_HIGH 0x0035 0x00 R/W

Amplitude gain used for calibration of I part of

input signal

Q_DC_LOW 0x0036 0x00 R/W

Q_DC_HIGH 0x0037 0x00 R/W

DC offset used for calibration of Q part of

input signal

Q_AMP_LOW 0x0038 0x00 R/W

Q_AMP_HIGH 0x0039 0x00 R/W

Amplitude gain used for calibration of Q part
of input signal

AVER_NUM 0x003E 0x00 R/W Averaging number

CW_CTRL 0x003F 0x00 R/W Control register

Baseband Processor - FMCW PROC

SFREQ_LOW 0x0040 0x00 R/W

SFREQ_HIGH 0x0042 0x00 R/W

Sampling frequency

DET_FR0_LOW 0x0042 0x00 R Value of the most significant frequency

 16

Register Locati
on

Reset
value

Access Description

DET_FR0_HIGH 0x0043 0x00 R detected in the signal

DET_FR1_LOW 0x0044 0x00 R

DET_FR1_HIGH 0x0045 0x00 R

Value of the 2nd most significant frequency

detected in the signal

DET_FR2_LOW 0x0046 0x00 R

DET_FR2_HIGH 0x0047 0x00 R

Value of the 3rd most significant frequency
detected in the signal

DET_FR3_LOW 0x0048 0x00 R

DET_FR3_HIGH 0x0049 0x00 R

Value of the 4th most significant frequency
detected in the signal

SCALLING_LOW 0x004A 0x00 R/W

SCALLING_MID 0x004B 0x00 R/W

SCALLING_HIGH 0x004C 0x00 R/W

Scaling factors for each radix-4 layer

RAMP_T_LOW 0x004D 0x00 R/W

RAMP_T_HIGH 0x004E 0x00 R/W

FMCW ramp duration

RAMP_F_LOW 0x004F 0x00 R/W

RAMP_F_HIGH 0x0050 0x00 R/W

c/2f

FMCW_DIST_LOW 0x0051 0x00 R

FMCW_DIST_MID 0x0052 0x00 R

FMCW_DIST_HIGH 0x0053 0x00 R

Calculated distance

SC_STATE_LOW 0x0054 0x00 R

SC_STATE_MID 0x0055 0x00 R

SC_STATE_HIGH 0x0056 0x00 R

State of output data scaling

FFT_RESULT 0x0057 0x00 R Raw FFT result

DET_FR0_VAL_LOW 0x0058 0x00 R

DET_FR0_VAL_MID 0x0059 0x00 R

DET_FR0_VAL_HIGH 0x005A 0x00 R

Value of the highest bin in the calculated FFT

spectrum

DET_FR1_VAL_LOW 0x005B 0x00 R

DET_FR1_VAL_MID 0x005C 0x00 R

DET_FR1_VAL_HIGH 0x005D 0x00 R

Value of the 2nd highest bin in the calculated
FFT spectrum

DET_FR2_VAL_LOW 0x005E 0x00 R

DET_FR2_VAL_MID 0x005F 0x00 R

DET_FR2_VAL_HIGH 0x0060 0x00 R

Value of the 3rd highest bin in the calculated

FFT spectrum

DET_FR3_VAL_LOW 0x0061 0x00 R

DET_FR3_VAL_MID 0x0062 0x00 R

DET_FR3_VAL_HIGH 0x0063 0x00 R

Value of the 4th highest bin in the calculated
FFT spectrum

FMCW_AVER_NUM 0x0077 0x00 R/W Averaging value

WINDOW 0x0078 0x00 R/W FFT window

LOWEST_BIN_LOW 0x0079 0x00 R/W

LOWEST_BIN_HIGH 0x007A 0x00 R/W

Lowest FFT bin that is taken into account for

distance calculation

SAMPLE_NUM_LOW 0x007B 0x00 R/W

SAMPLE_NUM_HIGH 0x007C 0x00 R/W

Number of ADC samples that are to be taken
for FFT calculation

FR_SPACE
0x007D 0x00 R/W Minimum spacing between detected

frequencies

DISCARD
0x007E 0x00 R/W Number of initial data samples which should

be discarded

FMCW_CTRL 0x007F 0x00 R/W Control register

Baseband Processor - PLL interface

SPDAT_LOW 0x0080 0x00 W SPI data, lowest byte

 17

Register Locati
on

Reset
value

Access Description

SPDAT_HIGH 0x0081 0x00 W SPI data, highest byte

Baseband Processor - auxiliary ADC interface

SPDAT_0 0x0090 0x00 R ADC channel 0 output

SPDAT_4 0x0094 0x00 R ADC channel 1 output

SPDAT_3 0x0093 0x00 R ADC channel 2 output

SPDAT_5 0x0095 0x00 R ADC channel 3 output

SPDAT_2 0x0092 0x00 R ADC channel 4 output

SPDAT_1 0x0091 0x00 R ADC channel 5 output

SPDAT_6 0x0096 0x00 R ADC channel 6 output

SPDAT_7 0x0097 0x00 R ADC channel 7 output

Baseband Processor - auxiliary DAC interface

SPDAT 0x00A0 0x00 W Data to be written to DAC

Baseband Processor - GPIO

OUT0 0x00B0 0x00 R/W State of gp_out Baseband Processor output

OUT1
0x00B1 0x00 R/W Connected to port O of R8051XC2, used to

start Baseband Processor operation from

OUT2 0x00B2 0x00 R/W Unused

OUT3 0x00B3 0x00 R/W Unused

IN0 0x00B4 0x00 R State of gp_in Baseband Processor input

IN1

0x00B5 0x00 R Three least significant bits reflect state of:

 IN1[0]: PLL lock
 IN1[1]: PLL not ready for SPI transfer

 IN1[2]: DAC not ready for SPI transfer

IN3 0x00B7 0x00 R Unused, fixed to 0

IN2 0x00B6 0x00 R Unused, fixed to 0

R0 0x00B8 0x00 R/W

R1

0x00B9 0x00 R/W

Distance calculated by the Baseband

Processor is written o this register, so that it
could be read by the HOST (PC application)

through USB

R2 0x00BA 0x00 R/W Unused

R3 0x00BB 0x00 R/W Unused

Baseband Processor - RAM

XRAM

0x0200
…

0x03FF

0x00 R/W R8051XC2 external RAM

TEST MODULEs – outside the Baseband Processor

RAMP
0x1000 0x00 W Configuration of RAMP period used to

generate ramp output

AFE

0x1001 0x00 R/W Used to read value received by AFE model

through SPI, or write value that is to be sent
back by AFE model through SPI

PLL_HIGH 0x1003 0x00 R

PLL_LOW 0x1002 0x00 R

Used to read value received by PLL model

through SPI

ADC_CH0 0x1010 0x00 W

ADC_CH1 0x1011 0x00 W

ADC_CH2 0x1012 0x00 W

ADC_CH3 0x1013 0x00 W

ADC_CH4 0x1014 0x00 W

ADC_CH5 0x1015 0x00 W

Used to set value of ADC channel

 18

Register Locati
on

Reset
value

Access Description

ADC_CH6 0x1016 0x00 W

ADC_CH7 0x1017 0x00 W

DAC_CH1 0x1021 0x00 R

DAC_CH2 0x1022 0x00 R

DAC_CH3 0x1023 0x00 R

DAC_CH0 0x1020 0x00 R

DAC_CH4 0x1024 0x00 R

DAC_CH5 0x1025 0x00 R

DAC_CH6 0x1026 0x00 R

DAC_CH7 0x1027 0x00 R

Used to read value of DAC channel

DAC_DATA
0x1028 0x00 R Used to read other command received by DAC

model (not setting DAC channel value)

4.1. Access to AFE

The table below describes how to access AFE internal register using AFE interface (SPI).

Access to AFE internal register is done using 2 8-bit transfers using SPI interface controller

implemented in Baseband Processor.

Table 3. Write to AFE register

SPI Bit

Number
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI output
AFE register address written data 1 0 0

AFE register
AFE->SPDAT first write AFE->SPDAT second write

Table 4. Read to AFE register

SPI Bit

Number
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI output
AFE register address 0 0 0 0 0 0 0 0 0 0 0

AFE register
AFE->SPDAT first write AFE->SPDAT second write

SPI input
- read data - - -

AFE register
AFE->SPDAT first read AFE->SPDAT second read

4.2. Access to PLL

The table below describes how to access PLL internal register using PLL interface (SPI).

Write access to PLL is done using 2 writes to PLL interface controller implemented in
Baseband Processor.

Table 5. Write to PLL register

SPI Bit

Number
31..16 15..3 2 1 0

SPI output
written data addr

AFE register
PLL->SPDAT_HIGH write PLL->SPDAT_LOW write

 19

5. PC application algorithm

The diagram below presents a block diagram of the algorithm implemented in the PC

application.

Figure 9. Application algorithm diagram

 20

6. FPGA Tests

6.1. CW radar mode

6.1.1 Test description

The test validates the operational of the Baseband Processor in CW mode. The test validates
the correctness of calculation of the distance between radar and target object. The calculation

is based on the data generated in MATLAB. The generated data emulate the operation of the
analog part of the radar connected to Baseband Processor by ADC interface.

Generation of data in MATLAB is based on CW algorithm a pre-defined value of distance to the

target. This distance calculated in the Baseband Processor must be consistent with value set
during generation of MATLAB. Any differences may result from algorithm accuracy and

calculation precision. For each distance, it is defined in the test script, a maximum difference
between calculated distance and the actual distance.

6.1.2 Test scenario

The typescript below shows the a part of the test script which contains a validation of the two
distance calculations.

1. Write GPIO OUT1 0x0001

2. Send_data CW data_1.4.txt

3. Wait Radar

4. Check Distance 1400 10

5. Wait 500

6. Check Distance OFF

7. Send_data CW data_1.2.txt

8. Wait Radar

9. Check Distance 1200 10

10. Wait 500

11. Check Distance OFF

In the first line write command set the register OUT1 of the GPIO block. The register OUT1 is

used to start Baseband Processor operation and sets CW mode. At lines 2 and 7 data samples
generated in MATLAB are sent to Baseband Processor which start calculation process. At lines

3 and 8 wait command causes waiting for Baseband Processor interrupt which declares the

end of the calculation process. At line 4 and 9 check distance command compares calculated
value with expected value. The last number in this command is the acceptable calculation

accuracy. If the calculated value has higher error then the defined accuracy, the error
message is displayed. At lines 6 and 11 check distance off command causes that the PC

application ends the compare operation before loading data corresponding to next value of

distance to a target.

6.1.3 Test procedure

This typescript below shows the a part of the test log which is displayed on the PC application

log panel.

1. Test

2. Write GPIO OUT1 0x0001

 21

3. Send_data CW data_1.4.txt

4. Wait Radar

5. Check Distance 1400 10

6. Wait 500

7. Calculated distance: 1396 mm

8. Calculated distance: 1396 mm

9. Calculated distance: 1396 mm

10. …

11. Calculated distance: 1396 mm

12. Calculated distance: 1396 mm

13. Calculated distance: 1396 mm

14. Check Distance OFF

15. Send_data CW data_1.2.txt

16. Wait Radar

17. Check Distance 1200 10

18. Wait 500

19. Calculated distance: 1199 mm

20. Calculated distance: 1199 mm

21. Calculated distance: 1199 mm

22. …

23. Calculated distance: 1199 mm

24. Calculated distance: 1199 mm

25. Calculated distance: 1199 mm

26. Check Distance OFF

27. Send_data CW data_1.0.txt

28. Wait Radar

29. Check Distance 1000 10

30. Wait 500

31. Calculated distance: 995 mm

32. Calculated distance: 995 mm

33. Calculated distance: 995 mm

34. …

35. Calculated distance: 995 mm

36. Calculated distance: 995 mm

37. Calculated distance: 995 mm

38. Check Distance OFF

39. Write GPIO OUT1 0x0000

40. # End of test detected.

The log file is similar to the test script which was presented beforehand. The main difference

is the calculated distance messages. These messages shows that the Baseband Processor

calculation process is performed during the test and all calculated distances are very close to
the expected values and their accuracy is within the acceptance range.

The table below presents the comparison of results calculated by the MATLAB algorithm

implementation and Baseband Processor in CW mode.

It can be noticed that the results have similar accuracy. The highest error of MATLAB results

is about 5 mm (for 1000 mm, which is 0.5%) and the highest error of Baseband Processor

 22

results is about 7 mm (for 900 mm, which is less than 0.8%). The mean error of MATLAB
results is 2 mm the mean error of Baseband Processor results is 2.7 mm.

Analysis of results proves the correctness of CW algorithm implementation in the Baseband

Processor.

Table 6. Calculated distances for CW mode

Distance to

object

MATLAB algorithm result Baseband Processor result Notes

200 200 199

300 300 300

400 401 400

500 501 500

600 600 597

700 704 703

800 801 801

900 902 907

1000 995 995

1100 1096 1093

1200 1197 1199

1400 1404 1396

All Baseband
Processor results

with similar accuracy
as MATLAB results.

6.1.4 Test result

CW radar mode test was executed successfully. No errors were found and all calculated
distances are within the margin of error and this confirms that the Baseband Processor is

working properly in CW mode.

6.2. FMCW radar mode

6.2.1 Test description

The test validates the operational of the Baseband Processor in FMCW mode. The test

validates the correctness of calculation of the distance between radar and target object. The

calculation is based on the data generated in MATLAB. The generated data emulate the
operation of the analog part of the radar connected to Baseband Processor by ADC interface.

Generation of data in MATLAB is based on FMCW algorithm a pre-defined value of distance to
the target. This distance calculated in the Baseband Processor must be consistent with value

set during generation of MATLAB. Any differences may result from algorithm accuracy and

calculation precision. For each distance, it is defined in the test script, a maximum difference
between calculated distance and the actual distance.

6.2.2 Test scenario

The typescript below shows the a part of the test script which contains a validation of the two
distance calculations.

1. Write FMCW_PROC WINDOW 0x0001

2. Write FMCW_PROC WINDOW 0x01f4

 23

3. Write FMCW_PROC WINDOW 0x0001

4. Write FMCW_PROC WINDOW 0x021c

5. …

6. Write FMCW_PROC WINDOW 0x0120

7. Write FMCW_PROC WINDOW 0x0001

8. Write FMCW_PROC WINDOW 0x00cc

9. Write FMCW_PROC WINDOW 0x0000

10. Write GPIO OUT1 0x0003

11. Send_data FMCW fmcwdata_1.5.txt

12. Wait Radar

13. Check Distance 1500 50

14. Wait 500

15. Check Distance OFF

16. # next distance

17. Send_data FMCW fmcwdata_1.2.txt

18. Wait Radar

19. Check Distance 1200 30

20. Wait 500

21. Check Distance OFF

In first lines (1 to 9) write command sends the 48 values which are the samples that are used
to define the Kaiser window. These samples were calculated by the PC Application and copied

to the test script (this operation can be obtained by entering the number into the field next to

the FFT window button and then pressing it). The window function is necessary for FFT
computation executed by Baseband Processor. The FFT computation is the part of FMCW

distance calculation.

At line nr 10 write command sets the register OUT1 of the GPIO block. The register OUT1 is

used to start Baseband Processor operation in FMCW mode. At lines 11 and 17 the data

generated in MATLAB are sent to the Baseband Processor which starts calculation process. At
lines 12 and 18 wait command causes waiting for Baseband Processor interrupt which

declares the end of the first calculation process. At lines 13 and 19 check distance command
compares calculated values with expected values. The last number in this command is the

acceptable calculation accuracy. If the calculated value has higher error then the defined
accuracy, the error message is displayed. At lines 14 and 20 check distance off command

causes that the PC application ends the compare operation before loading data corresponding

to next value of distance to a target.

6.2.3 Test process

This typescript below shows the a part of the test log which is displayed on the PC application

log panel.

1. Write FMCW_PROC WINDOW 0x0001

2. Write FMCW_PROC WINDOW 0x01f4

3. …

4. Write FMCW_PROC WINDOW 0x00cc

5. Write FMCW_PROC WINDOW 0x0000

6. Write GPIO OUT1 0x0003

7. Send_data FMCW fmcwdata_1.5.txt

8. All_Distance_Display

9. Wait Radar

 24

10. Wait Radar

11. Check Distance 1500 50

12. Wait 500

13. Calculated distance: 1489 mm

14. Calculated distance: 1489 mm

15. …

16. Calculated distance: 1489 mm

17. Calculated distance: 1489 mm

18. Check Distance OFF

19. Send_data FMCW fmcwdata_1.2.txt

20. Wait Radar

21. Wait Radar

22. Check Distance 1200 30

23. Wait 500

24. Calculated distance: 1222 mm

25. Calculated distance: 1222 mm

26. …

27. Calculated distance: 1222 mm

28. Calculated distance: 1222 mm

29. Check Distance OFF

30. Send_data FMCW fmcwdata_1.1.txt

31. Wait Radar

32. Wait Radar

33. Check Distance 1100 45

34. Wait 500

35. Calculated distance: 1141 mm

36. Calculated distance: 1141 mm

37. …

38. Calculated distance: 1141 mm

39. Calculated distance: 1141 mm

40. Check Distance OFF

41. Send_data FMCW fmcwdata_1.0.txt

42. Wait Radar

43. Wait Radar

44. Check Distance 1000 20

45. Wait 500

46. Calculated distance: 998 mm

47. Calculated distance: 998 mm

48. …

49. Calculated distance: 998 mm

50. Calculated distance: 998 mm

51. Check Distance OFF

52. Calculated distance: 998 mm

53. Send_data FMCW fmcwdata_0.9.txt

54. Wait Radar

55. Calculated distance: 998 mm

56. Wait Radar

57. Check Distance 900 20

58. Wait 500

 25

59. Calculated distance: 903 mm

60. Calculated distance: 903 mm

61. …

62. Calculated distance: 903 mm

63. Calculated distance: 903 mm

64. Check Distance OFF

65. Send_data FMCW fmcwdata_0.8.txt

66. Wait Radar

67. Wait Radar

68. Check Distance 800 20

69. Wait 500

70. Calculated distance: 819 mm

71. Calculated distance: 819 mm

72. …

73. Calculated distance: 819 mm

74. Calculated distance: 819 mm

75. Check Distance OFF

76. Send_data FMCW fmcwdata_0.7.txt

77. Wait Radar

78. Wait Radar

79. Check Distance 700 60

80. Wait 500

81. Calculated distance: 669 mm

82. Calculated distance: 669 mm

83. …

84. Calculated distance: 669 mm

85. Calculated distance: 669 mm

86. Check Distance OFF

87. Send_data FMCW fmcwdata_0.6.txt

88. Wait Radar

89. Wait Radar

90. Check Distance 600 45

91. Wait 500

92. Calculated distance: 644 mm

93. Calculated distance: 644 mm

94. …

95. Calculated distance: 644 mm

96. Calculated distance: 644 mm

97. Check Distance OFF

98. Send_data FMCW fmcwdata_0.5.txt

99. Wait Radar

100. Wait Radar

101. Check Distance 500 20

102. Wait 500

103. Calculated distance: 483 mm

104. Calculated distance: 483 mm

105. …

106. Calculated distance: 483 mm

107. Calculated distance: 483 mm

 26

108. Check Distance OFF

109. Send_data FMCW fmcwdata_0.4.txt

110. Wait Radar

111. Wait Radar

112. Check Distance 400 25

113. Wait 500

114. Calculated distance: 424 mm

115. Calculated distance: 424 mm

116. …

117. Calculated distance: 424 mm

118. Calculated distance: 424 mm

119. Check Distance OFF

120. Write GPIO OUT1 0x0000

121. # End of test detected.

The log file is similar to the test script which was presented beforehand. The main difference

is the calculated distance messages. These messages shows that the Baseband Processor
calculation process is performed during the test and all calculated distances are very close to

the expected values and their accuracy is within the acceptance range.

The table below presents the comparison of results calculated by the MATLAB algorithm

implementation and Baseband Processor in FMCW mode.

It can be noticed that:

- For too short distances, distance cannot be calculated by the Baseband Processor
because to signal clipping due to too strong amplification of data generated in

MATLAB in PC application, before sending to FPGA.

- For too long distances, both MATLAB and Baseband Processor are not capable to
calculate distance correctly because of too weak level of signal, comparable to noise

level.

- For distance range 400 mm … 7100 mm, the highest error of MATLAB results is about

37 mm (for 5700 mm, which is 0.65%) and the highest error of Baseband Processor
results is about 56 mm (for 7100 mm, which is 0.79%). The mean error of MATLAB

results is 8.7 mm the mean error of Baseband Processor results is 21.7 mm. Slightly

higher error of Baseband Processor calculations could be avoided if level of input
signal were normalized before providing to Baseband Processor.

Analysis of results proves the correctness of FMCW algorithm implementation in the Baseband

Processor.

Table 7. Calculated distances for FMCW mode

Distance to
object

MATLAB
algorithm

result

MATLAB
algorithm

error

Baseband
Processor

result

Baseband
Processor

error

Notes

200 234 34 - -

300 293 7 - -

Signal clipping due to
amplifying input signal in PC

application

400 399 1 416 16

500 494 6 508 8

600 593 7 556 44

 27

Distance to
object

MATLAB
algorithm

result

MATLAB
algorithm

error

Baseband
Processor

result

Baseband
Processor

error

Notes

700 696 4 709 9

800 794 6 815 15

900 897 3 925 25

1000 996 4 991 9

1100 1091 9 1083 17

1200 1194 6 1233 33

1500 1490 10 1514 14

2300 2289 11 2312 12

3400 3388 12 3370 30

4500 4498 2 4515 15

5700 5663 37 5778 22

7100 7087 13 7156 56

8500 - - - Level of signal too weak

6.2.4 Test result

FMCW radar mode test was executed successfully. No errors were found and all calculated

distances are within the margin of error and this confirms that the Baseband Processor is

working properly in FMCW mode.

6.3. AFE interface

6.3.1 Test description

The test validates the operation of the Baseband Processor AFE interface and the transmission

protocol between Baseband Processor and AFE.

To allow that verification, simple model of AFE has been implemented and connected to the
Baseband Processor AFE interface. PC application has a direct access to AFE model through

the Host interface.

The AFE interface validation was achieved by:

• Forcing from PC application write transaction at the AFE interface (i.e. sending data

from PC application via AFE interface to AFE model) and checking the data received
by the AFE model.

• Sending data from PC application to AFE model and forcing from PC application read

transaction at the AFE interface with checking data received at AFE interface.

Additionally, while testing the Baseband Processor in CW and FMCW modes, correctness of
AFE interface transactions initiated by the Baseband Processor firmware was tested.

6.3.2 Test scenario

This typescript below shows the a part of the test log which is displayed on the PC application
log panel.

1. Write AFE 0x002 0xA1

 28

2. Read TEST_MODULE AFE 0x150C

3. Write AFE 0x003 0x02

4. Read TEST_MODULE AFE 0x1814

5. Write AFE 0x004 0x5F

6. Read TEST_MODULE AFE 0x22FC

7. Write AFE 0x005 0xCA

8. Read TEST_MODULE AFE 0x2E54

9. Write AFE 0x006 0x08

10. Read TEST_MODULE AFE 0x3044

11. Write TEST_MODULE AFE 0x008C

12. Read AFE 0x000 0x008C

13. Write TEST_MODULE AFE 0x0944

14. Read AFE 0x001 0x0944

15. Write TEST_MODULE AFE 0x150C

16. Read AFE 0x002 0x150C

17. Write TEST_MODULE AFE 0x1814

18. Read AFE 0x003 0x1814

19. Write TEST_MODULE AFE 0x22FC

20. Read AFE 0x004 0x22FC

The write commands at lines 1, 3, 5, 7, 9 result in sending data to the AFE model via the AFE
interface. Sent data corresponds to 8-bit data to be written to selected AFE register. When all

the values are sent, their result is checked by read commands. At lines 2, 4, 6, 8, 10 the read
commands result in reading value from AFE model receive buffer. This value is 16-bit length
and contains AFE register address, written data and code message. The value is validated by

comparing it with expected value specified together with read command. If a checked value is
different than expected, the test fails and error message is displayed.

The write commands at lines 11, 13, 15, 17, 19 result in sending data to the AFE model. Sent
data corresponds to 16-bit data to be released at the AFE interface by AFE model during read

transaction. At lines 12, 14, 16, 18, 20 the read commands results in read transaction at the
AFE interface which corresponds to reading value from selected register of the AFE model.

This value should be exactly the same as the last value written to the AFE model transmit
buffer, what is specified as a parameter of read command. If the read value is different, then

the test fails and error message is displayed.

6.3.3 Baseband Process accessing AFE

To verify communication between the Baseband Processor and AFE model, data which is sent
automatically to AFE by the Baseband Processor firmware during CW or FMCW operation is

checked with expected value.

a) CW mode

In the CW mode, to start calculating the Baseband Processor configures the analog
part of the radar. It is done by sending the configuration data to AFE model. There

are 4 write access to AFE:

0x9D -> FREQ_H - 0x14EC received by the AFE model

0x56 -> FREQ_L - 0x1AB4 received by the AFE model

0x00 -> CTRL1 - 0x0004 received by the AFE model

0x04-> CTRL2 - 0x0824 received by the AFE model

 29

Additionally, while stopping radar, the Baseband Processor makes 1 write access to
AFE:

0x01-> CTRL2 - 0x080C received by the AFE model

b) FMCW mode

In the FMCW mode, to start calculating the Baseband Processor configures the analog
part of the radar. It is done by sending the configuration data to AFE model. There

are 4 write access to AFE:

0x02 -> CTRL1 - 0x0014 received by the AFE model

0x81-> CTRL2 - 0x0C0C received by the AFE model

0x04-> CTRL2 - 0x0824 received by the AFE model

Additionally, while stopping radar, the Baseband Processor makes 1 write access to

AFE:

0x01-> CTRL2 - 0x080C received by the AFE model

All checked values are as expected. The communication between Baseband Processor and AFE
model is working properly.

6.3.4 Test result

AFE interface test was executed successfully. No errors were found and all sending values
have been received by AFE model correctly. AFE interface is working properly and provides

trouble-free transport protocol.

6.4. PLL interface

6.4.1 Test description

The test validates the operation of the Baseband Processor PLL interface and the transmission

protocol between Baseband Protocol and PLL.

To allow that verification, simple model of PLL has been implemented and connected to the

Baseband Processor PLL interface. PC application has a direct access to PLL model through
the Host interface. The PLL interface validation was achieved by sending data from PC

application via PLL interface to PLL model and checking the data received by the PLL model.

Additionally, while testing the Baseband Processor in CW and FMCW modes, correctness of
PLL interface transactions initiated by the Baseband Processor firmware was tested.

6.4.2 Test scenario

The typescript below shows the a part of the test script which contains a validation of PLL
interface.

1. Write PLL FRACINT 0x12345678

2. Read TEST_MODULE PLL_LOW 0xb3c0

3. Read TEST_MODULE PLL_HIGH 0x91a2

4. Write PLL PHASE 0x98765432

5. Read TEST_MODULE PLL_LOW 0xA191

6. Read TEST_MODULE PLL_HIGH 0xC3B2

7. Write PLL FUNCTION 0xABCDEF59

8. Read TEST_MODULE PLL_LOW 0x7ACB

9. Read TEST_MODULE PLL_HIGH 0x5E6F

 30

The write commands (at lines 1, 4, 6) result is sending 32-bit data to selected register of the

PLL model. Correctness of write transactions at the PLL interface is checked by read
commands (at lines 2, 3, 5, 6, 7, 8). The read commands read the value from the PLL module
register and compare it with the expected value, specified with the read command. To read

data received by the PLL model, to read access to PLL model are made because the Host is
16- bits and PLL model is 32-bit. If read value is different than expected then test fails and

error message is displayed.

6.4.3 Test result

PLL interface test was executed successfully. No errors were found and all written values have

been received by PLL interface correctly. PLL interface is working properly and provides

trouble-free transport protocol.

6.5. Auxiliary DAC interface

6.5.1 Test description

The test validates the operation of the Auxiliary DAC interface and the transmission protocol

between the Baseband Processor and the Auxiliary DAC.

To allow that verification, simple model of Auxiliary DAC has been implemented and

connected to the Baseband Processor Auxiliary DAC interface. PC application has a direct

access to Auxiliary DAC model through the Host interface. To facilitate verification, the DAC
model implements 9 internal registers. 8 of them corresponds to current value of each of 8

channels and 9th reflects of value of last received control word, which is differentiated from
channel register access by address > b0111.

The validation was achieved by sending random values from PC application via Baseband

Processor Auxiliary DAC interface to Auxiliary DAC model and validating state of Auxiliary DAC
internal registers.

6.5.2 Test scenario

The typescript below shows the a part of the test script which contains a validation of
Auxiliary DAC interface.

1. Write DAC SPDAT 0x0000

2. Write DAC SPDAT 0x1000

3. Write DAC SPDAT 0x2000

4. Write DAC SPDAT 0x3000

5. Write DAC SPDAT 0x4000

6. Write DAC SPDAT 0x5000

7. Write DAC SPDAT 0x6000

8. Write DAC SPDAT 0x7000

9. Write DAC SPDAT 0x8000

10. Write DAC SPDAT 0x00A8

11. Read TEST_MODULE DAC_CH0 0xA8

12. Read TEST_MODULE DAC_CH1 0x00

13. Read TEST_MODULE DAC_CH2 0x00

14. Read TEST_MODULE DAC_CH3 0x00

15. Read TEST_MODULE DAC_CH4 0x00

 31

16. Read TEST_MODULE DAC_CH5 0x00

17. Read TEST_MODULE DAC_CH6 0x00

18. Read TEST_MODULE DAC_CH7 0x00

19. Read TEST_MODULE DAC_DATA 0x8000

The write commands (at lines 1 to 10) result in sending data to the Auxiliary DAC model via
Auxiliary DAC interface. The value of highest byte specifies either a number of channel to be

changed (from 0 to 7) or control word (from 8 to F). When data is sent to Auxiliary DAC, it is
checked by read commands (at lines 11 to 19). The read command reads the values from the

Auxiliary DAC register and compare it with the expected value. If a checked value is different
than expected, the test fails and error message is displayed.

6.5.3 Test result

Auxiliary DAC interface test was executed successfully. No errors were found and all values

written to Auxiliary DAC model through Auxiliary DAC interface have been received by
Auxiliary DAC model correctly. Auxiliary DAC interface is working properly and provides

trouble-free transport protocol.

6.6. Auxiliary ADC interface

6.6.1 Test description

The test validates the operation of the Auxiliary ADC interface and the transmission protocol
between the Baseband Processor and the Auxiliary ADC.

To allow that verification, simple model of Auxiliary ADC has been implemented and
connected to the Baseband Processor Auxiliary ADC interface. PC application has a direct

access to Auxiliary ADC model through the Host interface. To facilitate verification, the ADC
model implements 8 internal registers corresponding to current value of each of 8 channels.

The validation was achieved by sending random values from PC application via Host interface
to Auxiliary ADC model and validating state of Auxiliary DAC internal registers by initiating

read transactions at the Auxiliary ADC interface.

6.6.2 Test scenario

The typescript below shows the a part of the test script which contains a validation of

Auxiliary ADC interface.

1. Write TEST_MODULE ADC_CH0 0x034

2. Read ADC SPDAT_0 0x0034

3. Write TEST_MODULE ADC_CH1 0xAD4

4. Read ADC SPDAT_1 0x0AD4

5. Write TEST_MODULE ADC_CH2 0xB1B

6. Read ADC SPDAT_2 0x0B1B

7. Write TEST_MODULE ADC_CH3 0x5A5

8. Read ADC SPDAT_3 0x05A5

9. Write TEST_MODULE ADC_CH4 0xC2C

10. Read ADC SPDAT_4 0x0C2C

 32

The write commands (at lines 1, 3, 5, 7, 9) result in setting value of selected ADC channelin
the Auxiliary ADC model. Afterwards, the state of ADC channels is checked by read commands

(at lines 2, 4, 6, 8, 10). The read commands read the value from the Auxiliary ADC module

through Auxiliary ADC interface and compare it with the expected values. If a read value is
different than expected, the test fails and error message is displayed.

6.6.3 Test result

Auxiliary ADC interface test was executed successfully. No errors were found and all values
written to Auxiliary ADC model have been read at Auxiliary ADC interface are correct. Auxiliary

ADC interface is working properly and provides trouble-free transport protocol.

6.7. Access to XRAM

6.7.1 Test description

The test validates the access to XRAM from R8051XC2 microcontroller, using firmware, and
from PC application, through the Host interface. This is achieved by making write and read

access to XRAM in both Baseband Processor firmware and PC application.

6.7.2 Test scenario

The typescript below shows the a part of the test script which contains a validation of XRAM

access.

1. Read 0x200 0x05

2. Read 0x201 0x06

3. Read 0x202 0x07

4. Read 0x203 0x08

5. Read 0x204 0x09

6. Read 0x205 0x0A

7. Read 0x206 0x0B

8. Read 0x207 0x0C

9. Read 0x208 0x0D

10. Read 0x209 0x0E

11. Read 0x20A 0x0F

12. Read 0x20B 0x10

13. Read 0x20C 0x11

14. Read 0x20D 0x12

15. Read 0x20E 0x13

16. Read 0x20F 0x14

17. Read 0x210 0x15

18. Read 0x211 0x16

19. Read 0x212 0x17

20. Read 0x213 0x18

21. Read 0x214 0x19

22. Read 0x215 0x1A

23. Read 0x216 0x1B

24. Read 0x217 0x1C

25. Read 0x218 0x1D

26. Read 0x219 0x1E

 33

27. Read 0x21A 0x1F

28. Read 0x21B 0x20

29. Read 0x21C 0x21

30. Read 0x21D 0x22

31. Read 0x21E 0x23

32. Read 0x21F 0x24

33. Read 0x220 0x00

34. Read 0x221 0x00

35. Read 0x222 0x00

36. Write 0x223 0x55

37. Read 0x223 0x55

38. Write 0x225 0xAA

39. Read 0x225 0xAA

40. Write 0x227 0xC7

41. Read 0x227 0xC7

At lines 1 to 35, content of XRAM is read by the PC application to check correctness of data
written by the firmware during Baseband Processor initialization.

When the Baseband Processor starts the firmware writes 0x05 to a address 0x00 of XRAM,
then it reads back the same address, increments it and write to the incremented address of

XRAM. This operation is done 32 times. The validation of that process is achieved by reading

the XRAM by PC application and comparing it with expected values.

At lines 36 to 41 access to XRAM from the PC application is validated. The write commands

perform writes to XRAM via Host interface. The read commands perform reads from XRAM via
Host interface and compares read value with the value previously written. If read value is

different than written, the test fails and error message is displayed.

6.7.3 Test result

Access to XRAM test was executed successfully. No errors were found and write and read

accesses from both Baseband Processor firmware and the PC application was correct. The

access XRAM is working properly.

6.8. Access to CW coprocessor registers

6.8.1 Test description

The test validates the access to CW coprocessor internal registers from the PC application.

This is achieved by writing to CW coprocessor registers and subsequent reading CW

coprocessor’s registers and comparing read value with expected one.

6.8.2 Test scenario

The typescript below shows the a part of the test script which contains a validation of access

to CW coprocessor registers.

1. Write CW_PROC DELTA_FR_LOW 0x12

2. Read CW_PROC DELTA_FR_LOW 0x12

3. Write CW_PROC DELTA_FR_HIGH 0xA3

4. Read CW_PROC DELTA_FR_HIGH 0xA3

5. Write CW_PROC DISCARD_NUM_LOW 0x25

 34

6. Read CW_PROC DISCARD_NUM_LOW 0x25

7. Write CW_PROC DISCARD_NUM_HIGH 0x07

8. Read CW_PROC DISCARD_NUM_HIGH 0x07

9. Write CW_PROC I_DC_LOW 0xFF

10. Read CW_PROC I_DC_LOW 0xFF

11. Write CW_PROC I_DC_HIGH 0x0F

12. Read CW_PROC I_DC_HIGH 0x0F

13. Write CW_PROC I_AMP_LOW 0x26

14. Read CW_PROC I_AMP_LOW 0x26

At lines 1, 3, 5, 7, 9, 11, 13 write commands write to selected CW coprocessor register. At

lines 2, 4, 6, 8, 10, 12, 14 read commands read selected CW coprocessor register and
compare it with expected value. If the value is different than expected then the error message

is displayed.

6.8.3 Test result

Access to CW coprocessor registers test was executed successfully. No errors were found and
all write and read accesses from the PC application to the CW coprocessor were correct. The

access from PC application to CW coprocessor registers is working properly.

6.9. Access to FMCW coprocessor registers

6.9.1 Test description

The test validates the access to FMCW coprocessor internal registers from the PC application.

This is achieved by writing to FMCW coprocessor registers and subsequent reading FMCW
coprocessor’s registers and comparing read value with expected one.

6.9.2 Test scenario

The typescript below shows the a part of the test script which contains a validation of access
to FMCW coprocessor registers.

1. Write FMCW_PROC SFREQ_LOW 0x3F

2. Read FMCW_PROC SFREQ_LOW 0x3F

3. Write FMCW_PROC SFREQ_HIGH 0x12

4. Read FMCW_PROC SFREQ_HIGH 0x12

5. Write FMCW_PROC SCALLING_LOW 0x32

6. Read FMCW_PROC SCALLING_LOW 0x32

7. Write FMCW_PROC SCALLING_MID 0xBC

8. Read FMCW_PROC SCALLING_MID 0x34

9. Write FMCW_PROC SCALLING_HIGH 0x07

10. Read FMCW_PROC SCALLING_HIGH 0x07

11. Write FMCW_PROC RAMP_T_LOW 0xDE

12. Read FMCW_PROC RAMP_T_LOW 0xDE

13. Write FMCW_PROC RAMP_T_HIGH 0x02

14. Read FMCW_PROC RAMP_T_HIGH 0x02

At lines 1, 3, 5, 7, 9, 11, 13 write commands write to selected FMCW coprocessor register. At
lines 2, 4, 6, 8, 10, 12, 14 read commands read selected FMCW coprocessor register and

 35

compare it with expected value. If the value is different than expected then the error message
is displayed.

6.9.3 Test result

Access to FMCW coprocessor’s registers test was executed successfully. No errors were found

and all write and read accesses from the PC application to the FMCW coprocessor were
correct. The access from PC application to FMCW coprocessor registers is working properly.

Automatic FMCW radar mode

6.10. One shot CW radar mode

6.10.1 Test description

The test validates the operational of the Baseband Processor in CW mode while One shot

mode is activated. The test validates the correctness of calculation of the distance between

radar and target object. The calculation is based on the data generated in MATLAB. The
generated data emulate the operation of the analog part of the radar connected to Baseband

Processor by ADC interface.

Generation of data in MATLAB is based on CW algorithm a pre-defined value of distance to the

target. This distance calculated in the Baseband Processor must be consistent with value set
during generation of MATLAB. Any differences may result from algorithm accuracy and

calculation precision. For each distance, it is defined in the test script, a maximum difference

between calculated distance and the actual distance.

6.10.2 Test scenario

The typescript below shows the a part of the test script which contains a validation of the two

distance calculations.

1. Send_data CW data_1.4.txt

2. Write GPIO OUT1 0x0011

3. Check Distance 1400 10

4. Wait Radar

5. Wait 1

6. # next distance

7. Send_data CW data_1.2.txt

8. Write GPIO OUT1 0x0011

9. Check Distance 1200 10

10. Wait Radar

11. Wait 1

At lines 1 and 7 the data samples generated in MATLAB are sent to Baseband Processor. At
lines 2 and 8 write command sets the register OUT1 of the GPIO block. The register OUT1 is

used to start Baseband Processor operation and sets CW mode and one-shot mode. This
command must placed more than ones because, the Baseband Processor in One shot mode

calculates distance only ones and afterwards the operation is suspended. A new measurement

must be preceded by the command which restart the baseband Processor. At lines 4, 5 and
10, 11 wait command causes waiting for Baseband Processor interrupt which declares the end

of the calculation process. At lines 3 and 9 check distance command compares calculated
values with expected values. The last number in this command is the acceptable calculation

 36

accuracy. If the calculated value has higher error then the defined accuracy, the error
message is displayed.

6.10.3 Test procedure

This typescript below shows the a part of the test log which is displayed on the PC application

log panel.

1. Test
2. All_Distance_Display
3. Send_data CW data_1.4.txt
4. Write GPIO OUT1 0x0011
5. Check Distance 1400 10
6. Wait Radar
7. Wait 1
8. # next distance
9. Send_data CW data_1.2.txt
10. Calculated distance: 1396 mm
11. Write GPIO OUT1 0x0000
12. Write GPIO OUT1 0x0011
13. Check Distance 1200 10
14. Wait Radar
15. Wait 1
16. # next distance
17. Send_data CW data_1.0.txt
18. Calculated distance: 1199 mm
19. Write GPIO OUT1 0x0000
20. Write GPIO OUT1 0x0011
21. Check Distance 1000 10
22. Wait Radar
23. Calculated distance: 995 mm
24. Write GPIO OUT1 0x0000
25. Wait 1
26. Calculated distance: 995 mm
27. # End of test detected.

The log file is wary similar to log description which was presented above. The main difference

is the calculated distance messages. These messages shows that the Baseband Processor

calculation process is performed during the test and all calculated distances are very close to
the expected values and their accuracy is within the acceptance range.

The screenshots below presents the PC application Debug panel view for the Baseband

Processor working in One-shot CW mode. One-shot mode allowed, after each measurement,

to read-out content of FIFO with data samples generated in MATLAB and visualize the phase
between input signals corresponding to 1st and 2nd measurement CW coprocessor.

1st screenshots has been made for 1400 mm distance and the 2nd for 1000 mm distance.

 37

Figure 10. Debug panel view for CW mode, distance 1400 mm

Figure 11. Debug panel view for CW mode, distance 1000 mm

6.10.4 Test result

One shot CW radar mode test was executed successfully. No errors were found and all

calculated distances are within the margin of error are within the margin of error and this

confirms that the Baseband Processor is working properly in One shot CW mode.

 38

6.11. One shot FMCW radar mode

6.11.1 Test description

The test validates the operational of the Baseband Processor in FMCW mode while One shot

mode is activated. The test validates the correctness of calculation of the distance between
radar and target object. The calculation is based on the data generated in MATLAB. The

generated data emulate the operation of the analog part of the radar connected to Baseband

Processor by ADC interface.

Generation of data in MATLAB is based on FMCW algorithm a pre-defined value of distance to

the target. This distance calculated in the Baseband Processor must be consistent with value
set during generation of MATLAB. Any differences may result from algorithm accuracy and

calculation precision. For each distance, it is defined in the test script, a maximum difference

between calculated distance and the actual distance.

6.11.2 Test scenario

The typescript below shows the a part of the test script which contains a validation of the two

distance calculations.

1. Write FMCW_PROC WINDOW 0x0001

2. Write FMCW_PROC WINDOW 0x01f4

3. Write FMCW_PROC WINDOW 0x0001

4. Write FMCW_PROC WINDOW 0x021c

5. …

6. Write FMCW_PROC WINDOW 0x0120

7. Write FMCW_PROC WINDOW 0x0001

8. Write FMCW_PROC WINDOW 0x00cc

9. Write FMCW_PROC WINDOW 0x0000

10. Write GPIO OUT1 0x0003

11. Send_data FMCW fmcwdata_1.5.txt

12. Wait Radar

13. Check Distance 1500 50

14. Wait 500

15. Check Distance OFF

16. # next distance

17. Send_data FMCW fmcwdata_1.2.txt

18. Wait Radar

19. Check Distance 1200 30

20. Wait 500

21. Check Distance OFF

In first lines (1 to 9) write command sends the 48 values which are the samples that are used

to define the Kaiser window. These samples were calculated by the PC Application and copied
to the test script (this operation can be obtained by entering the number into the field next to

the FFT window button and then pressing it). The window function is necessary for FFT
computation executed by Baseband Processor. The FFT computation is the part of FMCW

distance calculation.

At line nr 10 write command set the register OUT1 of the GPIO block. . The register OUT1 is
used to start Baseband Processor operation in One-shot FMCW mode. At lines 11 and 17 data

samples generated in MATLAB are sent to Baseband Processor which starts calculation
process. At lines 12 and 18 wait command causes waiting for Baseband Processor interrupt

 39

which declares the end of the first calculation process. At lines 13 and 19 check distance
command compares calculated values with expected values. The last number in this command

is the acceptable calculation accuracy. If the calculated value has higher error then the

defined accuracy, the error message is displayed. At lines 14 and 20 check distance off
command causes that the PC application ends the compare operation before loading data

corresponding to next value of distance to a target.

6.11.3 Test procedure

This typescript below shows the a part of the test log which is displayed on the PC application

log panel.

1. Write FMCW_PROC WINDOW 0x0001

2. Write FMCW_PROC WINDOW 0x01f4

3. …

4. Write FMCW_PROC WINDOW 0x00cc

5. Write FMCW_PROC WINDOW 0x0000

6. Write GPIO OUT1 0x0003

7. Send_data FMCW fmcwdata_1.5.txt

8. All_Distance_Display

9. Wait Radar

10. Wait Radar

11. Check Distance 1500 50

12. Wait 500

13. Calculated distance: 1489 mm

14. Calculated distance: 1489 mm

15. …

16. Calculated distance: 1489 mm

17. Calculated distance: 1489 mm

18. Check Distance OFF

19. Send_data FMCW fmcwdata_1.2.txt

20. Wait Radar

21. Wait Radar

22. Check Distance 1200 30

23. Wait 500

24. Calculated distance: 1222 mm

25. Calculated distance: 1222 mm

26. …

27. Calculated distance: 1222 mm

28. Calculated distance: 1222 mm

29. Check Distance OFF

30. Send_data FMCW fmcwdata_1.1.txt

31. Wait Radar

32. Wait Radar

33. Check Distance 1100 45

34. Wait 500

35. Calculated distance: 1141 mm

36. Calculated distance: 1141 mm

37. …

38. Calculated distance: 1141 mm

 40

39. Calculated distance: 1141 mm

40. Check Distance OFF

41. Send_data FMCW fmcwdata_1.0.txt

42. Wait Radar

43. Wait Radar

44. Check Distance 1000 20

45. Wait 500

46. Calculated distance: 998 mm

47. Calculated distance: 998 mm

48. …

49. Calculated distance: 998 mm

50. Calculated distance: 998 mm

51. Check Distance OFF

52. Calculated distance: 998 mm

53. Send_data FMCW fmcwdata_0.9.txt

54. Wait Radar

55. Calculated distance: 998 mm

56. Wait Radar

57. Check Distance 900 20

58. Wait 500

59. Calculated distance: 903 mm

60. Calculated distance: 903 mm

61. …

62. Calculated distance: 903 mm

63. Calculated distance: 903 mm

64. Check Distance OFF

65. Send_data FMCW fmcwdata_0.8.txt

66. Wait Radar

67. Wait Radar

68. Check Distance 800 20

69. Wait 500

70. Calculated distance: 819 mm

71. Calculated distance: 819 mm

72. …

73. Calculated distance: 819 mm

74. Calculated distance: 819 mm

75. Check Distance OFF

76. Send_data FMCW fmcwdata_0.7.txt

77. Wait Radar

78. Wait Radar

79. Check Distance 700 60

80. Wait 500

81. Calculated distance: 669 mm

82. Calculated distance: 669 mm

83. …

84. Calculated distance: 669 mm

85. Calculated distance: 669 mm

86. Check Distance OFF

87. Send_data FMCW fmcwdata_0.6.txt

 41

88. Wait Radar

89. Wait Radar

90. Check Distance 600 45

91. Wait 500

92. Calculated distance: 644 mm

93. Calculated distance: 644 mm

94. …

95. Calculated distance: 644 mm

96. Calculated distance: 644 mm

97. Check Distance OFF

98. Send_data FMCW fmcwdata_0.5.txt

99. Wait Radar

100. Wait Radar

101. Check Distance 500 20

102. Wait 500

103. Calculated distance: 483 mm

104. Calculated distance: 483 mm

105. …

106. Calculated distance: 483 mm

107. Calculated distance: 483 mm

108. Check Distance OFF

109. Send_data FMCW fmcwdata_0.4.txt

110. Wait Radar

111. Wait Radar

112. Check Distance 400 25

113. Wait 500

114. Calculated distance: 424 mm

115. Calculated distance: 424 mm

116. …

117. Calculated distance: 424 mm

118. Calculated distance: 424 mm

119. Check Distance OFF

120. Write GPIO OUT1 0x0000

121. # End of test detected.

The log test is similar to the test script which was presented beforehand. The main difference

is the calculated distance messages. These messages shows that the Baseband Processor
calculation process is performed during the test and all calculated distances are very close to

the expected values and their accuracy is within the acceptance range.

The screenshots below presents the PC application Debug panel view for the Baseband

Processor working in One-shot FMCW mode. One-shot mode allowed, after each
measurement, to read-out content of FIFO with data samples generated in MATLAB and

visualize the input signal, which frequency is measured by FMCW coprocessor. Additionally
raw FFT result can be read our from FMCW coprocessor and visualized in form of frequency

spectrum.

1st screenshots has been made for 1500 mm distance and the 2nd for 4500 mm distance.

 42

Figure 12. Debug panel view for FMCW mode, distance 1500 mm

Figure 13. Debug panel view for FMCW mode, distance 4500 mm

6.11.4 Test result

FMCW radar mode test was executed successfully. No errors were found and all calculated

distances are within the margin of error and this confirms that the Baseband Processor is

working properly in One shot FMCW mode.

 43

6.12. CW radar mode with not default configuration

6.12.1 Test description

The test validates the operational of the Baseband Processor in CW mode while configuration
of the Baseband Processor is done by PC application. Starting the Baseband Processor in not

default configuration requires that the firmware skips the configuration process and not

overwrite the configuration done by PC application. That is achieved by NON-DEFAULT mode
of operation which can be activated by the PC application while starting the Baseband

Processor.

6.12.2 Test scenario

The typescript below shows the a part of the test script which contains a validation of the two

distance calculations.

1. Write CW_PROC DELTA_FR_LOW 0xA8

2. Write CW_PROC DELTA_FR_HIGH 0x61

3. Write CW_PROC DISCARD_NUM_LOW 0x40

4. Write CW_PROC DISCARD_NUM_HIGH 0x00

5. Write CW_PROC I_DC_LOW 0x00

6. Write CW_PROC I_DC_HIGH 0x00

7. Write CW_PROC I_AMP_LOW 0x01

8. Write CW_PROC I_AMP_HIGH 0x00

9. Write CW_PROC Q_DC_LOW 0x00

10. Write CW_PROC Q_DC_HIGH 0x00

11. Write CW_PROC Q_AMP_LOW 0x01

12. Write CW_PROC Q_AMP_HIGH 0x00

13. Write CW_PROC AVER_NUM 0x0

14. Write AFE FREQ_HIGH 0x9D

15. Write AFE FREQ_LOW 0x56

16. Write AFE CTRL1 0x00

17. Write AFE CTRL2 0x04

18. Write PLL CLKDIV 0x02131415

19. Write PLL PHASE 0x02232425

20. Write PLL MOD 0x02333435

21. Write PLL FUNCTION 0x02434445

22. Write 0x230 0x30

23. Write 0x231 0x05

24. Write 0x232 0x00

25. Write 0x233 0x00

26. Write 0x234 0x70

27. Write 0x235 0x06

28. Write 0x236 0x00

29. Write 0x237 0x00

30. Send_data CW data_1.4.txt

31. Write GPIO OUT1 0x0005

32. Check Distance 1400 10

33. Wait Radar

 44

34. …

At lines 1 and 21 PC application sets a desired configuration of the Baseband Processor. It
performs write accesses to CW_RADAR coprocessor, Analog Front-end and PLL. Further, at

lines 22 to 29 it writes to XRAM value of desired frequency settings that are to be used by

Baseband Processor while swiching PLL from 1st to 2nd measurement. Finally, at line 30 data
samples generated in MATLAB are sent to Baseband Processor and, at line 31, the Baseband

Processor is activated in NON-DEFAULT mode. Last step of test procedure is to check the
distance calculated by the Baseband Processor, which is done at lines 32, 33. If the calculated

value has higher error then the defined accuracy, the error message is displayed.

6.12.3 Test result

CW radar mode with not default parameters test was executed successfully. No errors were
found and all calculated distances are within the margin of error are within the margin of error

and this confirms that the Baseband Processor is working properly in CW mode with not
default configuration.

6.13. FMCW radar mode with not default configuration

6.13.1 Test description

The test validates the operational of the Baseband Processor in FMCW mode while

configuration of the Baseband Processor is done by PC application. Starting the Baseband
Processor in not default configuration requires that the firmware skips the configuration

process and not overwrite the configuration done by PC application. That is achieved by NON-
DEFAULT mode of operation which can be activated by the PC application while starting the

Baseband Processor.

6.13.2 Test scenario

The typescript below shows the a part of the test script which contains a validation of the two
distance calculations.

1. All_Distance_Display

2. Write FMCW_PROC WINDOW 0x0001

3. Write FMCW_PROC WINDOW 0x01f4

4. …

5. Write FMCW_PROC WINDOW 0x00cc

6. Write FMCW_PROC WINDOW 0x0000

7. Write FMCW_PROC SFREQ_LOW 0x64

8. Write FMCW_PROC SFREQ_HIGH 0x00

9. Write FMCW_PROC SCALLING_LOW 0x01

10. Write FMCW_PROC SCALLING_MID 0x21

11. Write FMCW_PROC SCALLING_HIGH 0x22

12. Write FMCW_PROC RAMP_T_LOW 0xD0

13. Write FMCW_PROC RAMP_T_HIGH 0x07

14. Write FMCW_PROC RAMP_F_LOW 0xCC

15. Write FMCW_PROC RAMP_F_HIGH 0x04

16. Write FMCW_PROC LOWEST_BIN_LOW 0x05

17. Write FMCW_PROC LOWEST_BIN_HIGH 0x00

18. Write FMCW_PROC SAMPLE_NUM_LOW 0x30

 45

19. Write FMCW_PROC SAMPLE_NUM_HIGH 0x00

20. Write FMCW_PROC FR_SPACE 0x02

21. Write FMCW_PROC DISCARD 0x01

22. Write FMCW_PROC FMCW_AVER_NUM 0x00

23. Send_data FMCW fmcwdata_1.5.txt

24. Write GPIO OUT1 0x0007

25. Check Distance 1500 50

26. Wait Radar

27. …

At lines 1 and 22 PC application sets a desired configuration of the Baseband Processor. It

performs write accesses to FMCW_RADAR coprocessor, including definition of window function
that is to be applied before FFT computation. Further, 23 data samples generated in MATLAB

are sent to Baseband Processor and, at line 24, the Baseband Processor is activated in NON-

DEFAULT mode. Last step of test procedure is to check the distance calculated by the
Baseband Processor, which is done at lines 25, 26. If the calculated value has higher error

then the defined accuracy, the error message is displayed.

6.13.3 Test result

FMCW radar mode with not default parameters test was executed successfully. No errors were

found and all calculated distances are within the margin of error are within the margin of error

and this confirms that the Baseband Processor is working properly in FMCW mode with not
default configuration.

 46

7. AFE digital control test

7.1. Digital Control Block Diagram

The block diagram of the digital control is shown in Fig. 14.

Figure 14. Block diagram of digital control block

The digital control block is composed of the following subcomponents:

7.1.1 SPI Core

This subcomponent is responsible for communication between baseband processor and AFE.

It always runs in slave mode. Baseband processor contains the SPI master controller
requesting communication and providing SPI clock and CS signal.

7.1.2 SPI Register File

These registers are employed to store data transferred via SPI core. There are in total 26

registers with bit-width of 8 bits.

7.1.3 Synchronization Block

This subcomponent is employed to cross over two clock domains (denoted by sclk and clk_ref)
without hazards.

 47

7.1.4 Programmable Counter

This subcomponent (timer) provides an enable signal for frequency measurement. The enable

signal is active within time interval programmable via SPI interface.

7.1.5 Test Ramp Generator

This subcomponent is able to generate a frequency ramp with three different time
periods, but with pre-determined values of frequency ramp. The purpose is to have
an opportunity for DAC testing without programming a RAM memory cell in Shift
Block.

7.1.6 Shift Block

This subcomponent is used for storing frequency ramp values sent by baseband
processor and transferred via SPI interface. For storing those values, a RAM memory
cell with size 256x16 bits is employed.

7.2. Digital Control Pin Description

The table bellow summarizes pin description of the digital control.

Table 8. Pin Description of Digital Control

Name Type

Polarity

or

Bus

Size

Description

nres In Low Hardware reset input

clk_ref In Rise Reference clock, currently is set to

50 MHz

sclk In Rise
and

Fall

SPI clock (SPI interface)

cs In Low Chip Select (SPI interface)

mosi In Level Master-Output-Slave-Input (SPI

interface)

miso Out Level Master-Input-Slave-Output (SPI
interface)

start_bist In High Start signal of BIST SRAM memory

bist_ok Out High Pass/Fail signal of BIST SRAM
memory

en Out High Enable signal for frequency

measurement unit (FMU)

data0_fmu In 8 Higher - (23:16) bits of frequency

 48

measured by FMU

data1_fmu In 8 Middle - (15:8) bits of frequency
measured by FMU

data2_fmu In 8 Lower - (7:0) bits of frequency
measured by FMU

data_out_fmcw Out 16 Signal frequency value sent to DAC

sync_out Out High Start of frequency ramp indicated

by rising edge

vco_coarse In 3 VCO coarse value

power_amp Out 3 Power amplifier value

power_det1 Out 2 Power detector value 1

power_det2 Out 2 Power detector value 2

temp_sensor Out 4 Temperature sensor value

vga_stage1 Out 8 VGA value 1

vga_stage2 Out 8 VGA value 2

vga_stage3 Out 8 VGA value 3

vga_stage4 Out 8 VGA value 4

data1_rd In 8 General purpose inputs

data2_rd In 8 General purpose inputs

data1_out Out 8 General purpose outputs

data2_out Out 8 General purpose outputs

data3_out Out 8 General purpose outputs

data4_out Out 8 General purpose outputs

data5_out Out 8 General purpose outputs

7.3. SPI Register Map

The table bellow presents a SPI register map. Bit-width of each register is 8 bits. The number of

writable and readable registers is 18 and 8, respectively, what is in total 26 registers.

Table 9. SPI Register Map

Address(4:0) Access Description

00000 Write (7 : 2) – Higher (11 : 6) bits of programmable ratio R
in FMCW mode;

(1 : 0) - Higher (7 : 6) bits of number of frequency
points in FMCW mode;

00001 Write FMCW mode:

(7) – writing/reading mode bit; Logic ‘1’ - writing
mode; Logic ‘0’ - reading mode;

(6 : 1) bits

Writing mode : lower (5:0) bits of number of
frequency points;

Reading mode : lower (5:0) bits of programmable
clock ratio R;

(0) - freeze bit ;

 49

In reset state, as long as FMCW mode bit is ‘0’,
freeze bit (low active) prevents reading unknown

values from memory and delivering those unknown

values to DAC;

00010 Write FMCW mode : Higher - (15:8) bits of a signal

frequency;

00011 Write FMCW mode : Lower - (7:0) bits of a signal frequency

00100 Write Higher - (23:16) bits of programmable counter used

for frequency measurement

00101 Write Middle - (15:8) bits of programmable counter used for
FMU

00110 Write Lower - (7 :0) bits of programmable counter for FMU

00111 Write (7:5) bits - VCO coarse value

(4:2) bits - Power Amplifier value;

(1:0) bits – selecting bits for frequency ramp period in

test mode;

01000 Write VGA stage 1 value

01001 Write VGA stage 2 value

01010 Write VGA stage 3 value

01011 Write VGA stage 4 value

01100 Write Memory address in test mode

01101 Write data1_out value

01110 Write data2_out value

01111 Write data3_out value

10000 Write data4_out value

10001 Write data5_out value

10010 Read (7:6) bits – Power detector 1 value

(5:4) bits – Power detector 2 value

(3:0) bits – Temp. sensor value

10011 Read Higher – (23:16) bits of frequency measured by FMU

10100 Read Middle – (15:8) bits of frequency measured by FMU

10101 Read Lower – (7:0) bits of frequency measured by FMU

10110 Read data1_rd value

10111 Read data2_rd value

11000 Read Higher – (15 :8) bits of memory cell output in test
mode

11001 Read Lower – (7:0) bits of memory cell output in test mode

7.4. 1.4 Digital Control Functionality

In general, the digital control of AFE can work in two modes : normal and test mode. First,

the data communication protocol of SPI interface will be described.

 50

7.4.1 1.4.1 Data communication protocol of SPI interface

Communication protocol is based on exchanging 2 data bytes containing address of SPI
register and data. The tables 10 and 11 describe writing and reading protocol of SPI register,

respectively.

Table 10. Write SPI register

SPI bit

number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI input SPI register address written data 1 0 0

SPI register the first write the second write

Table 11. Read to SPI register

SPI bit

number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI input SPI register address 0 0 0 0 0 0 0 0 0 0 0

SPI output - read data - - -

SPI register the first read the second read

The chosen SPI clock polarity (CPOL) and SPI clock phase (CPHA) values are CPOL = ‘1’ and
CPHA = ‘1’. Data transmission format for one byte of such configuration is shown in Figure 15.

Note that SPEN signal is our configuration is not used.

Figure 15. SPI data transmission format.

a) Normal Mode

The normal mode includes following submodes:

 51

• In FMCW radar mode, the digital control is responsible for receiving the frequency

ramp values generated by the baseband processor. Then, those frequency ramp
values are fed to the DAC. The time period of the frequency ramp defined by

programmable ratio R as well as the number of frequency points within one ramp is

programmable via SPI interface.

• Configuration of the various signal values required for functioning of the AFE.

• Reading and transferring a signal frequency value measured by Frequency

Measurement Unit (FMU) of AFE to baseband processor.

b) Test Mode

The test mode includes following submodes:

• Frequency ramp generation dedicated for DAC testing without programming a RAM

memory cell. The values of frequency ramp are pre-determined and cannot be
changed. On the other hand, the time period of frequency ramp can be

programmable including 500 µs, 1 ms and 2 ms frequency ramps. For default ramp
of 500 µs time period, SPI is not used as well, only BIST input signal (denoted as

start_bist) shall be activated. For others two frequency ramps (1 ms and 2 ms),

besides activation of BIST input signal, two bits of the appropriate SPI register (with
address “00111”) shall be programmable as shown in table 12.

Table 12. Programming the frequency ramp for DAC testing

 start_bist SPI reg. with addr. (“00111”),
bits (1:0)

500 µs-
frequency ramp

‘1’ “00”

1 ms –

frequency ramp

‘1’ “01”

2 ms –
frequency ramp

‘1’ “10”/”11”

• BIST test for the RAM cell. To start this test, BIST input signal shall be activated. A

random pre-determined sequence is stored in memory and afterwards every memory
location is read out to check its correctness. When test is finished, the data

correctness shall be indicated by asserting bist_ok pin to high.

• During programming of the RAM cell (in FMCW radar mode) the frequency ramp

values are stored in memory. In order to check whether correct value is written in the

memory, every memory location can be read via SPI interface.

7.5. Test results of the first chip version

The first version of the ASIC chip including the simplified digital control as well as AFE has
been taped out in august 2010. The AFE is also simplified and includes only VCO, DAC and

FMU. As SPI master controller, we have used SPI Aardwark controller with appropriate

 52

software under Linux PC. The test results are summarized in Table 13. The diagram flow of
test procedures is given in Figure 16.

Table 13. Test results of the first chip version

Test Pass/Fail

SPI functionality Pass

Frequency measurement Pass

Memory BIST Pass

Memory programming and

frequency ramp generation

Fail

DAC test Pass

Basically, the tests of SPI functionality and frequency measurement have been passed, but
with some bugs which have been discovered and corrected in new chip version. Memory

programming and frequency ramp generation have been failed. Possible cause is a

synchronization problem between SPI and reference clock signal. This issue has been also
improved in new chip version.

Figure 16. Diagram flow of test procedures.

